Performance of ridge estimator in inverse Gaussian regression model
The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a widely used estimator in overcoming this issue. The RE enjoys the advantage that its mean squared error (MSE) is less than that of MLE. The i...
Saved in:
Published in: | Communications in statistics. Theory and methods Vol. 48; no. 15; pp. 3836 - 3849 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia
Taylor & Francis
03-08-2019
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a widely used estimator in overcoming this issue. The RE enjoys the advantage that its mean squared error (MSE) is less than that of MLE. The inverse Gaussian regression (IGR) model is a well-known model in the application when the response variable positively skewed. The purpose of this paper is to derive the RE of the IGR under multicollinearity problem. In addition, the performance of this estimator is investigated under numerous methods for estimating the ridge parameter. Monte Carlo simulation results indicate that the suggested estimator performs better than the MLE estimator in terms of MSE. Furthermore, a real chemometrics dataset application is utilized and the results demonstrate the excellent performance of the suggested estimator when the multicollinearity is present in IGR model. |
---|---|
AbstractList | The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a widely used estimator in overcoming this issue. The RE enjoys the advantage that its mean squared error (MSE) is less than that of MLE. The inverse Gaussian regression (IGR) model is a well-known model in the application when the response variable positively skewed. The purpose of this paper is to derive the RE of the IGR under multicollinearity problem. In addition, the performance of this estimator is investigated under numerous methods for estimating the ridge parameter. Monte Carlo simulation results indicate that the suggested estimator performs better than the MLE estimator in terms of MSE. Furthermore, a real chemometrics dataset application is utilized and the results demonstrate the excellent performance of the suggested estimator when the multicollinearity is present in IGR model. |
Author | Yahya Algamal, Zakariya |
Author_xml | – sequence: 1 givenname: Zakariya orcidid: 0000-0002-0229-7958 surname: Yahya Algamal fullname: Yahya Algamal, Zakariya email: zakariya.algamal@uomosul.edu.iq organization: Department of Statistics and Informatics, University of Mosul |
BookMark | eNp9kE9LAzEQxYNUsK1-BGHB89b82WSTm1K0CgU9KHgL2-xs2bJN6mSr9NubtfUqDMwc3puZ95uQkQ8eCLlmdMaoprdUKEYNVzNOmZ6xQjNTlmdkzKTgecHkx4iMB00-iC7IJMYNpUyWWozJ_BWwCbitvIMsNBm29RoyiH27rfqAWetTfQFGyBbVPsa28hnCGiGNwWfbUEN3Sc6bqotwdepT8v748DZ_ypcvi-f5_TJ3Qug-X5UFWyltnABVg1TARaEobyhT1FSmpgaKktFSlsZxwZwsmlqkLK4WK8eUEVNyc9y7w_C5Tz_aTdijTyct54U0OlEQSSWPKochRoTG7jCFwYNl1A687B8vO_CyJ17Jd3f0tf4XyHfArrZ9degCNpj4tNGK_1f8AJDxclI |
CitedBy_id | crossref_primary_10_1016_j_chemolab_2024_105149 crossref_primary_10_1002_cpe_6222 crossref_primary_10_1080_03610918_2020_1797794 crossref_primary_10_1080_03610918_2021_1960373 crossref_primary_10_1080_03610918_2023_2252624 crossref_primary_10_1080_03610918_2022_2059088 crossref_primary_10_1080_03610926_2021_1970773 crossref_primary_10_1080_00949655_2021_2020274 crossref_primary_10_1016_j_sciaf_2023_e01565 crossref_primary_10_1080_03610918_2020_1797797 crossref_primary_10_15672_hujms_1145607 crossref_primary_10_1007_s40995_021_01133_0 crossref_primary_10_1080_03610918_2023_2179070 crossref_primary_10_1080_03610918_2021_1874990 crossref_primary_10_1080_03610926_2021_1977958 crossref_primary_10_1038_s41598_023_50085_5 crossref_primary_10_1080_03610918_2023_2261078 crossref_primary_10_1080_03610918_2021_1971243 crossref_primary_10_7759_cureus_26201 crossref_primary_10_1080_03610918_2023_2276052 crossref_primary_10_1080_00949655_2024_2305239 crossref_primary_10_15672_hujms_1359446 crossref_primary_10_15672_hujms_813540 |
Cites_doi | 10.1016/0167-7152(86)90047-7 10.1080/03610910802592838 10.1007/s00184-011-0352-x 10.1007/978-94-009-8549-0_5 10.1017/CBO9780511755408 10.1080/03610929208830909 10.1080/03610918.2014.995815 10.18187/pjsor.v12i2.1188 10.1186/s13561-015-0045-7 10.1080/00401706.1970.10488634 10.1080/03610918.2012.735317 10.1007/s001800200125 10.1080/03610926.2016.1267767 10.1016/j.econmod.2011.02.030 10.1002/cem.2915 10.1080/03610928908830102 10.1007/bf00049290 10.1285/i20705948v11n1p253 10.1002/cem.2741 10.1007/s10614-011-9275-x 10.1007/bf02595697 10.1214/lnms/1215464843 10.1080/03610918.2013.796981 10.1016/S0378-3758(01)00128-8 10.1007/978-0-8176-4971-5_33 10.1081/SAC-120017499 |
ContentType | Journal Article |
Copyright | 2018 Taylor & Francis Group, LLC 2018 2018 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2018 Taylor & Francis Group, LLC 2018 – notice: 2018 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610926.2018.1481977 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1532-415X |
EndPage | 3849 |
ExternalDocumentID | 10_1080_03610926_2018_1481977 1481977 |
Genre | Original Articles |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 3YN 4.4 5GY 5VS 8VB AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABEHJ ABFIM ABHAV ABJVF ABLIJ ABPEM ABQHQ ABTAI ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B F5P FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- QWB RIG RNANH ROSJB RTWRZ S-T SNACF TEJ TFL TFT TFW TN5 TTHFI TWF TWZ UPT UT5 UU3 V1K WH7 ZGOLN ZL0 ~02 ~S~ AAYXX ABJNI ABPAQ ABXYU CITATION K1G TBQAZ TDBHL TUROJ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-b741b689c3e6de56e234602f01609a9d09e47107579c231c54fd3819cd3bc1693 |
IEDL.DBID | TFW |
ISSN | 0361-0926 |
IngestDate | Thu Oct 10 21:54:51 EDT 2024 Fri Aug 23 03:43:00 EDT 2024 Tue Jun 13 19:51:29 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-b741b689c3e6de56e234602f01609a9d09e47107579c231c54fd3819cd3bc1693 |
ORCID | 0000-0002-0229-7958 |
PQID | 2245981093 |
PQPubID | 186202 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2245981093 crossref_primary_10_1080_03610926_2018_1481977 informaworld_taylorfrancis_310_1080_03610926_2018_1481977 |
PublicationCentury | 2000 |
PublicationDate | 2019-08-03 |
PublicationDateYYYYMMDD | 2019-08-03 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Theory and methods |
PublicationYear | 2019 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0012 Dorugade A. (CIT0011) 2010; 4 Uusipaikka E (CIT0028) 2009 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Asar Y. (CIT0005) 2014; 43 CIT0003 CIT0025 CIT0002 CIT0024 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0009 CIT0008 |
References_xml | – ident: CIT0014 doi: 10.1016/0167-7152(86)90047-7 – ident: CIT0026 doi: 10.1080/03610910802592838 – ident: CIT0029 doi: 10.1007/s00184-011-0352-x – volume-title: Confidence intervals in generalized regression models year: 2009 ident: CIT0028 contributor: fullname: Uusipaikka E – ident: CIT0013 doi: 10.1007/978-94-009-8549-0_5 – ident: CIT0010 doi: 10.1017/CBO9780511755408 – ident: CIT0027 doi: 10.1080/03610929208830909 – ident: CIT0004 doi: 10.1080/03610918.2014.995815 – ident: CIT0007 doi: 10.18187/pjsor.v12i2.1188 – ident: CIT0024 doi: 10.1186/s13561-015-0045-7 – ident: CIT0017 doi: 10.1080/00401706.1970.10488634 – ident: CIT0015 doi: 10.1080/03610918.2012.735317 – ident: CIT0016 doi: 10.1007/s001800200125 – ident: CIT0022 doi: 10.1080/03610926.2016.1267767 – ident: CIT0025 doi: 10.1016/j.econmod.2011.02.030 – ident: CIT0002 doi: 10.1002/cem.2915 – ident: CIT0023 doi: 10.1080/03610928908830102 – ident: CIT0006 doi: 10.1007/bf00049290 – ident: CIT0001 doi: 10.1285/i20705948v11n1p253 – ident: CIT0003 doi: 10.1002/cem.2741 – ident: CIT0019 doi: 10.1007/s10614-011-9275-x – ident: CIT0012 doi: 10.1007/bf02595697 – ident: CIT0008 doi: 10.1214/lnms/1215464843 – ident: CIT0020 doi: 10.1080/03610918.2013.796981 – ident: CIT0009 doi: 10.1016/S0378-3758(01)00128-8 – volume: 43 start-page: 827 issue: 5 year: 2014 ident: CIT0005 publication-title: Hacettepe Journal of Mathematics and Statistics contributor: fullname: Asar Y. – volume: 4 start-page: 447 issue: 9 year: 2010 ident: CIT0011 publication-title: Applied Mathematical Sciences contributor: fullname: Dorugade A. – ident: CIT0021 doi: 10.1007/978-0-8176-4971-5_33 – ident: CIT0018 doi: 10.1081/SAC-120017499 |
SSID | ssj0015783 |
Score | 2.3882117 |
Snippet | The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). Ridge estimator (RE) is a... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 3836 |
SubjectTerms | Chemometrics Computer simulation Economic models inverse Gaussian regression model Maximum likelihood estimators Monte Carlo simulation Multicollinearity Parameter estimation Regression models ridge estimator shrinkage |
Title | Performance of ridge estimator in inverse Gaussian regression model |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610926.2018.1481977 https://www.proquest.com/docview/2245981093 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgUxn4KCAKBXlgDSSxncRjVVq6gJAogs1K_IEYSFHT_n_u4gSoEGIAKUsGO9H5fL5L3ntHyHkcW2EQqpNDJAx46nggLddBLlKTGymclMhGnt6nt0_Z1RhlcoYtFwZhlVhDOy8UUcdq3Nx5UbWIuEsIulEoYwQYRBlsdTjUUuSTo-Y2ePRs8vjxHwH80TdITqBohiEth-enWdZOpzXt0m-xuj6AJjv_8Oq7ZLvJPunQu8se2bBlj2zdfEi3Vj3SxfTTqzfvk9HdJ6-Azh2t2V0UhTlesVinLyVcCOyw9DpfVUjIpAv77LG1Ja3b7ByQh8l4NpoGTduFQEO9ugwKSDKKJJOa2cRYkdiY8SSMHWrRyVyaEBYT8pJUpFJDdqgFdwbrPm1YoVHb5ZB0ynlpjwjV0mU5CwvJI8mN1RkvCmbTyDF4lDCsTy5ac6s3r66hola0tDGVQlOpxlR9Ir8uilrWnzWc70Gi2C9jB-0KqmajVgoyGCEz1NQ6_sPUJ6QLt7IGBrIB6SwXK3tKNiuzOqv98R2mytqk |
link.rule.ids | 315,782,786,1455,1509,27935,27936,58024,59737,60526 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xHIADSwGxFPCBa6CJkzg-otJSxCIkiuBmJV4QB1LUtP_PTJYCQogDSLlFdqKxPX5jv3kDcBwENjJE1UnRE3qhcKEnbai9NBImNTJyUlI28uBe3D4l5z2SyZnlwhCtkmJoVwlFlL6aFjcdRjeUuFP0un5HBsQw8BNc67irCTEPiwiOOQVgw_7j7CYBZ2RVIjnGsBnbNFk8P3XzZX_6ol76zVuXW1B_7T9-fh1WawDKzqoZswFzNm_Bys1MvbVowTIh0ErAeRO6dx-pBWzkWJngxUib45XidfaS40PcDssu0mlBOZlsbJ8rem3Oyko7W_DQ7w27A6-uvOBpDFknXoY4I4sTqbmNjY1iG_Aw7gSO5OhkKk0HxxOhiYiE1AgQdRQ6Q6GfNjzTJO-yDQv5KLc7wLR0Sco7mQx9GRqrkzDLuBW-4_ipyPBdOGnsrd4qgQ3lN7qltakUmUrVptoF-XlU1KQ82XBVGRLFf2nbboZQ1Wu1UAhiIpmQrNbeH7o-gqXB8OZaXV_eXu3DMr6SJU-Qt2FhMp7aA5gvzPSwnJzvlhLeyw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6sgtSDb_FRdQ9eo002m2SPpQ8raimo6G1J9iEeTMW2_9-ZPHwg4kEht7CbMDM7j-SbbwBOgsAKQ1CdFD2hF8Yu9KQNtZeK2KRGCicldSMPb-LRQ9LrE01Op-6FIVgl1dCuJIoofDUd7hfjakTcGTpdvy0DAhj4CR51DGpx3IAlkWDAQZO-Hdy__0hAgywnJEdYNeOauonnp22-hKcv5KXfnHURgQZr__Du67BapZ-sU9rLBizYfBNWrt-5W6eb0KT8s6Rv3oLu-KOxgE0cK9q7GDFzPFO1zp5yvAjZYdl5Op9SRyZ7tY8luDZnxZydbbgb9G-7Q6-au-BpLFhnXoZZRhYlUnMbGSsiG_AwageOyOhkKk0btYmJSSxiqTE91CJ0hgo_bXimidxlBxbzSW53gWnpkpS3Mxn6MjRWJ2GWcRv7juOjhOF7cFqLW72U9BrKr1lLK1EpEpWqRLUH8rNS1Kz4ruHKISSK_7K2VWtQVSd1qjCFETIhUq39P2x9DMvj3kBdXYwuD6CJd2QBEuQtWJy9zu0hNKZmflSY5hvjYt1v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+ridge+estimator+in+inverse+Gaussian+regression+model&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Yahya+Algamal%2C+Zakariya&rft.date=2019-08-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=48&rft.issue=15&rft.spage=3836&rft.epage=3849&rft_id=info:doi/10.1080%2F03610926.2018.1481977&rft.externalDocID=1481977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon |