1-D convolution neural network based leak detection, location and size estimation in smart water grid
Water is one of the essential natural resources for survival, but the water transportation system faces significant challenges because of huge water loss due to leaky pipeline systems. An IoT based novel SWG prototype has been developed and reported in this work. The SWG comprises sensors and device...
Saved in:
Published in: | Urban water journal Vol. 20; no. 3; pp. 341 - 351 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Abingdon
Taylor & Francis
16-03-2023
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Water is one of the essential natural resources for survival, but the water transportation system faces significant challenges because of huge water loss due to leaky pipeline systems. An IoT based novel SWG prototype has been developed and reported in this work. The SWG comprises sensors and devices that can continuously and remotely monitor the pressure, temperature, flow, pH, turbidity, etc., of the water being transported. Moreover, a novel 1-D CNN model has been developed by creating an artificial leak on the pipeline that takes input data points as a chunk of 5-minute time series to the network and gives output in leak detection, location and size estimation simultaneously. Further, the developed model is compared with other state of the art machine learning techniques and the proposed model is found better in terms of accuracy which is 94.32%, 91.91% and 89.85% for leak detection, size estimation and location respectively. |
---|---|
AbstractList | Water is one of the essential natural resources for survival, but the water transportation system faces significant challenges because of huge water loss due to leaky pipeline systems. An IoT based novel SWG prototype has been developed and reported in this work. The SWG comprises sensors and devices that can continuously and remotely monitor the pressure, temperature, flow, pH, turbidity, etc., of the water being transported. Moreover, a novel 1-D CNN model has been developed by creating an artificial leak on the pipeline that takes input data points as a chunk of 5-minute time series to the network and gives output in leak detection, location and size estimation simultaneously. Further, the developed model is compared with other state of the art machine learning techniques and the proposed model is found better in terms of accuracy which is 94.32%, 91.91% and 89.85% for leak detection, size estimation and location respectively. |
Author | Choudhary, Pooja Botre, B. A. Akbar, S. A. |
Author_xml | – sequence: 1 givenname: Pooja surname: Choudhary fullname: Choudhary, Pooja email: poojachoudhary32@gmail.com organization: Academy of Scientific and Innovative Research (AcSIR) – sequence: 2 givenname: B. A. orcidid: 0000-0001-9152-2346 surname: Botre fullname: Botre, B. A. organization: Academy of Scientific and Innovative Research (AcSIR) – sequence: 3 givenname: S. A. surname: Akbar fullname: Akbar, S. A. organization: Academy of Scientific and Innovative Research (AcSIR) |
