Forest inventory inference with spatial model strata
In design-based model assisted inference from data gathered in a large area forest inventory under a probability sampling design, one should anticipate spatial heterogeneity in the regression coefficients of an assisting model. The consequence of such heterogeneity is that a global estimate of a roo...
Saved in:
Published in: | Scandinavian journal of forest research Vol. 36; no. 1; pp. 43 - 54 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Oslo
Taylor & Francis
02-01-2021
Taylor & Francis LLC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In design-based model assisted inference from data gathered in a large area forest inventory under a probability sampling design, one should anticipate spatial heterogeneity in the regression coefficients of an assisting model. The consequence of such heterogeneity is that a global estimate of a root mean squared error (RMSE) becomes unsuited for local predictions. With data from the Danish National Forest Inventory, we demonstrate how to: obtain an assisting model with the lasso method; test for spatial stationarity in regression coefficients of the assisting model; and identify spatial model strata for a post-stratification with either a finite mixture modeling or a lasso spatial clustered coefficients method. Spatial model strata apply to any domain and small area estimation problem without the need for complex modeling when domains or small area changes with shifting user needs. One should not à priori expect a spatial model stratification to improve design-based population and strata estimates of precision, but the reliability of domain and small area RMSEs will improve in presence of statistically significant spatial model strata. |
---|---|
AbstractList | In design-based model assisted inference from data gathered in a large area forest inventory under a probability sampling design, one should anticipate spatial heterogeneity in the regression coefficients of an assisting model. The consequence of such heterogeneity is that a global estimate of a root mean squared error (RMSE) becomes unsuited for local predictions. With data from the Danish National Forest Inventory, we demonstrate how to: obtain an assisting model with the lasso method; test for spatial stationarity in regression coefficients of the assisting model; and identify spatial model strata for a post-stratification with either a finite mixture modeling or a lasso spatial clustered coefficients method. Spatial model strata apply to any domain and small area estimation problem without the need for complex modeling when domains or small area changes with shifting user needs. One should not à priori expect a spatial model stratification to improve design-based population and strata estimates of precision, but the reliability of domain and small area RMSEs will improve in presence of statistically significant spatial model strata. |
Author | Magnussen, Steen Nord-Larsen, Thomas |
Author_xml | – sequence: 1 givenname: Steen surname: Magnussen fullname: Magnussen, Steen email: steen.magnussen@canada.ca, stenan@telus.net organization: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre – sequence: 2 givenname: Thomas surname: Nord-Larsen fullname: Nord-Larsen, Thomas organization: University of Copenhagen, Faculty of Science |
BookMark | eNp9kMtKAzEUhoNUsK0-gjDgempOLjPJTim2CgU3ug6ZTIJTppOapJa-vRlat67Ohe8_l3-GJoMfLEL3gBeABX7ERJCaC1gQTHJLcEKxvEJTqDiUICRM0HRkyhG6QbMYtxhjDpROEVv5YGMquuHHDsmHU86cDXYwtjh26auIe5063Rc739q-iCnopG_RtdN9tHeXOEefq5eP5Wu5eV-_LZ83paFUpFK2RlZATcWb2lbUOEagsRZqbRtuBJZMSNa0jDggFdS5pkRqB0wKqaua0jl6OM_dB_99yGeqrT-EIa9UhNWYcCBcZoqfKRN8jME6tQ_dToeTAqxGg9SfQWo0SF0Myrqnsy5_7MNOH33oW5X0qffBBT2YLir6_4hfvmxsyA |
CitedBy_id | crossref_primary_10_3389_ffgc_2021_695929 |
Cites_doi | 10.1139/x2012-134 10.1007/s10342-012-0596-7 10.1214/ss/1177010647 10.1080/00167223.1984.10649206 10.1111/j.1467-9868.2007.00635.x 10.1016/j.rse.2012.03.027 10.1002/9780470316801 10.1007/978-1-4899-3324-9 10.1111/j.0006-341X.2001.00795.x 10.1198/016214507000000509 10.1198/016214503000170 10.1002/env.2322 10.1111/ecog.02881 10.1139/cjfr-2019-0170 10.1093/jssam/smw041 10.1111/j.1467-9868.2011.00771.x 10.1139/x93-114 10.1016/j.rse.2005.04.001 10.1007/s41664-018-0068-2 10.1016/j.spasta.2012.02.003 10.5589/m13-051 10.1139/cjfr-2015-0504 10.1111/j.1538-4632.1996.tb00936.x 10.1016/S0034-4257(97)00041-2 10.1198/jcgs.2010.07102 10.1016/j.rse.2010.01.020 10.1198/000313007X245023 10.1080/02827580310019257 10.1080/01621459.1981.10477704 10.1080/01431160110075613 10.1007/s10342-010-0384-1 10.1002/sim.4780130514 10.1201/9781420035414 10.1093/comjnl/41.8.578 10.1186/s40490-015-0038-7 10.1007/978-1-4612-4378-6 10.1177/0049124104268644 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.rse.2011.12.022 10.1016/j.spasta.2012.02.004 10.1109/ICTAI.2006.83 10.1080/01621459.1994.10476782 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.ecolmodel.2005.01.007 10.1080/03610918.2018.1547401 10.1016/S0378-1127(96)03749-8 10.1198/016214505000000141 10.1007/s10109-005-0155-6 10.1139/x98-166 10.1111/j.1467-8306.2004.09402009.x 10.2307/2983440 10.1080/01621459.2018.1529595 10.1093/wjaf/25.3.105 10.1007/s10260-012-0208-1 10.1139/cjfr-2015-0151 10.1111/j.1751-5823.2002.tb00352.x 10.1139/cjfr-2013-0448 10.1016/j.rse.2007.02.032 10.1016/j.regsciurbeco.2017.04.001 10.1080/01621459.1988.10478639 10.1016/j.forpol.2012.02.010 10.3150/11-BEJ410 10.1080/01621459.2000.10473920 10.1002/0470867205.ch3 10.1214/009053604000000850 10.5558/tfc2011-050 10.1371/journal.pone.0189401 10.1214/16-STS589 10.1198/jasa.2006.s66 10.1088/1748-9326/4/3/034009 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 P64 RC3 SOI |
DOI | 10.1080/02827581.2020.1852309 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1651-1891 |
EndPage | 54 |
ExternalDocumentID | 10_1080_02827581_2020_1852309 1852309 |
Genre | Articles |
