1-D convolution neural network based leak detection, location and size estimation in smart water grid

Water is one of the essential natural resources for survival, but the water transportation system faces significant challenges because of huge water loss due to leaky pipeline systems. An IoT based novel SWG prototype has been developed and reported in this work. The SWG comprises sensors and device...

Full description

Saved in:
Bibliographic Details
Published in:Urban water journal Vol. 20; no. 3; pp. 341 - 351
Main Authors: Choudhary, Pooja, Botre, B. A., Akbar, S. A.
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 16-03-2023
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Water is one of the essential natural resources for survival, but the water transportation system faces significant challenges because of huge water loss due to leaky pipeline systems. An IoT based novel SWG prototype has been developed and reported in this work. The SWG comprises sensors and devices that can continuously and remotely monitor the pressure, temperature, flow, pH, turbidity, etc., of the water being transported. Moreover, a novel 1-D CNN model has been developed by creating an artificial leak on the pipeline that takes input data points as a chunk of 5-minute time series to the network and gives output in leak detection, location and size estimation simultaneously. Further, the developed model is compared with other state of the art machine learning techniques and the proposed model is found better in terms of accuracy which is 94.32%, 91.91% and 89.85% for leak detection, size estimation and location respectively.
AbstractList Water is one of the essential natural resources for survival, but the water transportation system faces significant challenges because of huge water loss due to leaky pipeline systems. An IoT based novel SWG prototype has been developed and reported in this work. The SWG comprises sensors and devices that can continuously and remotely monitor the pressure, temperature, flow, pH, turbidity, etc., of the water being transported. Moreover, a novel 1-D CNN model has been developed by creating an artificial leak on the pipeline that takes input data points as a chunk of 5-minute time series to the network and gives output in leak detection, location and size estimation simultaneously. Further, the developed model is compared with other state of the art machine learning techniques and the proposed model is found better in terms of accuracy which is 94.32%, 91.91% and 89.85% for leak detection, size estimation and location respectively.
Author Choudhary, Pooja
Botre, B. A.
Akbar, S. A.
Author_xml – sequence: 1
  givenname: Pooja
  surname: Choudhary
  fullname: Choudhary, Pooja
  email: poojachoudhary32@gmail.com
  organization: Academy of Scientific and Innovative Research (AcSIR)
– sequence: 2
  givenname: B. A.
  orcidid: 0000-0001-9152-2346
  surname: Botre
  fullname: Botre, B. A.
  organization: Academy of Scientific and Innovative Research (AcSIR)
– sequence: 3
  givenname: S. A.
  surname: Akbar
  fullname: Akbar, S. A.
  organization: Academy of Scientific and Innovative Research (AcSIR)
