Machine learning based predictive modeling and control of surface roughness generation while machining micro boron carbide and carbon nanotube particle reinforced Al-Mg matrix composites
Machine learning has revolutionized the way complex problems are solved in engineering. In the current work, machine learning methodology has been applied for predictive modeling of surface roughness generation during machining of Al-Mg based metal matrix composites (MMCs) reinforced with micro boro...
Saved in:
Published in: | Particulate science and technology Vol. 40; no. 3; pp. 355 - 372 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia
Taylor & Francis
03-04-2022
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Machine learning has revolutionized the way complex problems are solved in engineering. In the current work, machine learning methodology has been applied for predictive modeling of surface roughness generation during machining of Al-Mg based metal matrix composites (MMCs) reinforced with micro boron carbide and multiwalled carbon nanotube particles. Machine learning was used for parameter estimation of modeling structures such as auto regressive with exogenous variables (ARX), auto regressive moving average with exogenous variables (ARMAX), Box Jenkins (BJ) and Output Error (OE). The identified models were validated on the basis of FIT, final prediction error (FPE) and mean squared error (MSE). The PID, fractional order PID (FOPID), complex order PID (COPID) and model predictive controllers (MPC) were employed to effectively control machined surface roughness based on the best performing predictive models. Primary results indicate that: (1) CNT MMCs generate surface roughness comparable to that due to the micro MMCs with tenfold higher reinforcement fractions (2) ARX441 and ARMAX3331 are the best performing predictive models for the nano and micro MMCs respectively (3) PID and MPC are the best controllers for micro and nano MMC systems respectively considering the peak overshoots as the foremost performance metric (safety), followed by settling time (productivity). |
---|---|
AbstractList | Machine learning has revolutionized the way complex problems are solved in engineering. In the current work, machine learning methodology has been applied for predictive modeling of surface roughness generation during machining of Al-Mg based metal matrix composites (MMCs) reinforced with micro boron carbide and multiwalled carbon nanotube particles. Machine learning was used for parameter estimation of modeling structures such as auto regressive with exogenous variables (ARX), auto regressive moving average with exogenous variables (ARMAX), Box Jenkins (BJ) and Output Error (OE). The identified models were validated on the basis of FIT, final prediction error (FPE) and mean squared error (MSE). The PID, fractional order PID (FOPID), complex order PID (COPID) and model predictive controllers (MPC) were employed to effectively control machined surface roughness based on the best performing predictive models. Primary results indicate that: (1) CNT MMCs generate surface roughness comparable to that due to the micro MMCs with tenfold higher reinforcement fractions (2) ARX441 and ARMAX3331 are the best performing predictive models for the nano and micro MMCs respectively (3) PID and MPC are the best controllers for micro and nano MMC systems respectively considering the peak overshoots as the foremost performance metric (safety), followed by settling time (productivity). |
