Shrinkage parameter selection via modified cross-validation approach for ridge regression model

The ridge regression estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The choice of the ridge shrinkage parameter is critical. Cross-validation method is a widely adopted method for shrinkage parameter selection. However, c...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Simulation and computation Vol. 49; no. 7; pp. 1922 - 1930
Main Author: Algamal, Zakariya Yahya
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 02-07-2020
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ridge regression estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The choice of the ridge shrinkage parameter is critical. Cross-validation method is a widely adopted method for shrinkage parameter selection. However, cross-validation method suffers from instability in determining the best shrinkage parameter. To address this problem, a modification of the cross-validation method is proposed by repeating fold assignment. And then, a proper quantile value of the best shrinkage parameter values is utilized. Simulation and real data example results demonstrate that the proposed method is outperformed cross-validation and generalized cross-validation methods.
AbstractList The ridge regression estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The choice of the ridge shrinkage parameter is critical. Cross-validation method is a widely adopted method for shrinkage parameter selection. However, cross-validation method suffers from instability in determining the best shrinkage parameter. To address this problem, a modification of the cross-validation method is proposed by repeating fold assignment. And then, a proper quantile value of the best shrinkage parameter values is utilized. Simulation and real data example results demonstrate that the proposed method is outperformed cross-validation and generalized cross-validation methods.
Author Algamal, Zakariya Yahya
Author_xml – sequence: 1
  givenname: Zakariya Yahya
  orcidid: 0000-0002-0229-7958
  surname: Algamal
  fullname: Algamal, Zakariya Yahya
  email: zakariya.algamal@uomosul.edu.iq
  organization: Department of Statistics and Informatics, University of Mosul
BookMark eNp9kE9PwzAMxSM0JLbBR0CqxLkjaZo2vYEm_kmTOADnyCTOltE2I-mG9u1pt3HlYh_8e8_2m5BR61sk5JrRGaOS3lJeMFoxOctoX5igsqT5GRkzwbM0ZzkbkfHApAN0QSYxrimlXOZyTNTbKrj2C5aYbCBAgx2GJGKNunO-TXYOksYbZx2aRAcfY7qD2hk4TGGzCR70KrE-JMGZ3iTgMmCMw7TXYX1Jzi3UEa9OfUo-Hh_e58_p4vXpZX6_SDXnsku1Mbk2VlJZCI2VpYyXtqpEgQZkKQpmCqkzA-ITSi2rqii5RhAlK7W2NpN8Sm6Ovv1F31uMnVr7bWj7lSrLOe15kQ-UOFKHVwJatQmugbBXjKohS_WXpRqyVKcse93dUefa_tUGfnyojepgX_tgA7TaRcX_t_gF45V-lQ
CitedBy_id crossref_primary_10_1002_cpe_6685
crossref_primary_10_1007_s40995_019_00777_3
crossref_primary_10_1080_03610918_2021_1962345
crossref_primary_10_1016_j_engappai_2023_106587
crossref_primary_10_1515_jisys_2022_0224
crossref_primary_10_17537_2023_18_282
crossref_primary_10_51541_nicel_1042316
crossref_primary_10_3390_rs13081508
crossref_primary_10_1080_03610918_2023_2261078
crossref_primary_10_3934_jimo_2024072
crossref_primary_10_3390_sym16020223
crossref_primary_10_1080_03610918_2023_2289356
crossref_primary_10_1080_00949655_2024_2302011
crossref_primary_10_1002_env_2871
crossref_primary_10_1007_s40995_023_01513_8
crossref_primary_10_1080_03610918_2020_1827266
crossref_primary_10_1080_03610918_2023_2276052
crossref_primary_10_1016_j_compag_2022_106988
crossref_primary_10_1007_s40995_019_00769_3
crossref_primary_10_15672_hujms_1359446
crossref_primary_10_1016_j_mseb_2022_115858
crossref_primary_10_1111_stan_12313
Cites_doi 10.1080/03610920600762905
10.1080/03610920802503396
10.1080/03610918.2016.1144765
10.1080/01621459.1975.10479882
10.1016/j.econmod.2011.02.030
10.1002/cem.3054
10.1007/s00180-014-0504-3
10.1080/03610927508827232
10.1007/s00362-014-0596-4
10.1080/00401706.1979.10489751
10.1080/03610918.2014.995815
10.4236/ojs.2013.32011
10.1080/00949655.2015.1112392
10.1080/03610918.2012.735317
10.1080/03610910802592838
10.1111/j.2517-6161.1974.tb00994.x
10.1111/biom.12359
10.1111/1467-9574.00156
10.1080/03610918.2012.659821
10.1080/00401706.1970.10488634
10.1081/sta-200056836
10.1111/j.2517-6161.1996.tb02080.x
10.1081/sac-120017499
10.1080/03610926.2012.724506
ContentType Journal Article
Copyright 2018 Taylor & Francis Group, LLC 2018
2018 Taylor & Francis Group, LLC
Copyright_xml – notice: 2018 Taylor & Francis Group, LLC 2018
– notice: 2018 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2018.1508704
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 1930
ExternalDocumentID 10_1080_03610918_2018_1508704
1508704
Genre Original Articles
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
3YN
4.4
5GY
5VS
8VB
AAAVI
AAENE
AAJMT
ABBKH
ABCCY
ABEHJ
ABFIM
ABJVF
ABPEM
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEGYZ
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TN5
TTHFI
TWF
UPT
UT5
UU3
V1K
WH7
ZGOLN
ZL0
~S~
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABJNI
ABLIJ
ABPAQ
ABXYU
CITATION
K1G
TBQAZ
TDBHL
TUROJ
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-cdd4cdf80865ce9f0137f9956eda87561d68c2da5ba7c899673cea5717ccff283
IEDL.DBID TFW
ISSN 0361-0918
IngestDate Thu Oct 10 21:53:36 EDT 2024
Fri Aug 23 00:35:46 EDT 2024
Tue Jul 04 18:18:11 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-cdd4cdf80865ce9f0137f9956eda87561d68c2da5ba7c899673cea5717ccff283
ORCID 0000-0002-0229-7958
PQID 2430673548
PQPubID 186203
PageCount 9
ParticipantIDs informaworld_taylorfrancis_310_1080_03610918_2018_1508704
proquest_journals_2430673548
crossref_primary_10_1080_03610918_2018_1508704
PublicationCentury 2000
PublicationDate 2020-07-02
PublicationDateYYYYMMDD 2020-07-02
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0012
CIT0011
Algamal Z. Y (CIT0002) 2018; 11
Jung K.-M (CIT0016) 2009; 27
CIT0014
CIT0013
CIT0015
CIT0018
Asar Y. (CIT0006) 2014; 43
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
Boonstra P. S. (CIT0009) 2015; 25
CIT0028
CIT0008
References_xml – ident: CIT0004
  doi: 10.1080/03610920600762905
– ident: CIT0007
  doi: 10.1080/03610920802503396
– ident: CIT0008
  doi: 10.1080/03610918.2016.1144765
– volume: 43
  start-page: 827
  issue: 5
  year: 2014
  ident: CIT0006
  publication-title: Hacettepe Journal of Mathematics and Statistics
  contributor:
    fullname: Asar Y.
– ident: CIT0020
  doi: 10.1080/01621459.1975.10479882
– ident: CIT0019
  doi: 10.1016/j.econmod.2011.02.030
– ident: CIT0001
  doi: 10.1002/cem.3054
– volume: 27
  start-page: 903
  issue: 3
  year: 2009
  ident: CIT0016
  publication-title: Journal of Applied Mathematics & Informatics
  contributor:
    fullname: Jung K.-M
– ident: CIT0015
  doi: 10.1007/s00180-014-0504-3
– ident: CIT0013
  doi: 10.1080/03610927508827232
– ident: CIT0022
  doi: 10.1007/s00362-014-0596-4
– volume: 25
  start-page: 1185
  issue: 3
  year: 2015
  ident: CIT0009
  publication-title: Statistica Sinica
  contributor:
    fullname: Boonstra P. S.
– ident: CIT0010
  doi: 10.1080/00401706.1979.10489751
– volume: 11
  start-page: 253
  issue: 1
  year: 2018
  ident: CIT0002
  publication-title: Electronic Journal of Applied Statistical Analysis
  contributor:
    fullname: Algamal Z. Y
– ident: CIT0005
  doi: 10.1080/03610918.2014.995815
– ident: CIT0028
  doi: 10.4236/ojs.2013.32011
