Performance of ridge estimator in inverse Gaussian regression model

The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a widely used estimator in overcoming this issue. The RE enjoys the advantage that its mean squared error (MSE) is less than that of MLE. The i...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods Vol. 48; no. 15; pp. 3836 - 3849
Main Author: Yahya Algamal, Zakariya
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 03-08-2019
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a widely used estimator in overcoming this issue. The RE enjoys the advantage that its mean squared error (MSE) is less than that of MLE. The inverse Gaussian regression (IGR) model is a well-known model in the application when the response variable positively skewed. The purpose of this paper is to derive the RE of the IGR under multicollinearity problem. In addition, the performance of this estimator is investigated under numerous methods for estimating the ridge parameter. Monte Carlo simulation results indicate that the suggested estimator performs better than the MLE estimator in terms of MSE. Furthermore, a real chemometrics dataset application is utilized and the results demonstrate the excellent performance of the suggested estimator when the multicollinearity is present in IGR model.
AbstractList The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a widely used estimator in overcoming this issue. The RE enjoys the advantage that its mean squared error (MSE) is less than that of MLE. The inverse Gaussian regression (IGR) model is a well-known model in the application when the response variable positively skewed. The purpose of this paper is to derive the RE of the IGR under multicollinearity problem. In addition, the performance of this estimator is investigated under numerous methods for estimating the ridge parameter. Monte Carlo simulation results indicate that the suggested estimator performs better than the MLE estimator in terms of MSE. Furthermore, a real chemometrics dataset application is utilized and the results demonstrate the excellent performance of the suggested estimator when the multicollinearity is present in IGR model.
Author Yahya Algamal, Zakariya
Author_xml – sequence: 1
  givenname: Zakariya
  orcidid: 0000-0002-0229-7958
  surname: Yahya Algamal
  fullname: Yahya Algamal, Zakariya
  email: zakariya.algamal@uomosul.edu.iq
  organization: Department of Statistics and Informatics, University of Mosul
BookMark eNp9kE9LAzEQxYNUsK1-BGHB89b82WSTm1K0CgU9KHgL2-xs2bJN6mSr9NubtfUqDMwc3puZ95uQkQ8eCLlmdMaoprdUKEYNVzNOmZ6xQjNTlmdkzKTgecHkx4iMB00-iC7IJMYNpUyWWozJ_BWwCbitvIMsNBm29RoyiH27rfqAWetTfQFGyBbVPsa28hnCGiGNwWfbUEN3Sc6bqotwdepT8v748DZ_ypcvi-f5_TJ3Qug-X5UFWyltnABVg1TARaEobyhT1FSmpgaKktFSlsZxwZwsmlqkLK4WK8eUEVNyc9y7w_C5Tz_aTdijTyct54U0OlEQSSWPKochRoTG7jCFwYNl1A687B8vO_CyJ17Jd3f0tf4XyHfArrZ9degCNpj4tNGK_1f8AJDxclI
CitedBy_id crossref_primary_10_1016_j_chemolab_2024_105149
crossref_primary_10_1002_cpe_6222
crossref_primary_10_1080_03610918_2020_1797794
crossref_primary_10_1080_03610918_2021_1960373
crossref_primary_10_1080_03610918_2023_2252624
crossref_primary_10_1080_03610918_2022_2059088
crossref_primary_10_1080_03610926_2021_1970773
crossref_primary_10_1080_00949655_2021_2020274
crossref_primary_10_1016_j_sciaf_2023_e01565
crossref_primary_10_1080_03610918_2020_1797797
crossref_primary_10_15672_hujms_1145607
crossref_primary_10_1007_s40995_021_01133_0
crossref_primary_10_1080_03610918_2023_2179070
crossref_primary_10_1080_03610918_2021_1874990
crossref_primary_10_1080_03610926_2021_1977958
crossref_primary_10_1038_s41598_023_50085_5
crossref_primary_10_1080_03610918_2023_2261078
crossref_primary_10_1080_03610918_2021_1971243
crossref_primary_10_7759_cureus_26201
crossref_primary_10_1080_03610918_2023_2276052
crossref_primary_10_1080_00949655_2024_2305239
crossref_primary_10_15672_hujms_1359446
crossref_primary_10_15672_hujms_813540
Cites_doi 10.1016/0167-7152(86)90047-7
