An optimal context-aware content-based movie recommender system using genetic algorithm: a case study on MovieLens dataset

Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users' interests in bootstrapping is one of the most critical problems of the CF method. Using a content-based filtering method can mitigate some of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental & theoretical artificial intelligence Vol. 36; no. 8; pp. 1485 - 1511
Main Authors: Abdolmaleki, Alireza, Rezvani, Mohammad Hossein
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 16-11-2024
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users' interests in bootstrapping is one of the most critical problems of the CF method. Using a content-based filtering method can mitigate some of these problems. On the other hand, recent research has proven that utilising contextual information about the movie, such as genre, actors, and cast, can increase the efficiency of the recommender system. This paper uses a combined Genetic Algorithm (GA) and content-based filtering to find the best combination of genre, cast, and crew weights. We first convert each movie's contextual information into a descriptive vector, including cast, crew, and genre. Then, we calculate the distance between each pair of sentence vectors using two separate approaches, fully connected and metadata-based. Finally, with GA, we tune the weight of each of the contextual information of movies to maximise the recommender system's efficiency. Performance evaluation on the well-known MovieLens dataset shows that GA can improve the Precision@k criterion by producing fewer, more accurate recommendations. Weight adjustment by GA improves the F-Measure metric by approximately 58%. This, in turn, can improve Precision and Recall metrics. Also, the GA offers a higher correct recommendation rate than other methods.
AbstractList Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users’ interests in bootstrapping is one of the most critical problems of the CF method. Using a content-based filtering method can mitigate some of these problems. On the other hand, recent research has proven that utilising contextual information about the movie, such as genre, actors, and cast, can increase the efficiency of the recommender system. This paper uses a combined Genetic Algorithm (GA) and content-based filtering to find the best combination of genre, cast, and crew weights. We first convert each movie’s contextual information into a descriptive vector, including cast, crew, and genre. Then, we calculate the distance between each pair of sentence vectors using two separate approaches, fully connected and metadata-based. Finally, with GA, we tune the weight of each of the contextual information of movies to maximise the recommender system’s efficiency. Performance evaluation on the well-known MovieLens dataset shows that GA can improve the Precision@k criterion by producing fewer, more accurate recommendations. Weight adjustment by GA improves the F-Measure metric by approximately 58%. This, in turn, can improve Precision and Recall metrics. Also, the GA offers a higher correct recommendation rate than other methods.
Author Abdolmaleki, Alireza
Rezvani, Mohammad Hossein
Author_xml – sequence: 1
  givenname: Alireza
  surname: Abdolmaleki
  fullname: Abdolmaleki, Alireza
  organization: Islamic Azad University
– sequence: 2
  givenname: Mohammad Hossein
  orcidid: 0000-0002-0292-7008
  surname: Rezvani
  fullname: Rezvani, Mohammad Hossein