– ident: CIT0024
  doi: 10.1080/00949655.2015.1112392
– ident: CIT0012
  doi: 10.1080/03610918.2012.735317
– ident: CIT0021
  doi: 10.1080/03610910802592838
– ident: CIT0025
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– ident: CIT0023
  doi: 10.1111/biom.12359
– ident: CIT0027
  doi: 10.1111/1467-9574.00156
– ident: CIT0011
  doi: 10.1080/03610918.2012.659821
– ident: CIT0014
  doi: 10.1080/00401706.1970.10488634
– ident: CIT0017
  doi: 10.1081/sta-200056836
– ident: CIT0026
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: CIT0018
  doi: 10.1081/sac-120017499
– ident: CIT0003
  doi: 10.1080/03610926.2012.724506
SSID ssj0003848
Score 2.3931506
Snippet The ridge regression estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The choice...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 1922
SubjectTerms Computer simulation
Cross-validation
Monte Carlo simulation
Multicollinearity
Parameter modification
Regression models
Ridge regression
Shrinkage
Title Shrinkage parameter selection via modified cross-validation approach for ridge regression model
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2018.1508704
https://www.proquest.com/docview/2430673548
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED1BpzJQKCAKBXlgTUnz0cRjBa26wNIi2CzHjqFDU9S0_H7unLiiQogB1ki2Yt_5fM-6ew_gRvnSVwZBTsDt043PvZRLhCoIJhI_47EfUqPwZJo8vqT3I6LJGbpeGCqrJAxtKqIIG6vpcMusdBVxtxh0ic7SFmalPSI0TywjaB-TAfTo2fh5G4vD1Opn0QiPhrgenp9m2bmddrhLv8VqewGNW__w60dwWGefbFi5yzHs5UUbWk7ZgdUHvQ0HD1s217INTcpIK0LnExDTtxXiVwxDjGjDF1ROw0qrpoMmZh9zyRZLPTeY2jK7SA99eV4pNzHHYM5wxcy2irFV_lqV4hbMqvKcwtN4NLubeLVKg6cQ3q49pXWktEkRG8Uq54Y4DA31y-ZaIhga9PUgVYGWcSYThehukIQqlzHCSKWMwezmDBrFssjPgcUcr4GMYw4rTWTCXJoMExT8poMoRdzYgZ6zjnivyDhE33Gc1jsraGdFvbMd4F9tKNb2FcRUkiUi_GVs1xlc1Oe6FEFEECtEmHfxh6kvoRkQbKdX4qALjfVqk1_Bfqk319Z9PwHRr-x9
link.rule.ids 315,783,787,1456,1510,27936,27937,58025,59738,60527
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8JAEJ0oHsSDKGpEUffgtVj6QdujUQhG4AJGb5vtblc5UAwFf78z25ZIjPGg1ya76e7szs6bzLwHcC1tYUuNIMeJTOrGjqwwEghVEEwEdhz5tkuNwv1xMHoJ77tEk7PuhaGySsLQOieKML6aLjclo8uSuBv0usRnaSqzwhYxmgdECbqDwbFLZV2T3vPaG7uhUdCiIRaNKbt4fppm433aYC_95q3NE9Sr_cfPH8B-EYCy2_zEHMJWktahVoo7sOKu12FvuCZ0zepQpaA053Q-Aj5-WyCERU_EiDl8RhU1LDOCOmhl9jEVbDZXU43RLTOrtPA4T3PxJlaSmDNcMjPdYmyRvObVuCkzwjzH8NTrTu76ViHUYElEuEtLKuVJpUOER75MIk00hppaZhMlEA912qoTSkcJPxaBRIDXCVyZCB-RpJRaY4BzApV0nianwPwIX4I4wjBWaE-7idAxxij4TTleiNCxAa3SPPw95-Pg7ZLmtNhZTjvLi51tQPTViHxpEiE6Vy3h7i9jm6XFeXG1M-54hLJcRHpnf5j6Cnb7k-GADx5Gj-dQdQjFU9LYaUJluVglF7CdqdWlOcufzq7wpA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4oJgYPoqgRRd2D12Lpg7ZHIhCMSkzA6G2z7HaVA4VQ8Pc7s22JxBgPem2ym-7O89vMfANwLW1hS40gx4nM040dWWEkEKogmAjsceTbLjUK94fB4DXsdIkmp130wlBZJWFonRFFGF9Nxj1XuqiIu0GnS3SWpjArbBCheUCMoDt-iAEcVXrUe1k7Yzc0A7RoiUVriiaen7bZCE8b5KXfnLWJQL3KP_z7Aezn6SdrZ_pyCFtxUoVKMdqB5ZZehb3HNZ1rWoUypaQZo_MR8OH7AgEs-iFGvOFTqqdhqRmngzJmHxPBpjM10ZjbMnNIC5V5ko1uYgWFOcMTM9MrxhbxW1aLmzAzlucYnnvd0W3fysc0WBLx7dKSSnlS6RDBkS_jSBOJoaaG2VgJREOtpmqF0lHCH4tAIrxrBa6MhY84UkqtMb05gVIyS-JTYH6EcWAcYRIrtKfdWOgxZij4TTleiMCxBo1COnyesXHwZkFymt8sp5vl-c3WIPoqQ740zyA6m1nC3V_W1guB89ywU-54hLFcxHlnf9j6CnafOj3-cDe4P4eyQxCeXoydOpSWi1V8AdupWl0aTf4E3TrvSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shrinkage+parameter+selection+via+modified+cross-validation+approach+for+ridge+regression+model&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Algamal%2C+Zakariya+Yahya&rft.date=2020-07-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=49&rft.issue=7&rft.spage=1922&rft.epage=1930&rft_id=info:doi/10.1080%2F03610918.2018.1508704&rft.externalDocID=1508704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon