An optimal context-aware content-based movie recommender system using genetic algorithm: a case study on MovieLens dataset
Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users' interests in bootstrapping is one of the most critical problems of the CF method. Using a content-based filtering method can mitigate some of...
Saved in:
Published in: | Journal of experimental & theoretical artificial intelligence Vol. 36; no. 8; pp. 1485 - 1511 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Abingdon
Taylor & Francis
16-11-2024
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users' interests in bootstrapping is one of the most critical problems of the CF method. Using a content-based filtering method can mitigate some of these problems. On the other hand, recent research has proven that utilising contextual information about the movie, such as genre, actors, and cast, can increase the efficiency of the recommender system. This paper uses a combined Genetic Algorithm (GA) and content-based filtering to find the best combination of genre, cast, and crew weights. We first convert each movie's contextual information into a descriptive vector, including cast, crew, and genre. Then, we calculate the distance between each pair of sentence vectors using two separate approaches, fully connected and metadata-based. Finally, with GA, we tune the weight of each of the contextual information of movies to maximise the recommender system's efficiency. Performance evaluation on the well-known MovieLens dataset shows that GA can improve the Precision@k criterion by producing fewer, more accurate recommendations. Weight adjustment by GA improves the F-Measure metric by approximately 58%. This, in turn, can improve Precision and Recall metrics. Also, the GA offers a higher correct recommendation rate than other methods. |
---|---|
AbstractList | Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users’ interests in bootstrapping is one of the most critical problems of the CF method. Using a content-based filtering method can mitigate some of these problems. On the other hand, recent research has proven that utilising contextual information about the movie, such as genre, actors, and cast, can increase the efficiency of the recommender system. This paper uses a combined Genetic Algorithm (GA) and content-based filtering to find the best combination of genre, cast, and crew weights. We first convert each movie’s contextual information into a descriptive vector, including cast, crew, and genre. Then, we calculate the distance between each pair of sentence vectors using two separate approaches, fully connected and metadata-based. Finally, with GA, we tune the weight of each of the contextual information of movies to maximise the recommender system’s efficiency. Performance evaluation on the well-known MovieLens dataset shows that GA can improve the Precision@k criterion by producing fewer, more accurate recommendations. Weight adjustment by GA improves the F-Measure metric by approximately 58%. This, in turn, can improve Precision and Recall metrics. Also, the GA offers a higher correct recommendation rate than other methods. |
Author | Abdolmaleki, Alireza Rezvani, Mohammad Hossein |
Author_xml | – sequence: 1 givenname: Alireza surname: Abdolmaleki fullname: Abdolmaleki, Alireza organization: Islamic Azad University – sequence: 2 givenname: Mohammad Hossein orcidid: 0000-0002-0292-7008 surname: Rezvani fullname: Rezvani, Mohammad Hossein email: rezvani@qiau.ac.ir organization: Islamic Azad University |