  email: rezvani@qiau.ac.ir
  organization: Islamic Azad University
BookMark eNp9kEtLAzEQx4NUsFU_ghDwvHWS2acnS_EFFS8K3kK6O1u37CY1SdX66d2l9eppGP4v-E3YyFhDjF0ImArI4QqKROYC36YSpJxKkaDMiiM2FpjKCCErRmw8eKLBdMIm3q8BQCRCjNnPzHC7CU2nW15aE-g7RPpLO9p_JkRL7aninf1siDsqbdeRqchxv_OBOr71jVnxFRkKTcl1u7KuCe_dNde87JPch22149bwp6FhQcbzSodeCWfsuNatp_PDPWWvd7cv84do8Xz_OJ8tohIx7_fzdBljWmCVARQotYQYliRqkZVxXGOvSsRCx4S5phQoXWIOSQJSVJUocjxll_vejbMfW_JBre3WmX5SoZCAmYRM9K5k7yqd9d5RrTaup-J2SoAaMKs_zGrArA6Y-9zNPteY2rpOf1nXViroXWtd7bQpm2Hm34pfpCWGxQ
CitedBy_id crossref_primary_10_3390_s23156719
crossref_primary_10_1080_0952813X_2024_2338495
crossref_primary_10_1007_s11042_023_17267_9
Cites_doi 10.3233/JIFS-179001
10.3991/ijet.v16i03.18851
10.1145/3289600.3290999
10.1080/16168658.2021.2019430
10.3390/s22134904
10.1007/s10115-021-01651-8
10.1007/978-0-387-85820-3_7
10.1007/s11036-019-01387-4
10.1016/j.cosrev.2020.100255
10.23919/ICACT48636.2020.9061465
10.3390/app12010045
10.1177/2516600X19848956
10.1007/s11235-020-00711-8
10.1109/ICESC48915.2020.9155879
10.33564/IJEAST.2019.v04i05.076
10.1109/ICMLC.2017.8108968
10.1080/10798587.2016.1231510
10.1007/978-981-13-1927-3_42
10.1109/INCET49848.2020.9154163
10.1109/CONFLUENCE.2019.8776969
10.1145/3308558.3313567
10.1007/978-981-16-4103-9_13
10.1109/KBEI.2019.8734976
10.1109/ACCESS.2020.3020005
10.1371/journal.pone.0220976
10.1016/j.eswa.2018.09.045
10.3390/electronics11020242
10.1007/s12652-021-03388-2
10.1109/ICIPTM52218.2021.9388340
10.1109/CBMI.2019.8877452
10.1016/j.neucom.2019.03.098
10.1109/ICACCI.2018.8554918
10.31341/jios.44.1.7
10.26599/TST.2019.9010065
10.3390/sym12020185
10.1007/s13198-021-01537-6
10.1109/AIKE.2018.00036
10.1007/978-981-10-8797-4_7
10.11591/eei.v10i5.3165
10.1109/INDIN.2015.7281888
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
JQ2
DOI 10.1080/0952813X.2022.2153279
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1362-3079
EndPage 1511
ExternalDocumentID 10_1080_0952813X_2022_2153279
2153279
Genre Research Article
GrantInformation_xml – fundername: organization
GroupedDBID .7F
.DC
.QJ
0BK
0R~
29K
2DF
30N
4.4
5GY
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D-I
DKSSO
EAP
EBR
EBS
EBU
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
DGEBU
NX~
JQ2
ID FETCH-LOGICAL-c338t-b86b43693d700932a2040be1f17c44f36b42339a4e38ae60e6b38055021dd1983
IEDL.DBID TFW
ISSN 0952-813X
IngestDate Fri Oct 25 20:36:18 EDT 2024
Fri Nov 22 01:30:56 EST 2024
Fri Oct 25 04:13:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-b86b43693d700932a2040be1f17c44f36b42339a4e38ae60e6b38055021dd1983
ORCID 0000-0002-0292-7008
PQID 3120372071
PQPubID 53008
PageCount 27
ParticipantIDs proquest_journals_3120372071
crossref_primary_10_1080_0952813X_2022_2153279
informaworld_taylorfrancis_310_1080_0952813X_2022_2153279
PublicationCentury 2000
PublicationDate 11/16/2024
PublicationDateYYYYMMDD 2024-11-16
PublicationDate_xml – month: 11
  year: 2024
  text: 11/16/2024
  day: 16
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of experimental & theoretical artificial intelligence
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_5_29_1
e_1_3_5_28_1
e_1_3_5_27_1
e_1_3_5_26_1
Hamada M. (e_1_3_5_16_1) 2018
e_1_3_5_25_1
e_1_3_5_24_1
Chen X. (e_1_3_5_7_1) 2019
e_1_3_5_23_1
e_1_3_5_22_1
e_1_3_5_44_1
e_1_3_5_45_1
e_1_3_5_46_1
e_1_3_5_47_1
e_1_3_5_48_1
e_1_3_5_3_1
e_1_3_5_2_1
e_1_3_5_40_1
e_1_3_5_41_1
e_1_3_5_42_1
e_1_3_5_43_1
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_5_1
e_1_3_5_4_1
e_1_3_5_6_1
Rezvani M. H. (e_1_3_5_39_1) 2018
e_1_3_5_18_1
Han X. (e_1_3_5_17_1) 2021
