In situ investigation and visualisation of microbial attachment and colonisation in a heap bioleach environment: The novel biofilm reactor
In this paper, the development of a novel means of investigating the attachment and subsequent biofilm formation of mineral bioleaching micro-organisms to mineral surfaces in situ is described. The protocol was developed to investigate the interactions of micro-organisms with sulfide minerals and lo...
Saved in:
Published in: | Minerals engineering Vol. 23; no. 6; pp. 486 - 491 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-05-2010
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the development of a novel means of investigating the attachment and subsequent biofilm formation of mineral bioleaching micro-organisms to mineral surfaces
in situ is described. The protocol was developed to investigate the interactions of micro-organisms with sulfide minerals and low-grade chalcopyrite ore under conditions resemblant of a bioheap environment. The method makes use of a biofilm reactor in which thin sections of mineral ore are mounted. The reactor is operated as a continuous flow-through system. Attachment of pure and mixed cultures of
Acidithiobacillus ferrooxidans and
Leptospirillum ferriphilum is assessed. The technique allows for the investigation of microbial ecology with special regard to microbe–mineral attachment, site and mineral specific associations of micro-organisms and spatial organisation of microbial communities present through the use of fluorescent microscopy techniques. Preliminary fluorescent
in situ hybridisation (FISH) analysis of the attachment of
L. ferriphilum and
A. ferrooxidans to massive chalcopyrite sections, as well as to low-grade chalcopyrite containing ore sections is presented. In the case of both low-grade and massive sulfide mineral samples, attachment of mixed micro-colonies was observed in regions where surface defects were prevalent. In low-grade samples, preferential attachment was observed in regions where sulfide minerals were present. The density of the attached micro-colonies increased with an increase in contacting time (from 20, 72 and 96
h) and was indicative of an actively growing mono-layered biofilm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0892-6875 1872-9444 |
DOI: | 10.1016/j.mineng.2009.12.011 |