BookMark | eNp9kE1LAzEQhoNUsK3-BCHg1a2Tr83uTamfUPCi4C1ks1nZdpvUZGupv97U1aunGYZnZl6eCRo57yxC5wRmBAq4IkIyyOnbjAKlM0pyLhk9QmMiOc9KgHyU-sRkB-gETWJcAnBeSjJGlmS32Hj36btt33qHnd0G3aXS73xY4UpHW-PO6hWubW_NgbnEnTf6h9auxrH9stjGvl0Ps9bhuNahxzvd24DfQ1ufouNGd9Ge_dYper2_e5k_Zovnh6f5zSIzjBV91gDhQlaSlaU0RWWAGmsEr00juaZgtKBQVCBYxYGUVlsiykrKBBooQZRsii6Gu5vgP7Ypk1r6bXDppaKyYILnnJNEiYEywccYbKM2IYUPe0VAHYyqP6PqYFT9Gk1718Ne6xof1joJ6mrV633nQxO0M21U7P8T39l0f1g |
CitedBy_id | crossref_primary_10_3390_s23218935 |
Cites_doi | 10.1063/5.0044005 10.1061/(ASCE)1076-0342(2008)14:4(305) 10.1080/09747338.2021.1984317 10.1007/978-3-319-55944-5 10.5772/INTECHOPEN.77196Corpus 10.1109/DSAA.2016.49 10.1109/ACCESS.2021.3068292 10.3390/s22041562 10.2166/aqua.2021.140 10.1590/S0104-66322000000400020 10.3390/s18124192 10.1109/TIE.2017.2764861 10.1016/j.procs.2018.05.069 10.3182/20070822-3-ZA-2920.00053 10.1016/j.jher.2009.02.003 10.3390/en12081472 10.1109/ACCESS.2017.2752802 10.3390/jmse8030173 10.1177/14759217211053776 10.1109/ACCESS.2019.2902711 10.1016/j.jappgeo.2019.02.001 10.1080/1573062X.2018.1547773 10.1186/s40713-019-0017-x 10.1080/1573062X.2020.1734947 10.1016/j.jlp.2012.05.010 10.1109/IPEC54454.2022.9777486 10.1201/b21948 10.1109/ACCESS.2019.2896302 10.1002/j.1551-8833.2008.tb09678.x 10.1109/IPSN.2007.4379686 10.2166/ws.2014.131 10.1061/(ASCE)WR.1943-5452.0001187 10.3390/s19112548 10.1186/s43065-021-00021-6 10.1145/3319921.3319926 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7QH 7UA 8FD C1K F1W FR3 H96 H97 KR7 L.G |
DOI | 10.1080/1573062X.2022.2164732 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1744-9006 |
EndPage | 351 |
ExternalDocumentID | 10_1080_1573062X_2022_2164732 2164732 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 123 29Q 30N 4.4 AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABDBF ABFIM ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFOLD AFRAH AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS ESX E~A E~B FUNRP FVPDL GBTJF GTTXZ HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TEN TFL TFT TFW TTHFI TWF TWQ UT5 UU3 V1K ZGOLN ~S~ AAYXX ABJNI ABPAQ ABXYU AHDZW AWYRJ CITATION H13 ML. TBQAZ TDBHL TUROJ TUS 7QH 7UA 8FD C1K F1W FR3 H96 H97 KR7 L.G |
ID | FETCH-LOGICAL-c338t-f01457b73997c8bc02cec54dcf74a20ca5208b053b4019eae159b77bc0c090593 |
IEDL.DBID | TFW |
ISSN | 1573-062X |
IngestDate | Mon Nov 18 02:07:48 EST 2024 Fri Aug 23 00:32:55 EDT 2024 Tue Jun 13 19:57:24 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-f01457b73997c8bc02cec54dcf74a20ca5208b053b4019eae159b77bc0c090593 |
ORCID | 0000-0001-9152-2346 |
PQID | 2783546441 |
PQPubID | 2035137 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1080_1573062X_2022_2164732 informaworld_taylorfrancis_310_1080_1573062X_2022_2164732 proquest_journals_2783546441 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-16 |