BookMark | eNp9kEtLAzEQx4NUsFU_ghDwvHWS2acnS_EFFS8K3kK6O1u37CY1SdX66d2l9eppGP4v-E3YyFhDjF0ImArI4QqKROYC36YSpJxKkaDMiiM2FpjKCCErRmw8eKLBdMIm3q8BQCRCjNnPzHC7CU2nW15aE-g7RPpLO9p_JkRL7aninf1siDsqbdeRqchxv_OBOr71jVnxFRkKTcl1u7KuCe_dNde87JPch22149bwp6FhQcbzSodeCWfsuNatp_PDPWWvd7cv84do8Xz_OJ8tohIx7_fzdBljWmCVARQotYQYliRqkZVxXGOvSsRCx4S5phQoXWIOSQJSVJUocjxll_vejbMfW_JBre3WmX5SoZCAmYRM9K5k7yqd9d5RrTaup-J2SoAaMKs_zGrArA6Y-9zNPteY2rpOf1nXViroXWtd7bQpm2Hm34pfpCWGxQ |
CitedBy_id | crossref_primary_10_3390_s23156719 crossref_primary_10_1080_0952813X_2024_2338495 crossref_primary_10_1007_s11042_023_17267_9 |
Cites_doi | 10.3233/JIFS-179001 10.3991/ijet.v16i03.18851 10.1145/3289600.3290999 10.1080/16168658.2021.2019430 10.3390/s22134904 10.1007/s10115-021-01651-8 10.1007/978-0-387-85820-3_7 10.1007/s11036-019-01387-4 10.1016/j.cosrev.2020.100255 10.23919/ICACT48636.2020.9061465 10.3390/app12010045 10.1177/2516600X19848956 10.1007/s11235-020-00711-8 10.1109/ICESC48915.2020.9155879 10.33564/IJEAST.2019.v04i05.076 10.1109/ICMLC.2017.8108968 10.1080/10798587.2016.1231510 10.1007/978-981-13-1927-3_42 10.1109/INCET49848.2020.9154163 10.1109/CONFLUENCE.2019.8776969 10.1145/3308558.3313567 10.1007/978-981-16-4103-9_13 10.1109/KBEI.2019.8734976 10.1109/ACCESS.2020.3020005 10.1371/journal.pone.0220976 10.1016/j.eswa.2018.09.045 10.3390/electronics11020242 10.1007/s12652-021-03388-2 10.1109/ICIPTM52218.2021.9388340 10.1109/CBMI.2019.8877452 10.1016/j.neucom.2019.03.098 10.1109/ICACCI.2018.8554918 10.31341/jios.44.1.7 10.26599/TST.2019.9010065 10.3390/sym12020185 10.1007/s13198-021-01537-6 10.1109/AIKE.2018.00036 10.1007/978-981-10-8797-4_7 10.11591/eei.v10i5.3165 10.1109/INDIN.2015.7281888 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1080/0952813X.2022.2153279 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1362-3079 |
EndPage | 1511 |
ExternalDocumentID | 10_1080_0952813X_2022_2153279 2153279 |
Genre | Research Article |
GrantInformation_xml | – fundername: organization |
GroupedDBID | .7F .DC .QJ 0BK 0R~ 29K 2DF 30N 4.4 5GY 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABIVO ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEGXH AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CS3 D-I DKSSO EAP EBR EBS EBU EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION DGEBU NX~ JQ2 |
ID | FETCH-LOGICAL-c338t-b86b43693d700932a2040be1f17c44f36b42339a4e38ae60e6b38055021dd1983 |
IEDL.DBID | TFW |
ISSN | 0952-813X |
IngestDate | Fri Oct 25 20:36:18 EDT 2024 Fri Nov 22 01:30:56 EST 2024 Fri Oct 25 04:13:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-b86b43693d700932a2040be1f17c44f36b42339a4e38ae60e6b38055021dd1983 |
ORCID | 0000-0002-0292-7008 |
PQID | 3120372071 |
PQPubID | 53008 |
PageCount | 27 |
ParticipantIDs | proquest_journals_3120372071 crossref_primary_10_1080_0952813X_2022_2153279 informaworld_taylorfrancis_310_1080_0952813X_2022_2153279 |
PublicationCentury | 2000 |
PublicationDate | 11/16/2024 |
PublicationDateYYYYMMDD | 2024-11-16 |