BookMark eNp9kE1LAzEQhoNUsK3-BCHg1a2Tr83uTamfUPCi4C1ks1nZdpvUZGupv97U1aunGYZnZl6eCRo57yxC5wRmBAq4IkIyyOnbjAKlM0pyLhk9QmMiOc9KgHyU-sRkB-gETWJcAnBeSjJGlmS32Hj36btt33qHnd0G3aXS73xY4UpHW-PO6hWubW_NgbnEnTf6h9auxrH9stjGvl0Ps9bhuNahxzvd24DfQ1ufouNGd9Ge_dYper2_e5k_Zovnh6f5zSIzjBV91gDhQlaSlaU0RWWAGmsEr00juaZgtKBQVCBYxYGUVlsiykrKBBooQZRsii6Gu5vgP7Ypk1r6bXDppaKyYILnnJNEiYEywccYbKM2IYUPe0VAHYyqP6PqYFT9Gk1718Ne6xof1joJ6mrV633nQxO0M21U7P8T39l0f1g
CitedBy_id crossref_primary_10_3390_s23218935
Cites_doi 10.1063/5.0044005
10.1061/(ASCE)1076-0342(2008)14:4(305)
10.1080/09747338.2021.1984317
10.1007/978-3-319-55944-5
10.5772/INTECHOPEN.77196Corpus
10.1109/DSAA.2016.49
10.1109/ACCESS.2021.3068292
10.3390/s22041562
10.2166/aqua.2021.140
10.1590/S0104-66322000000400020
10.3390/s18124192
10.1109/TIE.2017.2764861
10.1016/j.procs.2018.05.069
10.3182/20070822-3-ZA-2920.00053
10.1016/j.jher.2009.02.003
10.3390/en12081472
10.1109/ACCESS.2017.2752802
10.3390/jmse8030173
10.1177/14759217211053776
10.1109/ACCESS.2019.2902711
10.1016/j.jappgeo.2019.02.001
10.1080/1573062X.2018.1547773
10.1186/s40713-019-0017-x
10.1080/1573062X.2020.1734947
10.1016/j.jlp.2012.05.010
10.1109/IPEC54454.2022.9777486
10.1201/b21948
10.1109/ACCESS.2019.2896302
10.1002/j.1551-8833.2008.tb09678.x
10.1109/IPSN.2007.4379686
10.2166/ws.2014.131
10.1061/(ASCE)WR.1943-5452.0001187
10.3390/s19112548
10.1186/s43065-021-00021-6
10.1145/3319921.3319926
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7QH
7UA
8FD
C1K
F1W
FR3
H96
H97
KR7
L.G
DOI 10.1080/1573062X.2022.2164732
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1744-9006
EndPage 351
ExternalDocumentID 10_1080_1573062X_2022_2164732
2164732
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
123
29Q
30N
4.4
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABDBF
ABFIM
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFOLD
AFRAH
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
ESX
E~A
E~B
FUNRP
FVPDL
GBTJF
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TTHFI
TWF
TWQ
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
AWYRJ
CITATION
H13
ML.
TBQAZ
TDBHL
TUROJ
TUS
7QH
7UA
8FD
C1K
F1W
FR3
H96
H97
KR7
L.G
ID FETCH-LOGICAL-c338t-f01457b73997c8bc02cec54dcf74a20ca5208b053b4019eae159b77bc0c090593
IEDL.DBID TFW
ISSN 1573-062X
IngestDate Mon Nov 18 02:07:48 EST 2024
Fri Aug 23 00:32:55 EDT 2024
Tue Jun 13 19:57:24 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-f01457b73997c8bc02cec54dcf74a20ca5208b053b4019eae159b77bc0c090593
ORCID 0000-0001-9152-2346
PQID 2783546441
PQPubID 2035137
PageCount 11
ParticipantIDs crossref_primary_10_1080_1573062X_2022_2164732
informaworld_taylorfrancis_310_1080_1573062X_2022_2164732
proquest_journals_2783546441
PublicationCentury 2000
PublicationDate 2023-03-16
PublicationDateYYYYMMDD 2023-03-16
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-16
  day: 16
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Urban water journal
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
Xue M. (cit0035) 2022; 19
cit0019
cit0017
cit0018
Ruder S (cit0025) 2016
cit0015
cit0037
cit0016
cit0038
cit0013
cit0014
cit0036
cit0022
cit0001
cit0023
cit0020
cit0021
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
References_xml – ident: cit0007
  doi: 10.1063/5.0044005
– ident: cit0005
  doi: 10.1061/(ASCE)1076-0342(2008)14:4(305)
– volume: 19
  year: 2022
  ident: cit0035
  publication-title: Urban Water Journal
  contributor:
    fullname: Xue M.
– ident: cit0021
  doi: 10.1080/09747338.2021.1984317
– ident: cit0032
  doi: 10.1007/978-3-319-55944-5
– ident: cit0018
  doi: 10.5772/INTECHOPEN.77196Corpus
– ident: cit0022
  doi: 10.1109/DSAA.2016.49
– ident: cit0038
  doi: 10.1109/ACCESS.2021.3068292
– ident: cit0004
  doi: 10.3390/s22041562
– ident: cit0012
  doi: 10.2166/aqua.2021.140
– ident: cit0028
  doi: 10.1590/S0104-66322000000400020
– ident: cit0033
  doi: 10.3390/s18124192
– ident: cit0017
  doi: 10.1109/TIE.2017.2764861
– ident: cit0015
  doi: 10.1016/j.procs.2018.05.069
– ident: cit0014
  doi: 10.3182/20070822-3-ZA-2920.00053
– ident: cit0009
  doi: 10.1016/j.jher.2009.02.003
– ident: cit0023
  doi: 10.3390/en12081472
– ident: cit0002
  doi: 10.1109/ACCESS.2017.2752802
– ident: cit0030
  doi: 10.3390/jmse8030173
– ident: cit0036
  doi: 10.1177/14759217211053776
– ident: cit0037
  doi: 10.1109/ACCESS.2019.2902711
– ident: cit0010
  doi: 10.1016/j.jappgeo.2019.02.001
– ident: cit0001
  doi: 10.1080/1573062X.2018.1547773
– ident: cit0011
  doi: 10.1186/s40713-019-0017-x
– ident: cit0027
  doi: 10.1080/1573062X.2020.1734947
– ident: cit0020
  doi: 10.1016/j.jlp.2012.05.010
– ident: cit0034
  doi: 10.1109/IPEC54454.2022.9777486
– ident: cit0031
  doi: 10.1201/b21948
– ident: cit0016
  doi: 10.1109/ACCESS.2019.2896302
– ident: cit0026
  doi: 10.1002/j.1551-8833.2008.tb09678.x
– ident: cit0029
  doi: 10.1109/IPSN.2007.4379686
– ident: cit0019
  doi: 10.2166/ws.2014.131
– ident: cit0024
– ident: cit0006
  doi: 10.1061/(ASCE)WR.1943-5452.0001187
– ident: cit0003
  doi: 10.3390/s19112548
– ident: cit0013
  doi: 10.1186/s43065-021-00021-6
– ident: cit0008
  doi: 10.1145/3319921.3319926
– year: 2016
  ident: cit0025
  publication-title: arXiv preprint arXiv:1609.04747. Corpus ID: 17485266.
  contributor:
    fullname: Ruder S
SSID ssj0044971
Score 2.3300664
Snippet Water is one of the essential natural resources for survival, but the water transportation system faces significant challenges because of huge water loss due...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 341
SubjectTerms Artificial neural networks
Convolution
Convolution Neural Network (1-D CNN)
Data points
Detection
Internet of Things (IoT)
Leak detection
leak location
leak size
Machine learning
Natural resources
Neural networks
programmable logic controller (PLC)
Prototypes
Remote monitoring
Remote sensors
smart water grid (SWG)
Supervisory Control and Data Acquisition (SCADA)
Survival
Transportation networks
Transportation systems
Turbidity
Water
Water loss
Water transportation
Title 1-D convolution neural network based leak detection, location and size estimation in smart water grid
URI https://www.tandfonline.com/doi/abs/10.1080/1573062X.2022.2164732
https://www.proquest.com/docview/2783546441
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwy8EYWCPDDi4rhJ7IwVperEQhHdItuxUQUE1KRC4tdzl4fUCiEG2H2WZX--h333HSGXPjRhBlEOk54rhj2umJGxYcIKw722OrD4Djm5l3czNbpFmpxhWwuDaZUYQ_uaKKLS1Xi5tSnajLjrIAJYxmIG0Z0QfYGMWAPUwsi5DYiejh9bXRyGSR1ygQRDkbaG56dZ1qzTGnfpN11dGaDx7j8sfY_sNN4nHdZw2ScbLj8g2yuchIfEBWxEMRe9wSRFxkuQyet8cYpmL6MvTj_TzJVVIld-RdEkVqNhZbSYfzqK7B11WSSd57R4BYjSD3BsF_RpMc-OyMP4dnozYU0vBmYhiC2Zx-9HaST4M9IqY7mwzkZhZr0MteBWR4IrAzfaQMCWOO3ATTJSwkDLE2wbeEw6-VvuTgjlMc_EwEbSSxtyAIv2mpvEKZUor4K4S_rtGaTvNeVGGjRMpu3-pbh_abN_XZKsnlRaVm8dvm5Mkg5-ke21x5o2t7dIRfUchp7i6R-mPiNb2JseE9aCuEc65WLpzslmkS0vKpB-AaBE45M
link.rule.ids 315,782,786,1455,1509,27935,27936,58024,59737,60526
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TwMxDI6gDMDAG1EokIGRlFx6vdyNiLYqonShiG7RJZegCjhQH0Li12PfA7VCiAH2OIoSx_bnOJ8JOXO-9hNAOUw6HjLsccW0DDQTRmjuYhN7BvOQ3TvZH4atNtLkfP2FwbJKxNAuJ4rIbDVebkxGlyVxF14T9DIQQ4B3QtQFUmI1wAyvQHDcQAA26DyU1tj3oxx0gQhDmfIXz0_TLPinBfbSb9Y6c0Gdzf9Y_BbZKAJQeplrzDZZsukOWZ-jJdwl1mMtiuXohVpSJL0EmTQvGafo-RL6bOMnmthpVsuVnlP0itloWBqdjD4sRQKP_GckHaV08gJaSt8hth3Tx_Eo2SP3nfbgqsuKdgzMAI6dMocvkFJLCGmkCbXhwljT9BPjpB8LbuKm4KGGS60Bs0U2thApaSlhoOERdg7cJ5X0NbUHhPKAJ6JhmtJJ43PQl9jFXEc2DKPQhV5QJfXyENRbzrqhvILMtNw_hfuniv2rkmj-qNQ0S3e4vDeJavwiWyvPVRUXeKJElhHDYPHwD1OfktXu4Lanetf9myOyhq3qsX7NC2qkMh3P7DFZniSzk0xjPwEVm-e6
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4-QPTgW3ybg0ej2XR3kz2KbakoRbCit7DJJlLUVboVwV_vzD6gRcSD3jMhJF_mkcx8Q8ixD02YQZTDpOeKYY8rZmRsmLDCcJ_aNLD4Dtm7lf0H1e4gTc55UwuDaZUYQ_uKKKLU1Xi53zLfZMSdBRHAMhYPEN0JcSqQEasFWng-UmBwANKD7n2jjMMwqWIuEGEo0xTx_DTNlHmaIi_9pqxLC9Rd-Ye1r5Ll2v2k5xVe1siMy9fJ0gQp4QZxAWtTTEavQUmR8hJk8iphnKLdy-izS59o5sZlJld-QtEmlqNhZbQYfjqK9B1VXSQd5rR4AYzSD_BsR_RxNMw2yV23M7josboZA7MQxY6Zx_9HaSQ4NNIqY7mwzkZhZr0MU8FtGgmuDFxpAxFb4lIHfpKREgZanmDfwC0yl7_mbptQHvNMtGwkvbQhB7SkPuUmcUolyqsg3iGnzRnot4pzQwc1lWmzfxr3T9f7t0OSyZPS4_Kxw1edSXTrF9n95lh1fX0LLcr3MHQVd_8w9RFZuGl39fVl_2qPLGKfekxeC-J9MjcevbsDMltk74clXr8ARJLmXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1-D+convolution+neural+network+based+leak+detection%2C+location+and+size+estimation+in+smart+water+grid&rft.jtitle=Urban+water+journal&rft.au=Choudhary%2C+Pooja&rft.au=Botre%2C+B.+A.&rft.au=Akbar%2C+S.+A.&rft.date=2023-03-16&rft.pub=Taylor+%26+Francis&rft.issn=1573-062X&rft.eissn=1744-9006&rft.volume=20&rft.issue=3&rft.spage=341&rft.epage=351&rft_id=info:doi/10.1080%2F1573062X.2022.2164732&rft.externalDocID=2164732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-062X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-062X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-062X&client=summon