GroupedDBID | .7F .QJ 0BK 0R~ 123 30N 4.4 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABDBF ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGEJ ACGFS ACGOD ACPRK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFRAH AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBD EBO EBS ECGQY EDH EMK EPL ESX E~A E~B FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ ITG ITH J.P KYCEM LJTGL M4Z NA5 NX0 O9- P2P PQEST PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TEI TFL TFT TFW TH9 TQWBC TTHFI TUS TWF UT5 UU3 V1K ZGOLN ~KM ~S~ AAHBH AAYXX ABJNI ABPAQ ABXYU AHDZW CITATION TBQAZ TDBHL TUROJ 7ST 8FD C1K FR3 P64 RC3 SOI |
ID | FETCH-LOGICAL-c338t-9dc9613c65b7e63cf421bee17aeb5c8094894bd42f12617094329af14989a6733 |
IEDL.DBID | TFW |
ISSN | 0282-7581 |
IngestDate | Sun Nov 24 23:54:36 EST 2024 Fri Nov 22 00:26:47 EST 2024 Tue Jun 13 19:26:58 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-9dc9613c65b7e63cf421bee17aeb5c8094894bd42f12617094329af14989a6733 |
PQID | 2470251259 |
PQPubID | 52982 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2470251259 crossref_primary_10_1080_02827581_2020_1852309 informaworld_taylorfrancis_310_1080_02827581_2020_1852309 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-02 |
PublicationDateYYYYMMDD | 2021-01-02 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Oslo |
PublicationPlace_xml | – name: Oslo |
PublicationTitle | Scandinavian journal of forest research |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | Datta DS (CIT0015) 2000; 10 CIT0072 CIT0071 CIT0073 CIT0032 CIT0076 CIT0031 CIT0075 CIT0034 CIT0033 CIT0077 Nord-Larsen T (CIT0061) 2016 Gould W (CIT0030) 2010 Madsen SF (CIT0050) 1993 CIT0070 CIT0036 CIT0035 CIT0038 CIT0039 Sloboda J (CIT0078) 1993; 164 Madsen SF. (CIT0048) 1985; 40 CIT0082 CIT0041 CIT0085 CIT0084 CIT0087 CIT0042 CIT0086 CIT0001 CIT0045 CIT0089 CIT0044 CIT0088 CIT0081 CIT0080 Madsen SF. (CIT0049) 1987 Fotheringham AS (CIT0022) 2003 CIT0003 CIT0002 CIT0046 Lopez-Paz D (CIT0047) 2013 CIT0005 CIT0004 Valliant R (CIT0083) 2018 CIT0007 Nord-Larsen T (CIT0062) 2017 CIT0009 CIT0094 Breidenbach J (CIT0006) 2008; 21 CIT0093 CIT0052 CIT0051 CIT0095 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 Frühwirth-Schnatter S. (CIT0024) 2006 Khan MG (CIT0040) 2008; 34 CIT0090 CIT0091 CIT0014 CIT0058 Yu S (CIT0092) 2019; 115 CIT0013 CIT0057 CIT0016 StataCorp (CIT0079) 2018 CIT0059 CIT0018 CIT0017 Breidt FJ. (CIT0008) 2004 Lehtonen R (CIT0043) 2003; 29 CIT0060 Estevao VM (CIT0019) 2004; 20 CIT0063 CIT0021 CIT0065 CIT0020 CIT0064 CIT0023 CIT0067 CIT0066 Särndal C-E (CIT0074) 1978; 5 Fuller WA. (CIT0025) 2011 Johannsen VK. (CIT0037) 2002 CIT0069 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0054 doi: 10.1139/x2012-134 – ident: CIT0005 doi: 10.1007/s10342-012-0596-7 – ident: CIT0028 doi: 10.1214/ss/1177010647 – start-page: 33 volume-title: IGN Report year: 2016 ident: CIT0061 contributor: fullname: Nord-Larsen T – ident: CIT0036 doi: 10.1080/00167223.1984.10649206 – ident: CIT0067 doi: 10.1111/j.1467-9868.2007.00635.x – ident: CIT0091 doi: 10.1016/j.rse.2012.03.027 – ident: CIT0039 doi: 10.1002/9780470316801 – ident: CIT0076 doi: 10.1007/978-1-4899-3324-9 – ident: CIT0093 doi: 10.1111/j.0006-341X.2001.00795.x – volume: 20 start-page: 645 year: 2004 ident: CIT0019 publication-title: J Off Stat contributor: fullname: Estevao VM – volume-title: Stata statistical software (version 15.1) year: 2018 ident: CIT0079 contributor: fullname: StataCorp – ident: CIT0085 doi: 10.1198/016214507000000509 – ident: CIT0086 – ident: CIT0026 doi: 10.1198/016214503000170 – ident: CIT0020 doi: 10.1002/env.2322 – ident: CIT0071 doi: 10.1111/ecog.02881 – ident: CIT0058 – ident: CIT0053 doi: 10.1139/cjfr-2019-0170 – ident: CIT0057 doi: 10.1093/jssam/smw041 – volume: 21 start-page: 4 year: 2008 ident: CIT0006 publication-title: Photogrammetric J Finland contributor: fullname: Breidenbach J – ident: CIT0081 doi: 10.1111/j.1467-9868.2011.00771.x – ident: CIT0084 doi: 10.1139/x93-114 – ident: CIT0066 doi: 10.1016/j.rse.2005.04.001 – ident: CIT0090 doi: 10.1007/s41664-018-0068-2 – ident: CIT0077 doi: 10.1016/j.spasta.2012.02.003 – ident: CIT0089 doi: 10.5589/m13-051 – ident: CIT0038 doi: 10.1139/cjfr-2015-0504 – start-page: 47 volume-title: Det Forstlige Forsøgsvæsen (Vol. 41) year: 1987 ident: CIT0049 contributor: fullname: Madsen SF. – ident: CIT0010 doi: 10.1111/j.1538-4632.1996.tb00936.x – ident: CIT0064 doi: 10.1016/S0034-4257(97)00041-2 – ident: CIT0035 doi: 10.1198/jcgs.2010.07102 – ident: CIT0072 doi: 10.1016/j.rse.2010.01.020 – volume-title: Finite mixture and markov switching models year: 2006 ident: CIT0024 contributor: fullname: Frühwirth-Schnatter S. – ident: CIT0041 doi: 10.1198/000313007X245023 – ident: CIT0065 doi: 10.1080/02827580310019257 – ident: CIT0069 doi: 10.1080/01621459.1981.10477704 – volume-title: Geographically weighted regression: the analysis of spatially varying relationships year: 2003 ident: CIT0022 contributor: fullname: Fotheringham AS – volume: 29 start-page: 33 year: 2003 ident: CIT0043 publication-title: Surv Meth contributor: fullname: Lehtonen R – ident: CIT0045 doi: 10.1080/01431160110075613 – ident: CIT0007 doi: 10.1007/s10342-010-0384-1 – start-page: 26 volume-title: Monitoring Science & Technology Symposium year: 2004 ident: CIT0008 contributor: fullname: Breidt FJ. – ident: CIT0031 doi: 10.1002/sim.4780130514 – ident: CIT0070 – volume: 5 start-page: 27 year: 1978 ident: CIT0074 publication-title: Scand J Stat contributor: fullname: Särndal C-E – ident: CIT0042 doi: 10.1201/9781420035414 – ident: CIT0023 doi: 10.1093/comjnl/41.8.578 – ident: CIT0059 doi: 10.1186/s40490-015-0038-7 – ident: CIT0073 doi: 10.1007/978-1-4612-4378-6 – ident: CIT0011 doi: 10.1177/0049124104268644 – ident: CIT0080 doi: 10.1111/j.2517-6161.1996.tb02080.x – volume-title: Maximum likelihood estimation with stata year: 2010 ident: CIT0030 contributor: fullname: Gould W – ident: CIT0063 doi: 10.1016/j.rse.2011.12.022 – ident: CIT0021 doi: 10.1016/j.spasta.2012.02.004 – ident: CIT0033 doi: 10.1109/ICTAI.2006.83 – ident: CIT0017 doi: 10.1080/01621459.1994.10476782 – ident: CIT0016 doi: 10.1111/j.2517-6161.1977.tb01600.x – start-page: 70 volume-title: Dynamic growth models for Danish forest tree species year: 2002 ident: CIT0037 contributor: fullname: Johannsen VK. – ident: CIT0094 doi: 10.1016/j.ecolmodel.2005.01.007 – ident: CIT0052 doi: 10.1080/03610918.2018.1547401 – ident: CIT0013 doi: 10.1016/S0378-1127(96)03749-8 – ident: CIT0060 doi: 10.1198/016214505000000141 – ident: CIT0087 doi: 10.1007/s10109-005-0155-6 – volume-title: Sampling statistics year: 2011 ident: CIT0025 contributor: fullname: Fuller WA. – ident: CIT0032 doi: 10.1139/x98-166 – ident: CIT0082 doi: 10.1111/j.1467-8306.2004.09402009.x – ident: CIT0012 doi: 10.2307/2983440 – volume: 10 start-page: 613 year: 2000 ident: CIT0015 publication-title: Stat Sin contributor: fullname: Datta DS – volume: 164 start-page: 225 year: 1993 ident: CIT0078 publication-title: Allgemeine Forst und Jagdzeitung contributor: fullname: Sloboda J – ident: CIT0044 doi: 10.1080/01621459.2018.1529595 – ident: CIT0029 doi: 10.1093/wjaf/25.3.105 – ident: CIT0003 doi: 10.1007/s10260-012-0208-1 – start-page: 27 volume-title: Mapping of Danish forest resources using ALS from 2014-15. Department of Geosciences and Natural Resource Management, University of Copenhagen. IGN reports year: 2017 ident: CIT0062 contributor: fullname: Nord-Larsen T – ident: CIT0055 doi: 10.1139/cjfr-2015-0151 – start-page: 1 volume-title: Proceedings of the 30th International Conference on Machine Learning year: 2013 ident: CIT0047 contributor: fullname: Lopez-Paz D – ident: CIT0068 doi: 10.1111/j.1751-5823.2002.tb00352.x – ident: CIT0051 doi: 10.1139/cjfr-2013-0448 – volume: 115 start-page: 1 year: 2019 ident: CIT0092 publication-title: J Am Stat Assoc contributor: fullname: Yu S – ident: CIT0018 doi: 10.1016/j.rse.2007.02.032 – ident: CIT0027 doi: 10.1016/j.regsciurbeco.2017.04.001 – ident: CIT0014 doi: 10.1080/01621459.1988.10478639 – volume: 34 start-page: 205 year: 2008 ident: CIT0040 publication-title: Surv Meth contributor: fullname: Khan MG – ident: CIT0075 doi: 10.1016/j.forpol.2012.02.010 – ident: CIT0002 doi: 10.3150/11-BEJ410 – ident: CIT0046 doi: 10.1080/01621459.2000.10473920 – volume: 40 start-page: 97 volume-title: Det forstlige Forsøgsvæsen i Danmark year: 1985 ident: CIT0048 contributor: fullname: Madsen SF. – volume-title: Survey weights: a step-by-step guide to calculation year: 2018 ident: CIT0083 contributor: fullname: Valliant R – ident: CIT0004 doi: 10.1002/0470867205.ch3 – ident: CIT0034 doi: 10.1214/009053604000000850 – start-page: 51 volume-title: Forest and Landscape research (Vol. 1) year: 1993 ident: CIT0050 contributor: fullname: Madsen SF – ident: CIT0088 doi: 10.5558/tfc2011-050 – ident: CIT0056 doi: 10.1371/journal.pone.0189401 – ident: CIT0009 doi: 10.1214/16-STS589 – ident: CIT0095 doi: 10.1198/jasa.2006.s66 – ident: CIT0001 doi: 10.1088/1748-9326/4/3/034009 |
SSID | ssj0005133 |
Score | 2.309976 |
Snippet | In design-based model assisted inference from data gathered in a large area forest inventory under a probability sampling design, one should anticipate spatial... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 43 |