PublicationDate_xml | – month: 11 year: 2024 text: 11/16/2024 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of experimental & theoretical artificial intelligence |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_5_29_1 e_1_3_5_28_1 e_1_3_5_27_1 e_1_3_5_26_1 Hamada M. (e_1_3_5_16_1) 2018 e_1_3_5_25_1 e_1_3_5_24_1 Chen X. (e_1_3_5_7_1) 2019 e_1_3_5_23_1 e_1_3_5_22_1 e_1_3_5_44_1 e_1_3_5_45_1 e_1_3_5_46_1 e_1_3_5_47_1 e_1_3_5_48_1 e_1_3_5_3_1 e_1_3_5_2_1 e_1_3_5_40_1 e_1_3_5_41_1 e_1_3_5_42_1 e_1_3_5_43_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_5_1 e_1_3_5_4_1 e_1_3_5_6_1 Rezvani M. H. (e_1_3_5_39_1) 2018 e_1_3_5_18_1 Han X. (e_1_3_5_17_1) 2021 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_37_1 e_1_3_5_13_1 e_1_3_5_14_1 e_1_3_5_36_1 e_1_3_5_35_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_19_1 Malmir Z. (e_1_3_5_32_1) 2019; 12 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_23_1 doi: 10.3233/JIFS-179001 – ident: e_1_3_5_25_1 doi: 10.3991/ijet.v16i03.18851 – ident: e_1_3_5_6_1 doi: 10.1145/3289600.3290999 – ident: e_1_3_5_13_1 doi: 10.1080/16168658.2021.2019430 – ident: e_1_3_5_26_1 doi: 10.3390/s22134904 – ident: e_1_3_5_42_1 doi: 10.1007/s10115-021-01651-8 – ident: e_1_3_5_2_1 doi: 10.1007/978-0-387-85820-3_7 – ident: e_1_3_5_21_1 doi: 10.1007/s11036-019-01387-4 – ident: e_1_3_5_29_1 doi: 10.1016/j.cosrev.2020.100255 – ident: e_1_3_5_11_1 doi: 10.23919/ICACT48636.2020.9061465 – ident: e_1_3_5_27_1 doi: 10.3390/app12010045 – ident: e_1_3_5_36_1 doi: 10.1177/2516600X19848956 – ident: e_1_3_5_12_1 doi: 10.1007/s11235-020-00711-8 – ident: e_1_3_5_15_1 doi: 10.1109/ICESC48915.2020.9155879 – ident: e_1_3_5_4_1 doi: 10.33564/IJEAST.2019.v04i05.076 – ident: e_1_3_5_8_1 doi: 10.1109/ICMLC.2017.8108968 – ident: e_1_3_5_30_1 doi: 10.1080/10798587.2016.1231510 – ident: e_1_3_5_38_1 doi: 10.1007/978-981-13-1927-3_42 – ident: e_1_3_5_43_1 doi: 10.1109/INCET49848.2020.9154163 – ident: e_1_3_5_3_1 doi: 10.1109/CONFLUENCE.2019.8776969 – ident: e_1_3_5_37_1 doi: 10.1145/3308558.3313567 – ident: e_1_3_5_28_1 doi: 10.1007/978-981-16-4103-9_13 – ident: e_1_3_5_34_1 doi: 10.1109/KBEI.2019.8734976 – ident: e_1_3_5_40_1 doi: 10.1109/ACCESS.2020.3020005 – ident: e_1_3_5_24_1 doi: 10.1371/journal.pone.0220976 – ident: e_1_3_5_35_1 doi: 10.1016/j.eswa.2018.09.045 – ident: e_1_3_5_45_1 doi: 10.3390/electronics11020242 – ident: e_1_3_5_20_1 – ident: e_1_3_5_22_1 doi: 10.1007/s12652-021-03388-2 – volume: 12 start-page: 1 issue: 1 year: 2019 ident: e_1_3_5_32_1 article-title: A novel ensemble approach for anomaly detection in wireless sensor networks using time-overlapped sliding windows publication-title: Journal of Computer & Robotics contributor: fullname: Malmir Z. – start-page: 61 volume-title: 2018 2nd national and 1st international digital games research conference: Trends, technologies, and applications (DGRC) year: 2018 ident: e_1_3_5_39_1 contributor: fullname: Rezvani M. H. – start-page: 1052 volume-title: International Conference on Machine Learning year: 2019 ident: e_1_3_5_7_1 contributor: fullname: Chen X. – start-page: 25 volume-title: Informatics year: 2018 ident: e_1_3_5_16_1 contributor: fullname: Hamada M. – ident: e_1_3_5_5_1 doi: 10.1109/ICIPTM52218.2021.9388340 – ident: e_1_3_5_10_1 doi: 10.1109/CBMI.2019.8877452 – ident: e_1_3_5_19_1 doi: 10.1016/j.neucom.2019.03.098 – ident: e_1_3_5_44_1 doi: 10.1109/ICACCI.2018.8554918 – ident: e_1_3_5_41_1 doi: 10.31341/jios.44.1.7 – ident: e_1_3_5_48_1 doi: 10.26599/TST.2019.9010065 – ident: e_1_3_5_9_1 doi: 10.3390/sym12020185 – start-page: 309 volume-title: Advances in science and technology year: 2021 ident: e_1_3_5_17_1 contributor: fullname: Han X. – ident: e_1_3_5_14_1 doi: 10.1007/s13198-021-01537-6 – ident: e_1_3_5_46_1 doi: 10.1109/AIKE.2018.00036 – ident: e_1_3_5_31_1 doi: 10.1007/978-981-10-8797-4_7 – ident: e_1_3_5_18_1 doi: 10.11591/eei.v10i5.3165 – ident: e_1_3_5_33_1 – ident: e_1_3_5_47_1 doi: 10.1109/INDIN.2015.7281888 |
SSID | ssj0001511 |
Score | 2.4183288 |
Snippet | Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users'... Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users’... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 1485 |
SubjectTerms | cold start content-based filtering contextual information Datasets Filtration genetic algorithm Genetic algorithms Genre Movie recommender system Performance evaluation Recommender systems |
Title | An optimal context-aware content-based movie recommender system using genetic algorithm: a case study on MovieLens dataset |
URI | https://www.tandfonline.com/doi/abs/10.1080/0952813X.2022.2153279 https://www.proquest.com/docview/3120372071 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwvlKQoFeWBNiR_EDlsFVB2AhSK6RU5iFySSoDYVEr-euzwQFUIMMFrJOZF9D3_W3XeEnKpUnpvUN14YOO1Jq4VnQHM8xl2YSMUDbfBqYHyv7qb66hppcoZtLQymVSKGdjVRROWr0bhNvGgz4s7gVMA1E1NAd5wPIGYJrrCEDzm3QaMno8dPXwzxjNVse2D3INLW8Pw0y0p0WuEu_earqwA06v7Dr2-Rzeb0SYe1umyTNZvvkG7b2YE2hr5L3oc5LcCZZPAyJrMjPDZvZm7rUV56GP1SmhUQVimC6iyretLRmhmaYjr9jIJyYo0kNS-zYv5cPmUX1NAEJGnFakuLnN7iDDeApSnmqi5suUceRteTy7HXdGnwEoC38D0dxFIEoUgVXo9ww8EvxJY5phIpnYCnXIjQSCu0sYFvg1hoH4ARZ2nKQi32SScvcntAqFOOJxogHUwo_UTo2HdSm8T6zgWKJT0yaHcneq3JOCLWcpw2KxvhykbNyvZI-HUPo7K6BXF1y5JI_CLbbzc8auwaRbiPfX0UO_zD1EdkA4YSSxpZ0Cedcr60x2R9kS5PKvX9AFCa7JQ |
link.rule.ids | 315,782,786,1455,1509,27933,27934,58021,59734,60523 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gHODCeIrxzIFrR_OgSbkhYBpi48IQu1VZmwASbdEoQuLXY_cxgRDiAMcqtVslfsSW_ZmQQ5XIY5P4xgsDpz1ptfAMSI7HuAtjqXigDaYG-jfqeqzPLxAmZ9YLg2WVGEO7CiiitNWo3JiMbkrijuBawDUTYwjvOO-C0xJchfNkAS7HAvHzR727mTUGj8YqvD3QfKBpunh-YvPFP31BL_1mrUsX1Gv_x8-vkOX6AkpPK4lZJXM2WyPtZrgDrXV9nbyfZjQHe5LCy1jPjhGyeTNTWz1lhYcOMKFpDp6VYlydpuVYOlqBQ1OsqL-nIJ_YJknN030-fSwe0hNqaAyUtAS2pXlGh8hhAOE0xXLVF1tskNvexeis79WDGrwYIlz4ng4mUgShSBRmSLjhYBomljmmYimdgFUuRGikFdrYwLfBRGgfYiPOkoSFWmySVpZndotQpxyPNUR1wFD6sdAT30ltYus7FygWd0i3OZ7oucLjiFgDc1rvbIQ7G9U72yHh50OMijIR4qqpJZH4hXa3OfGoVm0k4T6O9lFs-w-sD8hifzQcRIPL66sdsgRLEjscWbBLWsX01e6R-Zfkdb-U5Q9IcfC4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6ugnjxLb7NwWu1eWyTelvUsqIugoreSrZNVsG2slYEf70zfYiLiAc9lnTSkswjX5j5hpB9lcquSX3jhYHTnrRaeAY0x2PchYlUPNAGrwb612pwr09OkSan19bCYFolYmhXE0VUvhqN-zl1bUbcIZwKuGbiHtAd5wcQswRXYYfMdDUELFDpm-ju0xlDQGM13R4YPsi0RTw_TTMRnibIS7856yoCRQv_8O-LZL45ftJerS9LZMrmy2Shbe1AG0tfIe-9nBbgTTJ4GbPZER-bNzO29VNeehj-UpoVEFcpouosq5rS0ZoammI-_YiCdmKRJDVPo2L8WD5kR9TQBCRpRWtLi5xe4gwXAKYpJqu-2HKV3EanN8d9r2nT4CWAb-F7OhhKEYQiVXg_wg0HxzC0zDGVSOkEjHIhQiOt0MYGvg2GQvuAjDhLUxZqsUam8yK364Q65XiiAdPBhNJPhB76TmqTWN-5QLFkgxy0uxM_12wcMWtJTpuVjXFl42ZlN0j4dQ_jsroGcXXPklj8IrvdbnjcGDaKcB8b-yi2-Yep98js1UkUX5wNzrfIHIxILG9kwTaZLsevdod0XtLX3UqTPwBVSu9c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+context-aware+content-based+movie+recommender+system+using+genetic+algorithm%3A+a+case+study+on+MovieLens+dataset&rft.jtitle=Journal+of+experimental+%26+theoretical+artificial+intelligence&rft.au=Abdolmaleki%2C+Alireza&rft.au=Rezvani%2C+Mohammad+Hossein&rft.date=2024-11-16&rft.pub=Taylor+%26+Francis&rft.issn=0952-813X&rft.eissn=1362-3079&rft.volume=36&rft.issue=8&rft.spage=1485&rft.epage=1511&rft_id=info:doi/10.1080%2F0952813X.2022.2153279&rft.externalDocID=2153279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-813X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-813X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-813X&client=summon |