Author | Shah, Pritesh Singh, T. P. Sekhar, Ravi |
Author_xml | – sequence: 1 givenname: Ravi orcidid: 0000-0002-4732-5246 surname: Sekhar fullname: Sekhar, Ravi organization: Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU) – sequence: 2 givenname: T. P. surname: Singh fullname: Singh, T. P. organization: Department of Mechanical Engineering, Thapar Institute of Engineering & Technology – sequence: 3 givenname: Pritesh surname: Shah fullname: Shah, Pritesh organization: Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU) |
BookMark | eNp9kc1u1TAQha2qSNwWHgHJEuvc-id2kh1VBRSpFZvuLcc_97pK7HTsUPpqPB1Ob9my8shzzjczOhfoPKboEPpEyZ6SnlwR1jHJBd0zwuieDpyznp2hHRVt3xDSynO02zTNJnqPLnJ-JIQI0bId-nOvzTFEhyenIYZ4wKPOzuIFnA2mhF8Oz8m6aevoaLFJsUCacPI4r-C1cRjSejhGlzM-uOhAl5Aifj6GqVpf4Zt3DgYSHhPUntEwButOvFrXr6hjKuvo8KKhBFOt4EL0CUzd5Xpq7itBFwi_6wLzknIoLn9A77yesvv49l6ih29fH25um7uf33_cXN81hvO-NHp0rSCeSE750DHP-s76gcqOsGFoO9PKfpS2E1YLKUcqBksHYRkfjOfeSn6JPp-wC6Sn1eWiHtMKsU5UTLYVRGnbVZU4qeqZOYPzaoEwa3hRlKgtJfUvJbWlpN5Sqr4vJ9_rtbN-TjBZVfTLlMCDjiZkxf-P-AtutJ7Q |
CitedBy_id | crossref_primary_10_3390_asi4040078 crossref_primary_10_3390_asi4040086 crossref_primary_10_1016_j_jobe_2022_105809 crossref_primary_10_1007_s40171_021_00291_9 crossref_primary_10_3389_fmech_2022_824038 crossref_primary_10_3390_wevj12030102 crossref_primary_10_1016_j_rico_2022_100168 crossref_primary_10_1007_s10878_022_00983_7 |
Cites_doi | 10.1109/IBSSC51096.2020.9332216 10.1007/s11071-016-2608- 10.1016/j.buildenv.2018.02.022 10.1007/s11071-014-1718-1 10.1016/j.cherd.2019.09.009 10.1016/j.ijmachtools.2008.07.008 10.1016/j.apenergy.2020.115118 10.13111/2066-8201.2010.2.3.4 10.1016/j.energy.2017.03.119 10.1016/j.jmapro.2020.08.062 10.1007/978-3-642-20545-3 10.1007/978-981-33-6977-1_2 10.1109/MoRSE48060.2019.8998744 10.1007/978-3-319-52950-9_6 10.1108/00022661111173252 10.1016/j.renene.2019.05.074 10.1016/j.jmrt.2015.03.003 10.1016/j.mechatronics.2016.06.005 10.1016/j.ijmachtools.2005.11.012 10.25046/aj050636 10.1007/s10957-012-0169-4 10.1063/5.0036176 10.1016/j.ifacol.2015.05.162 10.25046/aj060261 10.1109/ICREGA50506.2021.9388305 10.1016/j.enbuild.2016.09.006 10.1016/j.ifacol.2017.08.2093 10.1016/j.applthermaleng.2020.116084 10.1016/S1359-6462(97)00251-0 10.1631/FITEE.1601495 10.18576/pfda/030405 10.1016/j.ijmecsci.2012.03.010 10.35940/ijitee.J9504.0881019 10.3390/met7110477 10.1016/j.sigpro.2006.02.024 10.35940/ijitee.L3183.1081219 10.1109/IranianCEE.2012.6292481 10.1016/j.jmrt.2014.10.013 10.1109/MoRSE48060.2019.8998654 10.1016/j.procir.2018.12.021 10.1016/j.procir.2020.04.022 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 |
DOI | 10.1080/02726351.2021.1933282 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1548-0046 |
EndPage | 372 |
ExternalDocumentID | 10_1080_02726351_2021_1933282 1933282 |
Genre | Articles |
GroupedDBID | --- .4S .7F .DC .QJ 0BK 0R~ 123 29O 30N 4.4 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABDBF ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADLRE ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBD EBS ECS EDO EMK EPL EST ESX E~A E~B FUNRP FVPDL GEVLZ GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z MM. NA5 NX~ O9- P2P PQEST PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TEN TFL TFT TFW TNC TTHFI TUS TWF UT5 UU3 V1K ZGOLN ~S~ AAYXX ABJNI ABPAQ ABXYU AHDZW CITATION TBQAZ TUROJ 7SR 7TB 8BQ 8FD FR3 JG9 |
ID | FETCH-LOGICAL-c338t-abe450f06313972f287df9167029947c468b6d75da566b159d195d239cf3fd63 |
IEDL.DBID | TFW |
ISSN | 0272-6351 |
IngestDate | Tue Nov 19 05:34:23 EST 2024 Fri Aug 23 02:11:39 EDT 2024 Tue Jul 04 18:16:09 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-abe450f06313972f287df9167029947c468b6d75da566b159d195d239cf3fd63 |
ORCID | 0000-0002-4732-5246 |
PQID | 2649161147 |
PQPubID | 53188 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1080_02726351_2021_1933282 proquest_journals_2649161147 informaworld_taylorfrancis_310_1080_02726351_2021_1933282 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-03 |
PublicationDateYYYYMMDD | 2022-04-03 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Particulate science and technology |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0032 CIT0034 CIT0033 Sekhar R. (CIT0031) 2020 Pandit A. (CIT0021) 2019; 8 CIT0036 CIT0035 CIT0038 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 Tepljakov A. (CIT0044) 2017 CIT0003 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0010 CIT0012 CIT0011 Arokiadass R. (CIT0002) 2011; 3 CIT0014 CIT0013 CIT0016 CIT0015 Shah P. (CIT0037) 2021; 29 CIT0018 CIT0019 Podlubny I. (CIT0023) 1994; 12 Sekhar R. (CIT0030) 2020; 5 Visioli A. (CIT0047) 2006 CIT0020 CIT0022 Ljung L. (CIT0017) 1995 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0005 doi: 10.1109/IBSSC51096.2020.9332216 – ident: CIT0041 doi: 10.1007/s11071-016-2608- – ident: CIT0009 doi: 10.1016/j.buildenv.2018.02.022 – ident: CIT0011 – volume-title: Third international conference on powder, granule and bulk solids: innovations and applications PGBSIA 2020 February 26–28, 2020 year: 2020 ident: CIT0031 contributor: fullname: Sekhar R. – ident: CIT0040 doi: 10.1007/s11071-014-1718-1 – ident: CIT0004 doi: 10.1016/j.cherd.2019.09.009 – ident: CIT0025 doi: 10.1016/j.ijmachtools.2008.07.008 – ident: CIT0008 doi: 10.1016/j.apenergy.2020.115118 – ident: CIT0010 doi: 10.13111/2066-8201.2010.2.3.4 – ident: CIT0013 doi: 10.1016/j.energy.2017.03.119 – volume-title: Practical PID control year: 2006 ident: CIT0047 contributor: fullname: Visioli A. – volume: 3 start-page: 228 year: 2011 ident: CIT0002 publication-title: Archives of Applied Science Research contributor: fullname: Arokiadass R. – ident: CIT0048 doi: 10.1016/j.jmapro.2020.08.062 – ident: CIT0007 doi: 10.1007/978-3-642-20545-3 – ident: CIT0034 doi: 10.1007/978-981-33-6977-1_2 – ident: CIT0033 doi: 10.1109/MoRSE48060.2019.8998744 – start-page: 107 volume-title: Fractional-order modeling and control of dynamic systems year: 2017 ident: CIT0044 doi: 10.1007/978-3-319-52950-9_6 contributor: fullname: Tepljakov A. – ident: CIT0014 doi: 10.1108/00022661111173252 – volume-title: System identification toolbox: User’s guide year: 1995 ident: CIT0017 contributor: fullname: Ljung L. – ident: CIT0001 doi: 10.1016/j.renene.2019.05.074 – ident: CIT0045 doi: 10.1016/j.jmrt.2015.03.003 – ident: CIT0035 doi: 10.1016/j.mechatronics.2016.06.005 – ident: CIT0019 – ident: CIT0024 doi: 10.1016/j.ijmachtools.2005.11.012 – volume: 5 start-page: 299 issue: 6 year: 2020 ident: CIT0030 publication-title: Advances in Science, Technology and Engineering Systems Journal (ASTESJ) doi: 10.25046/aj050636 contributor: fullname: Sekhar R. – ident: CIT0018 doi: 10.1007/s10957-012-0169-4 – ident: CIT0028 doi: 10.1063/5.0036176 – ident: CIT0022 doi: 10.1016/j.ifacol.2015.05.162 – ident: CIT0039 doi: 10.25046/aj060261 – ident: CIT0038 doi: 10.1109/ICREGA50506.2021.9388305 – ident: CIT0006 doi: 10.1016/j.enbuild.2016.09.006 – volume: 12 start-page: 1 issue: 3 year: 1994 ident: CIT0023 publication-title: Institute of Experimental Physics, Slovak Academy of Sciences, Kosice contributor: fullname: Podlubny I. – ident: CIT0012 doi: 10.1016/j.ifacol.2017.08.2093 – ident: CIT0050 doi: 10.1016/j.applthermaleng.2020.116084 – ident: CIT0046 doi: 10.1016/S1359-6462(97)00251-0 – ident: CIT0032 doi: 10.1631/FITEE.1601495 – ident: CIT0036 doi: 10.18576/pfda/030405 – ident: CIT0042 doi: 10.1016/j.ijmecsci.2012.03.010 – volume: 8 start-page: 3405 year: 2019 ident: CIT0021 publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE) doi: 10.35940/ijitee.J9504.0881019 contributor: fullname: Pandit A. – ident: CIT0020 doi: 10.3390/met7110477 – ident: CIT0043 doi: 10.1016/j.sigpro.2006.02.024 – volume: 29 start-page: 109 year: 2021 ident: CIT0037 publication-title: Engineering Letters contributor: fullname: Shah P. – ident: CIT0027 doi: 10.35940/ijitee.L3183.1081219 – ident: CIT0016 doi: 10.1109/IranianCEE.2012.6292481 – ident: CIT0003 – ident: CIT0026 doi: 10.1016/j.jmrt.2014.10.013 – ident: CIT0029 doi: 10.1109/MoRSE48060.2019.8998654 – ident: CIT0049 doi: 10.1016/j.procir.2018.12.021 – ident: CIT0015 doi: 10.1016/j.procir.2020.04.022 |
SSID | ssj0005542 |
Score | 2.4503767 |
Snippet | Machine learning has revolutionized the way complex problems are solved in engineering. In the current work, machine learning methodology has been applied for... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 355 |
SubjectTerms | Aluminum matrix composites Boron carbide complex order controller Controllers Errors fractional order controller Machine learning Machining Magnesium Metal matrix composites model predictive controller Modelling Multi wall carbon nanotubes Parameter estimation Particulate composites Performance prediction Prediction models Predictive control predictive modeling Surface roughness |