SubjectTerms | design based Domains Finite mixture model geographically weighted regression Heterogeneity Inference lasso Modelling National forests post-stratification Regression coefficients Root-mean-square errors Sampling designs Spatial heterogeneity spatial stationarity Statistical analysis Strata Stratification |
Title | Forest inventory inference with spatial model strata |
URI | https://www.tandfonline.com/doi/abs/10.1080/02827581.2020.1852309 https://www.proquest.com/docview/2470251259 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagA2LhjSgU5IE1QGwnsccKWnVioQg2y3ZsqUuLmnbg33PnxIIKIQaY8pBsRZfz3X2nu-8IuQ53glsrXVZDrJyJADhFmsAz70xtg2KWBWwUnjxVj6_yYYQ0OcPUC4NllYihQ0sUEW01Hm5jm1QRd4swAcJcRHcMXklMbGILH3Jug0ZPxy-fRR55O0yeYRwJS1IPz0-7bHinDe7Sb7Y6OqDx_j98-gHZ66JPOmzV5ZBs-fkR2cHxnDjz7ZiI9pbOYin6YvlOZ6khkGLGljZYgA07xAE6NHLumhPyPB5N7ydZN1chcwBIV5mqnQIv7srCVr7kLgiWW-_zynhbOAmATypha8FCHvnaleBMmQBYSipTVpyfkt58MfdnhOa29CI4MFUWgAy4NgtXaRk8KieLsk9ukjz1W0ufofPEStrJQqMsdCeLPlFfpa5XMW8R2iEjmv-ydpB-ke5OYqOZqBBGAco7_8PWF2SXYTEL5l7YgPRWy7W_JNtNvb6KCvcB7jvQEg |
link.rule.ids | 315,782,786,1455,1509,27933,27934,58021,59734,60523 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbYkIALb8RgQA9cCzTJ2uSIYNMQgwtDcIuaNJF22dAeB_49dtryEEIc4NSHFKtyE9ufZX8GOPUXghsjbVxgrBwLjzhF5p7HzuaF8YoZ5qlRuP-Q3T_L6y7R5Lz3wlBZJWFoXxJFBFtNh5uS0XVJ3DnhBIxzCd4xfCUps6kasIzBMSf-_GHv6aPMIynHyTOKJHFN3cXzk5gv_ukLe-k3ax1cUG_jPz5-E9arADS6LHfMFiy58Tas0IROGvu2A6K8jUahGn0yfY1GdU9gREnbaEY12CghzNCJAu1uvguPve7wqh9XoxVii5h0HqvCKnTkNu2YzKXcesES41yS5c50rETMJ5UwhWA-CZTtSnCmco9wSqo8zTjfg-Z4Mnb7ECUmdcJbtFYGsQx6N4NXaRg-Kis7aQvOaoXql5JBQyc1MWmlC0260JUuWqA-q13PQ-rCl3NGNP9lbbv-R7o6jDPNREZICoHewR9En8Bqf3g30IOb-9tDWGNU20KpGNaG5ny6cEfQmBWL47D73gAz9dQ2 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6sQvHiW6xWzcFr1Gw2ye6x2JaKUgQreluym13opS19HPz3zmwStIh40FMesEuYzM7MN8x8A3DlbnmstTBhgbFyyB3iFJG7OLQmL7STTDNHjcKD52z4Jro9osnp1L0wVFZJGNqVRBHeVtPhnhWuroi7IZiAYS6hO4avBCU2ZQO2EoEOC1V61H_9rPKIymnyjAJJXFM38fy0zZp7WiMv_WasvQfq7_7Dt-_BThV-Bp1SX_Zhw04OoEnzOWno2yHw8jYY-1r06fw9GNcdgQGlbIMFVWDjDn6CTuBJd_MjeOn3RneDsBqsEBpEpMtQFkaiGzdpojObxsZxFmlroyy3OjECEZ-QXBecucgTtkseM5k7BFNC5mkWx8ewOZlO7AkEkU4tdwZtlUYkg75N41Voho_SiCRtwXUtTzUr-TNUVNOSVrJQJAtVyaIF8qvU1dInLlw5ZUTFv6xt179IVUdxoRjPCEchzDv9w9aX0Hzq9tXj_fDhDLYZFbZQHoa1YXM5X9lzaCyK1YXXvQ-pINLa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forest+inventory+inference+with+spatial+model+strata&rft.jtitle=Scandinavian+journal+of+forest+research&rft.au=Magnussen%2C+Steen&rft.au=Nord-Larsen%2C+Thomas&rft.date=2021-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0282-7581&rft.eissn=1651-1891&rft.volume=36&rft.issue=1&rft.spage=43&rft.epage=54&rft_id=info:doi/10.1080%2F02827581.2020.1852309&rft.externalDocID=1852309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0282-7581&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0282-7581&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0282-7581&client=summon |