PublicationDateYYYYMMDD | 2023-03-16 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Urban water journal |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 Xue M. (cit0035) 2022; 19 cit0019 cit0017 cit0018 Ruder S (cit0025) 2016 cit0015 cit0037 cit0016 cit0038 cit0013 cit0014 cit0036 cit0022 cit0001 cit0023 cit0020 cit0021 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 |
References_xml | – ident: cit0007 doi: 10.1063/5.0044005 – ident: cit0005 doi: 10.1061/(ASCE)1076-0342(2008)14:4(305) – volume: 19 year: 2022 ident: cit0035 publication-title: Urban Water Journal contributor: fullname: Xue M. – ident: cit0021 doi: 10.1080/09747338.2021.1984317 – ident: cit0032 doi: 10.1007/978-3-319-55944-5 – ident: cit0018 doi: 10.5772/INTECHOPEN.77196Corpus – ident: cit0022 doi: 10.1109/DSAA.2016.49 – ident: cit0038 doi: 10.1109/ACCESS.2021.3068292 – ident: cit0004 doi: 10.3390/s22041562 – ident: cit0012 doi: 10.2166/aqua.2021.140 – ident: cit0028 doi: 10.1590/S0104-66322000000400020 – ident: cit0033 doi: 10.3390/s18124192 – ident: cit0017 doi: 10.1109/TIE.2017.2764861 – ident: cit0015 doi: 10.1016/j.procs.2018.05.069 – ident: cit0014 doi: 10.3182/20070822-3-ZA-2920.00053 – ident: cit0009 doi: 10.1016/j.jher.2009.02.003 – ident: cit0023 doi: 10.3390/en12081472 – ident: cit0002 doi: 10.1109/ACCESS.2017.2752802 – ident: cit0030 doi: 10.3390/jmse8030173 – ident: cit0036 doi: 10.1177/14759217211053776 – ident: cit0037 doi: 10.1109/ACCESS.2019.2902711 – ident: cit0010 doi: 10.1016/j.jappgeo.2019.02.001 – ident: cit0001 doi: 10.1080/1573062X.2018.1547773 – ident: cit0011 doi: 10.1186/s40713-019-0017-x – ident: cit0027 doi: 10.1080/1573062X.2020.1734947 – ident: cit0020 doi: 10.1016/j.jlp.2012.05.010 – ident: cit0034 doi: 10.1109/IPEC54454.2022.9777486 – ident: cit0031 doi: 10.1201/b21948 – ident: cit0016 doi: 10.1109/ACCESS.2019.2896302 – ident: cit0026 doi: 10.1002/j.1551-8833.2008.tb09678.x – ident: cit0029 doi: 10.1109/IPSN.2007.4379686 – ident: cit0019 doi: 10.2166/ws.2014.131 – ident: cit0024 – ident: cit0006 doi: 10.1061/(ASCE)WR.1943-5452.0001187 – ident: cit0003 doi: 10.3390/s19112548 – ident: cit0013 doi: 10.1186/s43065-021-00021-6 – ident: cit0008 doi: 10.1145/3319921.3319926 – year: 2016 ident: cit0025 publication-title: arXiv preprint arXiv:1609.04747. Corpus ID: 17485266. contributor: fullname: Ruder S |
SSID | ssj0044971 |
Score | 2.3300664 |
Snippet | Water is one of the essential natural resources for survival, but the water transportation system faces significant challenges because of huge water loss due... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 341 |
SubjectTerms | Artificial neural networks Convolution Convolution Neural Network (1-D CNN) Data points Detection Internet of Things (IoT) Leak detection leak location leak size Machine learning Natural resources Neural networks programmable logic controller (PLC) Prototypes Remote monitoring Remote sensors smart water grid (SWG) Supervisory Control and Data Acquisition (SCADA) Survival Transportation networks Transportation systems Turbidity Water Water loss Water transportation |
Title | 1-D convolution neural network based leak detection, location and size estimation in smart water grid |
URI | https://www.tandfonline.com/doi/abs/10.1080/1573062X.2022.2164732 https://www.proquest.com/docview/2783546441 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwy8EYWCPDDi4rhJ7IwVperEQhHdItuxUQUE1KRC4tdzl4fUCiEG2H2WZX--h333HSGXPjRhBlEOk54rhj2umJGxYcIKw722OrD4Djm5l3czNbpFmpxhWwuDaZUYQ_uaKKLS1Xi5tSnajLjrIAJYxmIG0Z0QfYGMWAPUwsi5DYiejh9bXRyGSR1ygQRDkbaG56dZ1qzTGnfpN11dGaDx7j8sfY_sNN4nHdZw2ScbLj8g2yuchIfEBWxEMRe9wSRFxkuQyet8cYpmL6MvTj_TzJVVIld-RdEkVqNhZbSYfzqK7B11WSSd57R4BYjSD3BsF_RpMc-OyMP4dnozYU0vBmYhiC2Zx-9HaST4M9IqY7mwzkZhZr0MteBWR4IrAzfaQMCWOO3ATTJSwkDLE2wbeEw6-VvuTgjlMc_EwEbSSxtyAIv2mpvEKZUor4K4S_rtGaTvNeVGGjRMpu3-pbh_abN_XZKsnlRaVm8dvm5Mkg5-ke21x5o2t7dIRfUchp7i6R-mPiNb2JseE9aCuEc65WLpzslmkS0vKpB-AaBE45M |
link.rule.ids | 315,782,786,1455,1509,27935,27936,58024,59737,60526 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TwMxDI6gDMDAG1EokIGRlFx6vdyNiLYqonShiG7RJZegCjhQH0Li12PfA7VCiAH2OIoSx_bnOJ8JOXO-9hNAOUw6HjLsccW0DDQTRmjuYhN7BvOQ3TvZH4atNtLkfP2FwbJKxNAuJ4rIbDVebkxGlyVxF14T9DIQQ4B3QtQFUmI1wAyvQHDcQAA26DyU1tj3oxx0gQhDmfIXz0_TLPinBfbSb9Y6c0Gdzf9Y_BbZKAJQeplrzDZZsukOWZ-jJdwl1mMtiuXohVpSJL0EmTQvGafo-RL6bOMnmthpVsuVnlP0itloWBqdjD4sRQKP_GckHaV08gJaSt8hth3Tx_Eo2SP3nfbgqsuKdgzMAI6dMocvkFJLCGmkCbXhwljT9BPjpB8LbuKm4KGGS60Bs0U2thApaSlhoOERdg7cJ5X0NbUHhPKAJ6JhmtJJ43PQl9jFXEc2DKPQhV5QJfXyENRbzrqhvILMtNw_hfuniv2rkmj-qNQ0S3e4vDeJavwiWyvPVRUXeKJElhHDYPHwD1OfktXu4Lanetf9myOyhq3qsX7NC2qkMh3P7DFZniSzk0xjPwEVm-e6 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4-QPTgW3ybg0ej2XR3kz2KbakoRbCit7DJJlLUVboVwV_vzD6gRcSD3jMhJF_mkcx8Q8ixD02YQZTDpOeKYY8rZmRsmLDCcJ_aNLD4Dtm7lf0H1e4gTc55UwuDaZUYQ_uKKKLU1Xi53zLfZMSdBRHAMhYPEN0JcSqQEasFWng-UmBwANKD7n2jjMMwqWIuEGEo0xTx_DTNlHmaIi_9pqxLC9Rd-Ye1r5Ll2v2k5xVe1siMy9fJ0gQp4QZxAWtTTEavQUmR8hJk8iphnKLdy-izS59o5sZlJld-QtEmlqNhZbQYfjqK9B1VXSQd5rR4AYzSD_BsR_RxNMw2yV23M7josboZA7MQxY6Zx_9HaSQ4NNIqY7mwzkZhZr0MU8FtGgmuDFxpAxFb4lIHfpKREgZanmDfwC0yl7_mbptQHvNMtGwkvbQhB7SkPuUmcUolyqsg3iGnzRnot4pzQwc1lWmzfxr3T9f7t0OSyZPS4_Kxw1edSXTrF9n95lh1fX0LLcr3MHQVd_8w9RFZuGl39fVl_2qPLGKfekxeC-J9MjcevbsDMltk74clXr8ARJLmXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1-D+convolution+neural+network+based+leak+detection%2C+location+and+size+estimation+in+smart+water+grid&rft.jtitle=Urban+water+journal&rft.au=Choudhary%2C+Pooja&rft.au=Botre%2C+B.+A.&rft.au=Akbar%2C+S.+A.&rft.date=2023-03-16&rft.pub=Taylor+%26+Francis&rft.issn=1573-062X&rft.eissn=1744-9006&rft.volume=20&rft.issue=3&rft.spage=341&rft.epage=351&rft_id=info:doi/10.1080%2F1573062X.2022.2164732&rft.externalDocID=2164732 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-062X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-062X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-062X&client=summon |