Title | Machine learning based predictive modeling and control of surface roughness generation while machining micro boron carbide and carbon nanotube particle reinforced Al-Mg matrix composites |
URI | https://www.tandfonline.com/doi/abs/10.1080/02726351.2021.1933282 https://www.proquest.com/docview/2649161147 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEN5oT3rwbaxWMwevKLC8emzUxku92ERvZJ_VRGkDbfS3-eucWSC2McaD3ghkJgszzAO-_Yaxc6G09RPqVBMZepGKYy9TmfFUIJMkEymXwn26uE_vHrPrG6LJGbR7YQhWST20rYkiXKyml1vIqkXEXWInRRQq1N2FwQVWIBz7BozCxLmNHj0ePnyBPGI3PockPBJp9_D8pGUlO61wl36L1S4BDbf_Yek7bKupPmFQu8suWzPFHttc4iTcZx8jB6800MyTmAAlOg2zkn7pUHAENz2HruAyoMG6w9RCtSitUAbc5B8KoTBxpNZke3h7wvgDr045yb4SEhAkESiAEqV81qbWh8d4qhDFdL6QBmaNb0Np3INSuJbBizdCDTRd4B0IFE_IM1MdsPHwZnx16zUDHjyFnfHcE9JEsY--wqkODS12b9pivZr6mCSjVEVJJhOdxlpg0Smx8NJBP9Yh7yvLrU74IesU08IcMbBGadPPhAp8FbkUa0zqxxnXysSp8LvsorVrPqtpPPKgZUdtbJKTTfLGJl3WX7Z-PnffT2w97CTnv8j2WlfJm4hQ5Vh44p1h95ke_0H1CdsIaf8FQYd4j3Xm5cKcsvVKL86c438CB14DFg |
link.rule.ids | 315,782,786,1455,1509,27935,27936,58024,59737,60526 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF6V9AAcoOUhKNDOoVeD7fUrxwgSBTXh0kjtbbXPgARO5CSC38av68zaLiBUcSg3K9aONpndmfk2337D2HepjQszQqqZioNEp2lQ6MIGOlJZVsicK-mPLn7mV7-Liz7J5Py9C0O0SsLQrhaK8LGaNjcdRreUuDOEUqShQvAujk6xBOEIHNbYRyyOOQGwyeDXE80j9Q10aEhAY9pbPP8y8yI_vVAvfRWtfQoabL_H5D-xraYAhV69Yj6zD7bcYZvPZAl32ePYMywtNC0lpkC5zsC8on91KD6Cb6BDb3Ae0NDdYeZgsaqc1BZ88x-KojD1utbkfri_xhAEd944jb0jMiAo0lAALSt1Y2xtD5_xo1KWs-VKWZg3yxsq638pjXPp3QZjtEANBh6AePFEPrOLPTYZ9Cfnw6Dp8RBoBMfLQCqbpCEuF06laOwQwBmHJWseYp5Mcp1khcpMnhqJdafC2stE3dTEvKsddybj-6xTzkp7wMBZbWy3kDoKdeKzrLV5mBbcaJvmMjxkp61jxbxW8hBRK5Da-ESQT0Tjk0PWfe5-sfRHKK7udyL4G2OP27UimqCwEFh74jdDAJp_-Q_T39j6cDIeidHl1Y8jthHTdQxiEvFj1llWK3vC1hZm9dXvgj9d-gc9 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG58wKKHXV0VdX3UwWvcJJ1OMsdhdVB8IDigt6afurBmhswM-tv8dVZ1ElZZFg96CwlddFLV9eh8_RVjB8pYH-dUqeY6jTIjRFSa0kUm0XleqoJrFbYurovL2_LomGhy-t1ZGIJVUg3tG6KI4KtpcY-t7xBxP7GSIgoVqu7S5BAzEI51wzxbFCUGHDTp4eDmL8pDhP45NCSiMd0hnv-JeROe3pCX_uOsQwQafPuEua-wr236Cf3GXlbZnKu-s-VXpIRr7Pki4CsdtA0l7oAinYVxTf90yDtCaJ9DT3Aa0ILdYeRhMqu9Mg5C6x_yoXAXWK1J-fB4jw4IHoJwGvtAUEDQxKAARtX6t3WNPLzGW5WqRtOZdjBujRtqFz6Uwbn0_0QXKIHaCzwBoeIJeuYm62w4OB7-OonaDg-RwdJ4GintMhGjsXBKRFOP5Zv1mLAWMUbJrDBZXurcFsIqzDo1Zl426Qmb8p7x3Nucb7CFalS5TQbeGet6pTJJbLIQY50rYlFya5woVLzFDju9ynHD4yGTjh611YkknchWJ1us91r7cho2UHzT7UTyd8budKYiW5cwkZh54pth-Vlsf0D0PvtydTSQ56eXZz_YUkpnMQhGxHfYwrSeuV02P7GzvbAGXgAZ0gXh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+predictive+modeling+and+control+of+surface+roughness+generation+while+machining+micro+boron+carbide+and+carbon+nanotube+particle+reinforced+Al-Mg+matrix+composites&rft.jtitle=Particulate+science+and+technology&rft.au=Sekhar%2C+Ravi&rft.au=Singh%2C+T.+P.&rft.au=Shah%2C+Pritesh&rft.date=2022-04-03&rft.pub=Taylor+%26+Francis&rft.issn=0272-6351&rft.eissn=1548-0046&rft.volume=40&rft.issue=3&rft.spage=355&rft.epage=372&rft_id=info:doi/10.1080%2F02726351.2021.1933282&rft.externalDocID=1933282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-6351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-6351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-6351&client=summon |