e_1_3_5_38_1
e_1_3_5_15_1
e_1_3_5_37_1
e_1_3_5_13_1
e_1_3_5_14_1
e_1_3_5_36_1
e_1_3_5_35_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_12_1
e_1_3_5_33_1
e_1_3_5_19_1
Malmir Z. (e_1_3_5_32_1) 2019; 12
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_23_1
  doi: 10.3233/JIFS-179001
– ident: e_1_3_5_25_1
  doi: 10.3991/ijet.v16i03.18851
– ident: e_1_3_5_6_1
  doi: 10.1145/3289600.3290999
– ident: e_1_3_5_13_1
  doi: 10.1080/16168658.2021.2019430
– ident: e_1_3_5_26_1
  doi: 10.3390/s22134904
– ident: e_1_3_5_42_1
  doi: 10.1007/s10115-021-01651-8
– ident: e_1_3_5_2_1
  doi: 10.1007/978-0-387-85820-3_7
– ident: e_1_3_5_21_1
  doi: 10.1007/s11036-019-01387-4
– ident: e_1_3_5_29_1
  doi: 10.1016/j.cosrev.2020.100255
– ident: e_1_3_5_11_1
  doi: 10.23919/ICACT48636.2020.9061465
– ident: e_1_3_5_27_1
  doi: 10.3390/app12010045
– ident: e_1_3_5_36_1
  doi: 10.1177/2516600X19848956
– ident: e_1_3_5_12_1
  doi: 10.1007/s11235-020-00711-8
– ident: e_1_3_5_15_1
  doi: 10.1109/ICESC48915.2020.9155879
– ident: e_1_3_5_4_1
  doi: 10.33564/IJEAST.2019.v04i05.076
– ident: e_1_3_5_8_1
  doi: 10.1109/ICMLC.2017.8108968
– ident: e_1_3_5_30_1
  doi: 10.1080/10798587.2016.1231510
– ident: e_1_3_5_38_1
  doi: 10.1007/978-981-13-1927-3_42
– ident: e_1_3_5_43_1
  doi: 10.1109/INCET49848.2020.9154163
– ident: e_1_3_5_3_1
  doi: 10.1109/CONFLUENCE.2019.8776969
– ident: e_1_3_5_37_1
  doi: 10.1145/3308558.3313567
– ident: e_1_3_5_28_1
  doi: 10.1007/978-981-16-4103-9_13
– ident: e_1_3_5_34_1
  doi: 10.1109/KBEI.2019.8734976
– ident: e_1_3_5_40_1
  doi: 10.1109/ACCESS.2020.3020005
– ident: e_1_3_5_24_1
  doi: 10.1371/journal.pone.0220976
– ident: e_1_3_5_35_1
  doi: 10.1016/j.eswa.2018.09.045
– ident: e_1_3_5_45_1
  doi: 10.3390/electronics11020242
– ident: e_1_3_5_20_1
– ident: e_1_3_5_22_1
  doi: 10.1007/s12652-021-03388-2
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  ident: e_1_3_5_32_1
  article-title: A novel ensemble approach for anomaly detection in wireless sensor networks using time-overlapped sliding windows
  publication-title: Journal of Computer & Robotics
  contributor:
    fullname: Malmir Z.
– start-page: 61
  volume-title: 2018 2nd national and 1st international digital games research conference: Trends, technologies, and applications (DGRC)
  year: 2018
  ident: e_1_3_5_39_1
  contributor:
    fullname: Rezvani M. H.
– start-page: 1052
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: e_1_3_5_7_1
  contributor:
    fullname: Chen X.
– start-page: 25
  volume-title: Informatics
  year: 2018
  ident: e_1_3_5_16_1
  contributor:
    fullname: Hamada M.
– ident: e_1_3_5_5_1
  doi: 10.1109/ICIPTM52218.2021.9388340
– ident: e_1_3_5_10_1
  doi: 10.1109/CBMI.2019.8877452
– ident: e_1_3_5_19_1
  doi: 10.1016/j.neucom.2019.03.098
– ident: e_1_3_5_44_1
  doi: 10.1109/ICACCI.2018.8554918
– ident: e_1_3_5_41_1
  doi: 10.31341/jios.44.1.7
– ident: e_1_3_5_48_1
  doi: 10.26599/TST.2019.9010065
– ident: e_1_3_5_9_1
  doi: 10.3390/sym12020185
– start-page: 309
  volume-title: Advances in science and technology
  year: 2021
  ident: e_1_3_5_17_1
  contributor:
    fullname: Han X.
– ident: e_1_3_5_14_1
  doi: 10.1007/s13198-021-01537-6
– ident: e_1_3_5_46_1
  doi: 10.1109/AIKE.2018.00036
– ident: e_1_3_5_31_1
  doi: 10.1007/978-981-10-8797-4_7
– ident: e_1_3_5_18_1
  doi: 10.11591/eei.v10i5.3165
– ident: e_1_3_5_33_1
– ident: e_1_3_5_47_1
  doi: 10.1109/INDIN.2015.7281888
SSID ssj0001511
Score 2.4183288
Snippet Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users'...
Most research on movie recommender systems has been conducted with Collaborative Filtering (CF) methods. The lack of sufficient information about users’...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 1485
SubjectTerms cold start
content-based filtering
contextual information
Datasets
Filtration
genetic algorithm
Genetic algorithms
Genre
Movie recommender system
Performance evaluation
Recommender systems
Title An optimal context-aware content-based movie recommender system using genetic algorithm: a case study on MovieLens dataset
URI https://www.tandfonline.com/doi/abs/10.1080/0952813X.2022.2153279
https://www.proquest.com/docview/3120372071
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwvlKQoFeWBNiR_EDlsFVB2AhSK6RU5iFySSoDYVEr-euzwQFUIMMFrJOZF9D3_W3XeEnKpUnpvUN14YOO1Jq4VnQHM8xl2YSMUDbfBqYHyv7qb66hppcoZtLQymVSKGdjVRROWr0bhNvGgz4s7gVMA1E1NAd5wPIGYJrrCEDzm3QaMno8dPXwzxjNVse2D3INLW8Pw0y0p0WuEu_earqwA06v7Dr2-Rzeb0SYe1umyTNZvvkG7b2YE2hr5L3oc5LcCZZPAyJrMjPDZvZm7rUV56GP1SmhUQVimC6iyretLRmhmaYjr9jIJyYo0kNS-zYv5cPmUX1NAEJGnFakuLnN7iDDeApSnmqi5suUceRteTy7HXdGnwEoC38D0dxFIEoUgVXo9ww8EvxJY5phIpnYCnXIjQSCu0sYFvg1hoH4ARZ2nKQi32SScvcntAqFOOJxogHUwo_UTo2HdSm8T6zgWKJT0yaHcneq3JOCLWcpw2KxvhykbNyvZI-HUPo7K6BXF1y5JI_CLbbzc8auwaRbiPfX0UO_zD1EdkA4YSSxpZ0Cedcr60x2R9kS5PKvX9AFCa7JQ
link.rule.ids 315,782,786,1455,1509,27933,27934,58021,59734,60523
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gHODCeIrxzIFrR_OgSbkhYBpi48IQu1VZmwASbdEoQuLXY_cxgRDiAMcqtVslfsSW_ZmQQ5XIY5P4xgsDpz1ptfAMSI7HuAtjqXigDaYG-jfqeqzPLxAmZ9YLg2WVGEO7CiiitNWo3JiMbkrijuBawDUTYwjvOO-C0xJchfNkAS7HAvHzR727mTUGj8YqvD3QfKBpunh-YvPFP31BL_1mrUsX1Gv_x8-vkOX6AkpPK4lZJXM2WyPtZrgDrXV9nbyfZjQHe5LCy1jPjhGyeTNTWz1lhYcOMKFpDp6VYlydpuVYOlqBQ1OsqL-nIJ_YJknN030-fSwe0hNqaAyUtAS2pXlGh8hhAOE0xXLVF1tskNvexeis79WDGrwYIlz4ng4mUgShSBRmSLjhYBomljmmYimdgFUuRGikFdrYwLfBRGgfYiPOkoSFWmySVpZndotQpxyPNUR1wFD6sdAT30ltYus7FygWd0i3OZ7oucLjiFgDc1rvbIQ7G9U72yHh50OMijIR4qqpJZH4hXa3OfGoVm0k4T6O9lFs-w-sD8hifzQcRIPL66sdsgRLEjscWbBLWsX01e6R-Zfkdb-U5Q9IcfC4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6ugnjxLb7NwWu1eWyTelvUsqIugoreSrZNVsG2slYEf70zfYiLiAc9lnTSkswjX5j5hpB9lcquSX3jhYHTnrRaeAY0x2PchYlUPNAGrwb612pwr09OkSan19bCYFolYmhXE0VUvhqN-zl1bUbcIZwKuGbiHtAd5wcQswRXYYfMdDUELFDpm-ju0xlDQGM13R4YPsi0RTw_TTMRnibIS7856yoCRQv_8O-LZL45ftJerS9LZMrmy2Shbe1AG0tfIe-9nBbgTTJ4GbPZER-bNzO29VNeehj-UpoVEFcpouosq5rS0ZoammI-_YiCdmKRJDVPo2L8WD5kR9TQBCRpRWtLi5xe4gwXAKYpJqu-2HKV3EanN8d9r2nT4CWAb-F7OhhKEYQiVXg_wg0HxzC0zDGVSOkEjHIhQiOt0MYGvg2GQvuAjDhLUxZqsUam8yK364Q65XiiAdPBhNJPhB76TmqTWN-5QLFkgxy0uxM_12wcMWtJTpuVjXFl42ZlN0j4dQ_jsroGcXXPklj8IrvdbnjcGDaKcB8b-yi2-Yep98js1UkUX5wNzrfIHIxILG9kwTaZLsevdod0XtLX3UqTPwBVSu9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+context-aware+content-based+movie+recommender+system+using+genetic+algorithm%3A+a+case+study+on+MovieLens+dataset&rft.jtitle=Journal+of+experimental+%26+theoretical+artificial+intelligence&rft.au=Abdolmaleki%2C+Alireza&rft.au=Rezvani%2C+Mohammad+Hossein&rft.date=2024-11-16&rft.pub=Taylor+%26+Francis&rft.issn=0952-813X&rft.eissn=1362-3079&rft.volume=36&rft.issue=8&rft.spage=1485&rft.epage=1511&rft_id=info:doi/10.1080%2F0952813X.2022.2153279&rft.externalDocID=2153279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-813X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-813X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-813X&client=summon