10.1080/03610910802592838
10.1007/s00184-011-0352-x
10.1007/978-94-009-8549-0_5
10.1017/CBO9780511755408
10.1080/03610929208830909
10.1080/03610918.2014.995815
10.18187/pjsor.v12i2.1188
10.1186/s13561-015-0045-7
10.1080/00401706.1970.10488634
10.1080/03610918.2012.735317
10.1007/s001800200125
10.1080/03610926.2016.1267767
10.1016/j.econmod.2011.02.030
10.1002/cem.2915
10.1080/03610928908830102
10.1007/bf00049290
10.1285/i20705948v11n1p253
10.1002/cem.2741
10.1007/s10614-011-9275-x
10.1007/bf02595697
10.1214/lnms/1215464843
10.1080/03610918.2013.796981
10.1016/S0378-3758(01)00128-8
10.1007/978-0-8176-4971-5_33
10.1081/SAC-120017499
ContentType Journal Article
Copyright 2018 Taylor & Francis Group, LLC 2018
2018 Taylor & Francis Group, LLC
Copyright_xml – notice: 2018 Taylor & Francis Group, LLC 2018
– notice: 2018 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610926.2018.1481977
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 3849
ExternalDocumentID 10_1080_03610926_2018_1481977
1481977
Genre Original Articles
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
3YN
4.4
5GY
5VS
8VB
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABEHJ
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TN5
TTHFI
TWF
TWZ
UPT
UT5
UU3
V1K
WH7
ZGOLN
ZL0
~02
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
CITATION
K1G
TBQAZ
TDBHL
TUROJ
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-b741b689c3e6de56e234602f01609a9d09e47107579c231c54fd3819cd3bc1693
IEDL.DBID TFW
ISSN 0361-0926
IngestDate Thu Oct 10 21:54:51 EDT 2024
Fri Aug 23 03:43:00 EDT 2024
Tue Jun 13 19:51:29 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-b741b689c3e6de56e234602f01609a9d09e47107579c231c54fd3819cd3bc1693
ORCID 0000-0002-0229-7958
PQID 2245981093
PQPubID 186202
PageCount 14
ParticipantIDs proquest_journals_2245981093
crossref_primary_10_1080_03610926_2018_1481977
informaworld_taylorfrancis_310_1080_03610926_2018_1481977
PublicationCentury 2000
PublicationDate 2019-08-03
PublicationDateYYYYMMDD 2019-08-03
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0012
Dorugade A. (CIT0011) 2010; 4
Uusipaikka E (CIT0028) 2009
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Asar Y. (CIT0005) 2014; 43
CIT0003
CIT0025
CIT0002
CIT0024
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0014
  doi: 10.1016/0167-7152(86)90047-7
– ident: CIT0026
  doi: 10.1080/03610910802592838
– ident: CIT0029
  doi: 10.1007/s00184-011-0352-x
– volume-title: Confidence intervals in generalized regression models
  year: 2009
  ident: CIT0028
  contributor:
    fullname: Uusipaikka E
– ident: CIT0013
  doi: 10.1007/978-94-009-8549-0_5
– ident: CIT0010
  doi: 10.1017/CBO9780511755408
– ident: CIT0027
  doi: 10.1080/03610929208830909
– ident: CIT0004
  doi: 10.1080/03610918.2014.995815
– ident: CIT0007
  doi: 10.18187/pjsor.v12i2.1188
– ident: CIT0024
  doi: 10.1186/s13561-015-0045-7
– ident: CIT0017
  doi: 10.1080/00401706.1970.10488634
– ident: CIT0015
  doi: 10.1080/03610918.2012.735317
– ident: CIT0016
  doi: 10.1007/s001800200125
– ident: CIT0022
  doi: 10.1080/03610926.2016.1267767
– ident: CIT0025
  doi: 10.1016/j.econmod.2011.02.030
– ident: CIT0002
  doi: 10.1002/cem.2915
– ident: CIT0023
  doi: 10.1080/03610928908830102
– ident: CIT0006
  doi: 10.1007/bf00049290
– ident: CIT0001
  doi: 10.1285/i20705948v11n1p253
– ident: CIT0003
  doi: 10.1002/cem.2741
– ident: CIT0019
  doi: 10.1007/s10614-011-9275-x
– ident: CIT0012
  doi: 10.1007/bf02595697
– ident: CIT0008
  doi: 10.1214/lnms/1215464843
– ident: CIT0020
  doi: 10.1080/03610918.2013.796981
– ident: CIT0009
  doi: 10.1016/S0378-3758(01)00128-8
– volume: 43
  start-page: 827
  issue: 5
  year: 2014
  ident: CIT0005
  publication-title: Hacettepe Journal of Mathematics and Statistics
  contributor:
    fullname: Asar Y.
– volume: 4
  start-page: 447
  issue: 9
  year: 2010
  ident: CIT0011
  publication-title: Applied Mathematical Sciences
  contributor:
    fullname: Dorugade A.
– ident: CIT0021
  doi: 10.1007/978-0-8176-4971-5_33
– ident: CIT0018
  doi: 10.1081/SAC-120017499
SSID ssj0015783
Score 2.3882117
Snippet The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 3836
SubjectTerms Chemometrics
Computer simulation
Economic models
inverse Gaussian regression model
Maximum likelihood estimators
Monte Carlo simulation
Multicollinearity
Parameter estimation
Regression models
ridge estimator
shrinkage
Title Performance of ridge estimator in inverse Gaussian regression model
URI https://www.tandfonline.com/doi/abs/10.1080/03610926.2018.1481977
https://www.proquest.com/docview/2245981093
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgUxn4KCAKBXlgDSSxncRjVVq6gJAogs1K_IEYSFHT_n_u4gSoEGIAKUsGO9H5fL5L3ntHyHkcW2EQqpNDJAx46nggLddBLlKTGymclMhGnt6nt0_Z1RhlcoYtFwZhlVhDOy8UUcdq3Nx5UbWIuEsIulEoYwQYRBlsdTjUUuSTo-Y2ePRs8vjxHwH80TdITqBohiEth-enWdZOpzXt0m-xuj6AJjv_8Oq7ZLvJPunQu8se2bBlj2zdfEi3Vj3SxfTTqzfvk9HdJ6-Azh2t2V0UhTlesVinLyVcCOyw9DpfVUjIpAv77LG1Ja3b7ByQh8l4NpoGTduFQEO9ugwKSDKKJJOa2cRYkdiY8SSMHWrRyVyaEBYT8pJUpFJDdqgFdwbrPm1YoVHb5ZB0ynlpjwjV0mU5CwvJI8mN1RkvCmbTyDF4lDCsTy5ac6s3r66hola0tDGVQlOpxlR9Ir8uilrWnzWc70Gi2C9jB-0KqmajVgoyGCEz1NQ6_sPUJ6QLt7IGBrIB6SwXK3tKNiuzOqv98R2mytqk
link.rule.ids 315,782,786,1455,1509,27935,27936,58024,59737,60526
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xHIADSwGxFPCBa6CJkzg-otJSxCIkiuBmJV4QB1LUtP_PTJYCQogDSLlFdqKxPX5jv3kDcBwENjJE1UnRE3qhcKEnbai9NBImNTJyUlI28uBe3D4l5z2SyZnlwhCtkmJoVwlFlL6aFjcdRjeUuFP0un5HBsQw8BNc67irCTEPiwiOOQVgw_7j7CYBZ2RVIjnGsBnbNFk8P3XzZX_6ol76zVuXW1B_7T9-fh1WawDKzqoZswFzNm_Bys1MvbVowTIh0ErAeRO6dx-pBWzkWJngxUib45XidfaS40PcDssu0mlBOZlsbJ8rem3Oyko7W_DQ7w27A6-uvOBpDFknXoY4I4sTqbmNjY1iG_Aw7gSO5OhkKk0HxxOhiYiE1AgQdRQ6Q6GfNjzTJO-yDQv5KLc7wLR0Sco7mQx9GRqrkzDLuBW-4_ipyPBdOGnsrd4qgQ3lN7qltakUmUrVptoF-XlU1KQ82XBVGRLFf2nbboZQ1Wu1UAhiIpmQrNbeH7o-gqXB8OZaXV_eXu3DMr6SJU-Qt2FhMp7aA5gvzPSwnJzvlhLeyw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6sgtSDb_FRdQ9eo002m2SPpQ8raimo6G1J9iEeTMW2_9-ZPHwg4kEht7CbMDM7j-SbbwBOgsAKQ1CdFD2hF8Yu9KQNtZeK2KRGCicldSMPb-LRQ9LrE01Op-6FIVgl1dCuJIoofDUd7hfjakTcGTpdvy0DAhj4CR51DGpx3IAlkWDAQZO-Hdy__0hAgywnJEdYNeOauonnp22-hKcv5KXfnHURgQZr__Du67BapZ-sU9rLBizYfBNWrt-5W6eb0KT8s6Rv3oLu-KOxgE0cK9q7GDFzPFO1zp5yvAjZYdl5Op9SRyZ7tY8luDZnxZydbbgb9G-7Q6-au-BpLFhnXoZZRhYlUnMbGSsiG_AwageOyOhkKk0btYmJSSxiqTE91CJ0hgo_bXimidxlBxbzSW53gWnpkpS3Mxn6MjRWJ2GWcRv7juOjhOF7cFqLW72U9BrKr1lLK1EpEpWqRLUH8rNS1Kz4ruHKISSK_7K2VWtQVSd1qjCFETIhUq39P2x9DMvj3kBdXYwuD6CJd2QBEuQtWJy9zu0hNKZmflSY5hvjYt1v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+ridge+estimator+in+inverse+Gaussian+regression+model&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Yahya+Algamal%2C+Zakariya&rft.date=2019-08-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=48&rft.issue=15&rft.spage=3836&rft.epage=3849&rft_id=info:doi/10.1080%2F03610926.2018.1481977&rft.externalDocID=1481977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon