Machine learning based predictive modeling and control of surface roughness generation while machining micro boron carbide and carbon nanotube particle reinforced Al-Mg matrix composites

Machine learning has revolutionized the way complex problems are solved in engineering. In the current work, machine learning methodology has been applied for predictive modeling of surface roughness generation during machining of Al-Mg based metal matrix composites (MMCs) reinforced with micro boro...

Full description

Saved in:
Bibliographic Details
Published in:Particulate science and technology Vol. 40; no. 3; pp. 355 - 372
Main Authors: Sekhar, Ravi, Singh, T. P., Shah, Pritesh
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 03-04-2022
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Machine learning has revolutionized the way complex problems are solved in engineering. In the current work, machine learning methodology has been applied for predictive modeling of surface roughness generation during machining of Al-Mg based metal matrix composites (MMCs) reinforced with micro boron carbide and multiwalled carbon nanotube particles. Machine learning was used for parameter estimation of modeling structures such as auto regressive with exogenous variables (ARX), auto regressive moving average with exogenous variables (ARMAX), Box Jenkins (BJ) and Output Error (OE). The identified models were validated on the basis of FIT, final prediction error (FPE) and mean squared error (MSE). The PID, fractional order PID (FOPID), complex order PID (COPID) and model predictive controllers (MPC) were employed to effectively control machined surface roughness based on the best performing predictive models. Primary results indicate that: (1) CNT MMCs generate surface roughness comparable to that due to the micro MMCs with tenfold higher reinforcement fractions (2) ARX441 and ARMAX3331 are the best performing predictive models for the nano and micro MMCs respectively (3) PID and MPC are the best controllers for micro and nano MMC systems respectively considering the peak overshoots as the foremost performance metric (safety), followed by settling time (productivity).
AbstractList Machine learning has revolutionized the way complex problems are solved in engineering. In the current work, machine learning methodology has been applied for predictive modeling of surface roughness generation during machining of Al-Mg based metal matrix composites (MMCs) reinforced with micro boron carbide and multiwalled carbon nanotube particles. Machine learning was used for parameter estimation of modeling structures such as auto regressive with exogenous variables (ARX), auto regressive moving average with exogenous variables (ARMAX), Box Jenkins (BJ) and Output Error (OE). The identified models were validated on the basis of FIT, final prediction error (FPE) and mean squared error (MSE). The PID, fractional order PID (FOPID), complex order PID (COPID) and model predictive controllers (MPC) were employed to effectively control machined surface roughness based on the best performing predictive models. Primary results indicate that: (1) CNT MMCs generate surface roughness comparable to that due to the micro MMCs with tenfold higher reinforcement fractions (2) ARX441 and ARMAX3331 are the best performing predictive models for the nano and micro MMCs respectively (3) PID and MPC are the best controllers for micro and nano MMC systems respectively considering the peak overshoots as the foremost performance metric (safety), followed by settling time (productivity).
Author Shah, Pritesh
Singh, T. P.
Sekhar, Ravi
Author_xml – sequence: 1
  givenname: Ravi
  orcidid: 0000-0002-4732-5246
  surname: Sekhar
  fullname: Sekhar, Ravi
  organization: Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU)
– sequence: 2
  givenname: T. P.
  surname: Singh
  fullname: Singh, T. P.
  organization: Department of Mechanical Engineering, Thapar Institute of Engineering & Technology
– sequence: 3
  givenname: Pritesh
  surname: Shah
  fullname: Shah, Pritesh
  organization: Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU)
BookMark eNp9kc1u1TAQha2qSNwWHgHJEuvc-id2kh1VBRSpFZvuLcc_97pK7HTsUPpqPB1Ob9my8shzzjczOhfoPKboEPpEyZ6SnlwR1jHJBd0zwuieDpyznp2hHRVt3xDSynO02zTNJnqPLnJ-JIQI0bId-nOvzTFEhyenIYZ4wKPOzuIFnA2mhF8Oz8m6aevoaLFJsUCacPI4r-C1cRjSejhGlzM-uOhAl5Aifj6GqVpf4Zt3DgYSHhPUntEwButOvFrXr6hjKuvo8KKhBFOt4EL0CUzd5Xpq7itBFwi_6wLzknIoLn9A77yesvv49l6ih29fH25um7uf33_cXN81hvO-NHp0rSCeSE750DHP-s76gcqOsGFoO9PKfpS2E1YLKUcqBksHYRkfjOfeSn6JPp-wC6Sn1eWiHtMKsU5UTLYVRGnbVZU4qeqZOYPzaoEwa3hRlKgtJfUvJbWlpN5Sqr4vJ9_rtbN-TjBZVfTLlMCDjiZkxf-P-AtutJ7Q
CitedBy_id crossref_primary_10_3390_asi4040078
crossref_primary_10_3390_asi4040086
crossref_primary_10_1016_j_jobe_2022_105809
crossref_primary_10_1007_s40171_021_00291_9
crossref_primary_10_3389_fmech_2022_824038
crossref_primary_10_3390_wevj12030102
crossref_primary_10_1016_j_rico_2022_100168
crossref_primary_10_1007_s10878_022_00983_7
Cites_doi 10.1109/IBSSC51096.2020.9332216
10.1007/s11071-016-2608-
10.1016/j.buildenv.2018.02.022
10.1007/s11071-014-1718-1
10.1016/j.cherd.2019.09.009
10.1016/j.ijmachtools.2008.07.008
10.1016/j.apenergy.2020.115118
10.13111/2066-8201.2010.2.3.4
10.1016/j.energy.2017.03.119
10.1016/j.jmapro.2020.08.062
10.1007/978-3-642-20545-3
10.1007/978-981-33-6977-1_2
10.1109/MoRSE48060.2019.8998744
10.1007/978-3-319-52950-9_6
10.1108/00022661111173252
10.1016/j.renene.2019.05.074
10.1016/j.jmrt.2015.03.003
10.1016/j.mechatronics.2016.06.005
10.1016/j.ijmachtools.2005.11.012
10.25046/aj050636
10.1007/s10957-012-0169-4
10.1063/5.0036176
10.1016/j.ifacol.2015.05.162
10.25046/aj060261
10.1109/ICREGA50506.2021.9388305
10.1016/j.enbuild.2016.09.006
10.1016/j.ifacol.2017.08.2093
10.1016/j.applthermaleng.2020.116084
10.1016/S1359-6462(97)00251-0
10.1631/FITEE.1601495
10.18576/pfda/030405
10.1016/j.ijmecsci.2012.03.010
10.35940/ijitee.J9504.0881019
10.3390/met7110477
10.1016/j.sigpro.2006.02.024
10.35940/ijitee.L3183.1081219
10.1109/IranianCEE.2012.6292481
10.1016/j.jmrt.2014.10.013
10.1109/MoRSE48060.2019.8998654
10.1016/j.procir.2018.12.021
10.1016/j.procir.2020.04.022
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
DOI 10.1080/02726351.2021.1933282
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-0046
EndPage 372
ExternalDocumentID 10_1080_02726351_2021_1933282
1933282
Genre Articles
GroupedDBID ---
.4S
.7F
.DC
.QJ
0BK
0R~
123
29O
30N
4.4
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABDBF
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADLRE
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBD
EBS
ECS
EDO
EMK
EPL
EST
ESX
E~A
E~B
FUNRP
FVPDL
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MM.
NA5
NX~
O9-
P2P
PQEST
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TNC
TTHFI
TUS
TWF
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
CITATION
TBQAZ
TUROJ
7SR
7TB
8BQ
8FD
FR3
JG9
ID FETCH-LOGICAL-c338t-abe450f06313972f287df9167029947c468b6d75da566b159d195d239cf3fd63
IEDL.DBID TFW
ISSN 0272-6351
IngestDate Tue Nov 19 05:34:23 EST 2024
Fri Aug 23 02:11:39 EDT 2024
Tue Jul 04 18:16:09 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-abe450f06313972f287df9167029947c468b6d75da566b159d195d239cf3fd63
ORCID 0000-0002-4732-5246
PQID 2649161147
PQPubID 53188
PageCount 18
ParticipantIDs crossref_primary_10_1080_02726351_2021_1933282
proquest_journals_2649161147
informaworld_taylorfrancis_310_1080_02726351_2021_1933282
PublicationCentury 2000
PublicationDate 2022-04-03
PublicationDateYYYYMMDD 2022-04-03
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Particulate science and technology
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0032
CIT0034
CIT0033
Sekhar R. (CIT0031) 2020
Pandit A. (CIT0021) 2019; 8
CIT0036
CIT0035
CIT0038
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
Tepljakov A. (CIT0044) 2017
CIT0003
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0010
CIT0012
CIT0011
Arokiadass R. (CIT0002) 2011; 3
CIT0014
CIT0013
CIT0016
CIT0015
Shah P. (CIT0037) 2021; 29
CIT0018
CIT0019
Podlubny I. (CIT0023) 1994; 12
Sekhar R. (CIT0030) 2020; 5
Visioli A. (CIT0047) 2006
CIT0020
CIT0022
Ljung L. (CIT0017) 1995
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0005
  doi: 10.1109/IBSSC51096.2020.9332216
– ident: CIT0041
  doi: 10.1007/s11071-016-2608-
– ident: CIT0009
  doi: 10.1016/j.buildenv.2018.02.022
– ident: CIT0011
– volume-title: Third international conference on powder, granule and bulk solids: innovations and applications PGBSIA 2020 February 26–28, 2020
  year: 2020
  ident: CIT0031
  contributor:
    fullname: Sekhar R.
– ident: CIT0040
  doi: 10.1007/s11071-014-1718-1
– ident: CIT0004
  doi: 10.1016/j.cherd.2019.09.009
– ident: CIT0025
  doi: 10.1016/j.ijmachtools.2008.07.008
– ident: CIT0008
  doi: 10.1016/j.apenergy.2020.115118
– ident: CIT0010
  doi: 10.13111/2066-8201.2010.2.3.4
– ident: CIT0013
  doi: 10.1016/j.energy.2017.03.119
– volume-title: Practical PID control
  year: 2006
  ident: CIT0047
  contributor:
    fullname: Visioli A.
– volume: 3
  start-page: 228
  year: 2011
  ident: CIT0002
  publication-title: Archives of Applied Science Research
  contributor:
    fullname: Arokiadass R.
– ident: CIT0048
  doi: 10.1016/j.jmapro.2020.08.062
– ident: CIT0007
  doi: 10.1007/978-3-642-20545-3
– ident: CIT0034
  doi: 10.1007/978-981-33-6977-1_2
– ident: CIT0033
  doi: 10.1109/MoRSE48060.2019.8998744
– start-page: 107
  volume-title: Fractional-order modeling and control of dynamic systems
  year: 2017
  ident: CIT0044
  doi: 10.1007/978-3-319-52950-9_6
  contributor:
    fullname: Tepljakov A.
– ident: CIT0014
  doi: 10.1108/00022661111173252
– volume-title: System identification toolbox: User’s guide
  year: 1995
  ident: CIT0017
  contributor:
    fullname: Ljung L.
– ident: CIT0001
  doi: 10.1016/j.renene.2019.05.074
– ident: CIT0045
  doi: 10.1016/j.jmrt.2015.03.003
– ident: CIT0035
  doi: 10.1016/j.mechatronics.2016.06.005
– ident: CIT0019
– ident: CIT0024
  doi: 10.1016/j.ijmachtools.2005.11.012
– volume: 5
  start-page: 299
  issue: 6
  year: 2020
  ident: CIT0030
  publication-title: Advances in Science, Technology and Engineering Systems Journal (ASTESJ)
  doi: 10.25046/aj050636
  contributor:
    fullname: Sekhar R.
– ident: CIT0018
  doi: 10.1007/s10957-012-0169-4
– ident: CIT0028
  doi: 10.1063/5.0036176
– ident: CIT0022
  doi: 10.1016/j.ifacol.2015.05.162
– ident: CIT0039
  doi: 10.25046/aj060261
– ident: CIT0038
  doi: 10.1109/ICREGA50506.2021.9388305
– ident: CIT0006
  doi: 10.1016/j.enbuild.2016.09.006
– volume: 12
  start-page: 1
  issue: 3
  year: 1994
  ident: CIT0023
  publication-title: Institute of Experimental Physics, Slovak Academy of Sciences, Kosice
  contributor:
    fullname: Podlubny I.
– ident: CIT0012
  doi: 10.1016/j.ifacol.2017.08.2093
– ident: CIT0050
  doi: 10.1016/j.applthermaleng.2020.116084
– ident: CIT0046
  doi: 10.1016/S1359-6462(97)00251-0
– ident: CIT0032
  doi: 10.1631/FITEE.1601495
– ident: CIT0036
  doi: 10.18576/pfda/030405
– ident: CIT0042
  doi: 10.1016/j.ijmecsci.2012.03.010
– volume: 8
  start-page: 3405
  year: 2019
  ident: CIT0021
  publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE)
  doi: 10.35940/ijitee.J9504.0881019
  contributor:
    fullname: Pandit A.
– ident: CIT0020
  doi: 10.3390/met7110477
– ident: CIT0043
  doi: 10.1016/j.sigpro.2006.02.024
– volume: 29
  start-page: 109
  year: 2021
  ident: CIT0037
  publication-title: Engineering Letters
  contributor:
    fullname: Shah P.
– ident: CIT0027
  doi: 10.35940/ijitee.L3183.1081219
– ident: CIT0016
  doi: 10.1109/IranianCEE.2012.6292481
– ident: CIT0003
– ident: CIT0026
  doi: 10.1016/j.jmrt.2014.10.013
– ident: CIT0029
  doi: 10.1109/MoRSE48060.2019.8998654
– ident: CIT0049
  doi: 10.1016/j.procir.2018.12.021
– ident: CIT0015
  doi: 10.1016/j.procir.2020.04.022
SSID ssj0005542
Score 2.4503767
Snippet Machine learning has revolutionized the way complex problems are solved in engineering. In the current work, machine learning methodology has been applied for...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 355
SubjectTerms Aluminum matrix composites
Boron carbide
complex order controller
Controllers
Errors
fractional order controller
Machine learning
Machining
Magnesium
Metal matrix composites
model predictive controller
Modelling
Multi wall carbon nanotubes
Parameter estimation
Particulate composites
Performance prediction
Prediction models
Predictive control
predictive modeling
Surface roughness
Title Machine learning based predictive modeling and control of surface roughness generation while machining micro boron carbide and carbon nanotube particle reinforced Al-Mg matrix composites
URI https://www.tandfonline.com/doi/abs/10.1080/02726351.2021.1933282
https://www.proquest.com/docview/2649161147
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEN5oT3rwbaxWMwevKLC8emzUxku92ERvZJ_VRGkDbfS3-eucWSC2McaD3ghkJgszzAO-_Yaxc6G09RPqVBMZepGKYy9TmfFUIJMkEymXwn26uE_vHrPrG6LJGbR7YQhWST20rYkiXKyml1vIqkXEXWInRRQq1N2FwQVWIBz7BozCxLmNHj0ePnyBPGI3PockPBJp9_D8pGUlO61wl36L1S4BDbf_Yek7bKupPmFQu8suWzPFHttc4iTcZx8jB6800MyTmAAlOg2zkn7pUHAENz2HruAyoMG6w9RCtSitUAbc5B8KoTBxpNZke3h7wvgDr045yb4SEhAkESiAEqV81qbWh8d4qhDFdL6QBmaNb0Np3INSuJbBizdCDTRd4B0IFE_IM1MdsPHwZnx16zUDHjyFnfHcE9JEsY--wqkODS12b9pivZr6mCSjVEVJJhOdxlpg0Smx8NJBP9Yh7yvLrU74IesU08IcMbBGadPPhAp8FbkUa0zqxxnXysSp8LvsorVrPqtpPPKgZUdtbJKTTfLGJl3WX7Z-PnffT2w97CTnv8j2WlfJm4hQ5Vh44p1h95ke_0H1CdsIaf8FQYd4j3Xm5cKcsvVKL86c438CB14DFg
link.rule.ids 315,782,786,1455,1509,27935,27936,58024,59737,60526
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF6V9AAcoOUhKNDOoVeD7fUrxwgSBTXh0kjtbbXPgARO5CSC38av68zaLiBUcSg3K9aONpndmfk2337D2HepjQszQqqZioNEp2lQ6MIGOlJZVsicK-mPLn7mV7-Liz7J5Py9C0O0SsLQrhaK8LGaNjcdRreUuDOEUqShQvAujk6xBOEIHNbYRyyOOQGwyeDXE80j9Q10aEhAY9pbPP8y8yI_vVAvfRWtfQoabL_H5D-xraYAhV69Yj6zD7bcYZvPZAl32ePYMywtNC0lpkC5zsC8on91KD6Cb6BDb3Ae0NDdYeZgsaqc1BZ88x-KojD1utbkfri_xhAEd944jb0jMiAo0lAALSt1Y2xtD5_xo1KWs-VKWZg3yxsq638pjXPp3QZjtEANBh6AePFEPrOLPTYZ9Cfnw6Dp8RBoBMfLQCqbpCEuF06laOwQwBmHJWseYp5Mcp1khcpMnhqJdafC2stE3dTEvKsddybj-6xTzkp7wMBZbWy3kDoKdeKzrLV5mBbcaJvmMjxkp61jxbxW8hBRK5Da-ESQT0Tjk0PWfe5-sfRHKK7udyL4G2OP27UimqCwEFh74jdDAJp_-Q_T39j6cDIeidHl1Y8jthHTdQxiEvFj1llWK3vC1hZm9dXvgj9d-gc9
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG58wKKHXV0VdX3UwWvcJJ1OMsdhdVB8IDigt6afurBmhswM-tv8dVZ1ElZZFg96CwlddFLV9eh8_RVjB8pYH-dUqeY6jTIjRFSa0kUm0XleqoJrFbYurovL2_LomGhy-t1ZGIJVUg3tG6KI4KtpcY-t7xBxP7GSIgoVqu7S5BAzEI51wzxbFCUGHDTp4eDmL8pDhP45NCSiMd0hnv-JeROe3pCX_uOsQwQafPuEua-wr236Cf3GXlbZnKu-s-VXpIRr7Pki4CsdtA0l7oAinYVxTf90yDtCaJ9DT3Aa0ILdYeRhMqu9Mg5C6x_yoXAXWK1J-fB4jw4IHoJwGvtAUEDQxKAARtX6t3WNPLzGW5WqRtOZdjBujRtqFz6Uwbn0_0QXKIHaCzwBoeIJeuYm62w4OB7-OonaDg-RwdJ4GintMhGjsXBKRFOP5Zv1mLAWMUbJrDBZXurcFsIqzDo1Zl426Qmb8p7x3Nucb7CFalS5TQbeGet6pTJJbLIQY50rYlFya5woVLzFDju9ynHD4yGTjh611YkknchWJ1us91r7cho2UHzT7UTyd8budKYiW5cwkZh54pth-Vlsf0D0PvtydTSQ56eXZz_YUkpnMQhGxHfYwrSeuV02P7GzvbAGXgAZ0gXh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+predictive+modeling+and+control+of+surface+roughness+generation+while+machining+micro+boron+carbide+and+carbon+nanotube+particle+reinforced+Al-Mg+matrix+composites&rft.jtitle=Particulate+science+and+technology&rft.au=Sekhar%2C+Ravi&rft.au=Singh%2C+T.+P.&rft.au=Shah%2C+Pritesh&rft.date=2022-04-03&rft.pub=Taylor+%26+Francis&rft.issn=0272-6351&rft.eissn=1548-0046&rft.volume=40&rft.issue=3&rft.spage=355&rft.epage=372&rft_id=info:doi/10.1080%2F02726351.2021.1933282&rft.externalDocID=1933282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-6351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-6351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-6351&client=summon