Shrinkage parameter selection via modified cross-validation approach for ridge regression model
The ridge regression estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The choice of the ridge shrinkage parameter is critical. Cross-validation method is a widely adopted method for shrinkage parameter selection. However, c...
Saved in:
Published in: | Communications in statistics. Simulation and computation Vol. 49; no. 7; pp. 1922 - 1930 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia
Taylor & Francis
02-07-2020
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The ridge regression estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The choice of the ridge shrinkage parameter is critical. Cross-validation method is a widely adopted method for shrinkage parameter selection. However, cross-validation method suffers from instability in determining the best shrinkage parameter. To address this problem, a modification of the cross-validation method is proposed by repeating fold assignment. And then, a proper quantile value of the best shrinkage parameter values is utilized. Simulation and real data example results demonstrate that the proposed method is outperformed cross-validation and generalized cross-validation methods. |
---|---|
AbstractList | The ridge regression estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The choice of the ridge shrinkage parameter is critical. Cross-validation method is a widely adopted method for shrinkage parameter selection. However, cross-validation method suffers from instability in determining the best shrinkage parameter. To address this problem, a modification of the cross-validation method is proposed by repeating fold assignment. And then, a proper quantile value of the best shrinkage parameter values is utilized. Simulation and real data example results demonstrate that the proposed method is outperformed cross-validation and generalized cross-validation methods. |
Author | Algamal, Zakariya Yahya |
Author_xml | – sequence: 1 givenname: Zakariya Yahya orcidid: 0000-0002-0229-7958 surname: Algamal fullname: Algamal, Zakariya Yahya email: zakariya.algamal@uomosul.edu.iq organization: Department of Statistics and Informatics, University of Mosul |
BookMark | eNp9kE9PwzAMxSM0JLbBR0CqxLkjaZo2vYEm_kmTOADnyCTOltE2I-mG9u1pt3HlYh_8e8_2m5BR61sk5JrRGaOS3lJeMFoxOctoX5igsqT5GRkzwbM0ZzkbkfHApAN0QSYxrimlXOZyTNTbKrj2C5aYbCBAgx2GJGKNunO-TXYOksYbZx2aRAcfY7qD2hk4TGGzCR70KrE-JMGZ3iTgMmCMw7TXYX1Jzi3UEa9OfUo-Hh_e58_p4vXpZX6_SDXnsku1Mbk2VlJZCI2VpYyXtqpEgQZkKQpmCqkzA-ITSi2rqii5RhAlK7W2NpN8Sm6Ovv1F31uMnVr7bWj7lSrLOe15kQ-UOFKHVwJatQmugbBXjKohS_WXpRqyVKcse93dUefa_tUGfnyojepgX_tgA7TaRcX_t_gF45V-lQ |
CitedBy_id | crossref_primary_10_1002_cpe_6685 crossref_primary_10_1007_s40995_019_00777_3 crossref_primary_10_1080_03610918_2021_1962345 crossref_primary_10_1016_j_engappai_2023_106587 crossref_primary_10_1515_jisys_2022_0224 crossref_primary_10_17537_2023_18_282 crossref_primary_10_51541_nicel_1042316 crossref_primary_10_3390_rs13081508 crossref_primary_10_1080_03610918_2023_2261078 crossref_primary_10_3934_jimo_2024072 crossref_primary_10_3390_sym16020223 crossref_primary_10_1080_03610918_2023_2289356 crossref_primary_10_1080_00949655_2024_2302011 crossref_primary_10_1002_env_2871 crossref_primary_10_1007_s40995_023_01513_8 crossref_primary_10_1080_03610918_2020_1827266 crossref_primary_10_1080_03610918_2023_2276052 crossref_primary_10_1016_j_compag_2022_106988 crossref_primary_10_1007_s40995_019_00769_3 crossref_primary_10_15672_hujms_1359446 crossref_primary_10_1016_j_mseb_2022_115858 crossref_primary_10_1111_stan_12313 |
Cites_doi | 10.1080/03610920600762905 10.1080/03610920802503396 10.1080/03610918.2016.1144765 10.1080/01621459.1975.10479882 10.1016/j.econmod.2011.02.030 10.1002/cem.3054 10.1007/s00180-014-0504-3 10.1080/03610927508827232 10.1007/s00362-014-0596-4 10.1080/00401706.1979.10489751 10.1080/03610918.2014.995815 10.4236/ojs.2013.32011 10.1080/00949655.2015.1112392 10.1080/03610918.2012.735317 10.1080/03610910802592838 10.1111/j.2517-6161.1974.tb00994.x 10.1111/biom.12359 10.1111/1467-9574.00156 10.1080/03610918.2012.659821 10.1080/00401706.1970.10488634 10.1081/sta-200056836 10.1111/j.2517-6161.1996.tb02080.x 10.1081/sac-120017499 10.1080/03610926.2012.724506 |
ContentType | Journal Article |
Copyright | 2018 Taylor & Francis Group, LLC 2018 2018 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2018 Taylor & Francis Group, LLC 2018 – notice: 2018 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2018.1508704 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 1930 |
ExternalDocumentID | 10_1080_03610918_2018_1508704 1508704 |
Genre | Original Articles |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 3YN 4.4 5GY 5VS 8VB AAAVI AAENE AAJMT ABBKH ABCCY ABEHJ ABFIM ABJVF ABPEM ABQHQ ABTAI ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEGYZ AEISY AEOZL AEPSL AEYOC AFKVX AFOLD AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TEJ TFL TFT TFW TN5 TTHFI TWF UPT UT5 UU3 V1K WH7 ZGOLN ZL0 ~S~ AALDU AAMIU AAPUL AAQRR AAYXX ABJNI ABLIJ ABPAQ ABXYU CITATION K1G TBQAZ TDBHL TUROJ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-cdd4cdf80865ce9f0137f9956eda87561d68c2da5ba7c899673cea5717ccff283 |
IEDL.DBID | TFW |
ISSN | 0361-0918 |
IngestDate | Thu Oct 10 21:53:36 EDT 2024 Fri Aug 23 00:35:46 EDT 2024 Tue Jul 04 18:18:11 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-cdd4cdf80865ce9f0137f9956eda87561d68c2da5ba7c899673cea5717ccff283 |
ORCID | 0000-0002-0229-7958 |
PQID | 2430673548 |
PQPubID | 186203 |
PageCount | 9 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03610918_2018_1508704 proquest_journals_2430673548 crossref_primary_10_1080_03610918_2018_1508704 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-02 |
PublicationDateYYYYMMDD | 2020-07-02 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0012 CIT0011 Algamal Z. Y (CIT0002) 2018; 11 Jung K.-M (CIT0016) 2009; 27 CIT0014 CIT0013 CIT0015 CIT0018 Asar Y. (CIT0006) 2014; 43 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 Boonstra P. S. (CIT0009) 2015; 25 CIT0028 CIT0008 |
References_xml | – ident: CIT0004 doi: 10.1080/03610920600762905 – ident: CIT0007 doi: 10.1080/03610920802503396 – ident: CIT0008 doi: 10.1080/03610918.2016.1144765 – volume: 43 start-page: 827 issue: 5 year: 2014 ident: CIT0006 publication-title: Hacettepe Journal of Mathematics and Statistics contributor: fullname: Asar Y. – ident: CIT0020 doi: 10.1080/01621459.1975.10479882 – ident: CIT0019 doi: 10.1016/j.econmod.2011.02.030 – ident: CIT0001 doi: 10.1002/cem.3054 – volume: 27 start-page: 903 issue: 3 year: 2009 ident: CIT0016 publication-title: Journal of Applied Mathematics & Informatics contributor: fullname: Jung K.-M – ident: CIT0015 doi: 10.1007/s00180-014-0504-3 – ident: CIT0013 doi: 10.1080/03610927508827232 – ident: CIT0022 doi: 10.1007/s00362-014-0596-4 – volume: 25 start-page: 1185 issue: 3 year: 2015 ident: CIT0009 publication-title: Statistica Sinica contributor: fullname: Boonstra P. S. – ident: CIT0010 doi: 10.1080/00401706.1979.10489751 – volume: 11 start-page: 253 issue: 1 year: 2018 ident: CIT0002 publication-title: Electronic Journal of Applied Statistical Analysis contributor: fullname: Algamal Z. Y – ident: CIT0005 doi: 10.1080/03610918.2014.995815 – ident: CIT0028 doi: 10.4236/ojs.2013.32011 – ident: CIT0024 doi: 10.1080/00949655.2015.1112392 – ident: CIT0012 doi: 10.1080/03610918.2012.735317 – ident: CIT0021 doi: 10.1080/03610910802592838 – ident: CIT0025 doi: 10.1111/j.2517-6161.1974.tb00994.x – ident: CIT0023 doi: 10.1111/biom.12359 – ident: CIT0027 doi: 10.1111/1467-9574.00156 – ident: CIT0011 doi: 10.1080/03610918.2012.659821 – ident: CIT0014 doi: 10.1080/00401706.1970.10488634 – ident: CIT0017 doi: 10.1081/sta-200056836 – ident: CIT0026 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: CIT0018 doi: 10.1081/sac-120017499 – ident: CIT0003 doi: 10.1080/03610926.2012.724506 |
SSID | ssj0003848 |
Score | 2.3931506 |
Snippet | The ridge regression estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of multicollinearity. The choice... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 1922 |
SubjectTerms | Computer simulation Cross-validation Monte Carlo simulation Multicollinearity Parameter modification Regression models Ridge regression Shrinkage |
Title | Shrinkage parameter selection via modified cross-validation approach for ridge regression model |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2018.1508704 https://www.proquest.com/docview/2430673548 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED1BpzJQKCAKBXlgTUnz0cRjBa26wNIi2CzHjqFDU9S0_H7unLiiQogB1ki2Yt_5fM-6ew_gRvnSVwZBTsDt043PvZRLhCoIJhI_47EfUqPwZJo8vqT3I6LJGbpeGCqrJAxtKqIIG6vpcMusdBVxtxh0ic7SFmalPSI0TywjaB-TAfTo2fh5G4vD1Opn0QiPhrgenp9m2bmddrhLv8VqewGNW__w60dwWGefbFi5yzHs5UUbWk7ZgdUHvQ0HD1s217INTcpIK0LnExDTtxXiVwxDjGjDF1ROw0qrpoMmZh9zyRZLPTeY2jK7SA99eV4pNzHHYM5wxcy2irFV_lqV4hbMqvKcwtN4NLubeLVKg6cQ3q49pXWktEkRG8Uq54Y4DA31y-ZaIhga9PUgVYGWcSYThehukIQqlzHCSKWMwezmDBrFssjPgcUcr4GMYw4rTWTCXJoMExT8poMoRdzYgZ6zjnivyDhE33Gc1jsraGdFvbMd4F9tKNb2FcRUkiUi_GVs1xlc1Oe6FEFEECtEmHfxh6kvoRkQbKdX4qALjfVqk1_Bfqk319Z9PwHRr-x9 |
link.rule.ids | 315,783,787,1456,1510,27936,27937,58025,59738,60527 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8JAEJ0oHsSDKGpEUffgtVj6QdujUQhG4AJGb5vtblc5UAwFf78z25ZIjPGg1ya76e7szs6bzLwHcC1tYUuNIMeJTOrGjqwwEghVEEwEdhz5tkuNwv1xMHoJ77tEk7PuhaGySsLQOieKML6aLjclo8uSuBv0usRnaSqzwhYxmgdECbqDwbFLZV2T3vPaG7uhUdCiIRaNKbt4fppm433aYC_95q3NE9Sr_cfPH8B-EYCy2_zEHMJWktahVoo7sOKu12FvuCZ0zepQpaA053Q-Aj5-WyCERU_EiDl8RhU1LDOCOmhl9jEVbDZXU43RLTOrtPA4T3PxJlaSmDNcMjPdYmyRvObVuCkzwjzH8NTrTu76ViHUYElEuEtLKuVJpUOER75MIk00hppaZhMlEA912qoTSkcJPxaBRIDXCVyZCB-RpJRaY4BzApV0nianwPwIX4I4wjBWaE-7idAxxij4TTleiNCxAa3SPPw95-Pg7ZLmtNhZTjvLi51tQPTViHxpEiE6Vy3h7i9jm6XFeXG1M-54hLJcRHpnf5j6Cnb7k-GADx5Gj-dQdQjFU9LYaUJluVglF7CdqdWlOcufzq7wpA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4oJgYPoqgRRd2D12Lpg7ZHIhCMSkzA6G2z7HaVA4VQ8Pc7s22JxBgPem2ym-7O89vMfANwLW1hS40gx4nM040dWWEkEKogmAjsceTbLjUK94fB4DXsdIkmp130wlBZJWFonRFFGF9Nxj1XuqiIu0GnS3SWpjArbBCheUCMoDt-iAEcVXrUe1k7Yzc0A7RoiUVriiaen7bZCE8b5KXfnLWJQL3KP_z7Aezn6SdrZ_pyCFtxUoVKMdqB5ZZehb3HNZ1rWoUypaQZo_MR8OH7AgEs-iFGvOFTqqdhqRmngzJmHxPBpjM10ZjbMnNIC5V5ko1uYgWFOcMTM9MrxhbxW1aLmzAzlucYnnvd0W3fysc0WBLx7dKSSnlS6RDBkS_jSBOJoaaG2VgJREOtpmqF0lHCH4tAIrxrBa6MhY84UkqtMb05gVIyS-JTYH6EcWAcYRIrtKfdWOgxZij4TTleiMCxBo1COnyesXHwZkFymt8sp5vl-c3WIPoqQ740zyA6m1nC3V_W1guB89ywU-54hLFcxHlnf9j6CnafOj3-cDe4P4eyQxCeXoydOpSWi1V8AdupWl0aTf4E3TrvSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shrinkage+parameter+selection+via+modified+cross-validation+approach+for+ridge+regression+model&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Algamal%2C+Zakariya+Yahya&rft.date=2020-07-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=49&rft.issue=7&rft.spage=1922&rft.epage=1930&rft_id=info:doi/10.1080%2F03610918.2018.1508704&rft.externalDocID=1508704 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |