Parameter Estimation of Vehicle Batteries in V2G Systems: An Exogenous Function-Based Approach

The rapid introduction of electric vehicles (EVs) in the transportation market has initiated the concept of vehicle-to-grid (V2G) technology in smart grids. However, where V2G technology is intended to facilitate the power grid ancillary services, it could also have an adverse effect on the aging of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 69; no. 9; pp. 9535 - 9546
Main Authors: Khalid, Haris M., Flitti, Farid, Muyeen, S. M., Elmoursi, Mohamed, Sweidan, Thaer, Yu, Xinghuo
Format: Journal Article
Language:English
Published: New York IEEE 01-09-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid introduction of electric vehicles (EVs) in the transportation market has initiated the concept of vehicle-to-grid (V2G) technology in smart grids. However, where V2G technology is intended to facilitate the power grid ancillary services, it could also have an adverse effect on the aging of battery packs in EVs. This is due to the instant depletion of power during the charge and discharge cycles, which could eventually impact the structural complexity and electrochemical operations in the battery pack. To address this situation, a median expectation-based regression approach is proposed for parameter estimation of vehicle batteries in V2G systems. The proposed method is built on the property of uncertainty prediction of Gaussian processes for parameter estimation while considering the cell variations as an exogenous function. First, a median expectation-based Gaussian process model is derived to predict the fused and individual cell variations of a battery pack. Second, a magnitude-squared coherence model is developed by the error matrix to detect and isolate each variation. This is obtained by extracting the cross-spectral densities for the measurements. The proposed regression-based approach is evaluated using experimental measurements collected from lithium-ion battery pack in EVs. The parametric analysis of the battery pack has been verified using D-SAT Chroma 8000ATS hardware platform. Performance evaluation shows an accurate estimation of these dynamics even in the presence of injected faults.
AbstractList The rapid introduction of electric vehicles (EVs) in the transportation market has initiated the concept of vehicle-to-grid (V2G) technology in smart grids. However, where V2G technology is intended to facilitate the power grid ancillary services, it could also have an adverse effect on the aging of battery packs in EVs. This is due to the instant depletion of power during the charge and discharge cycles, which could eventually impact the structural complexity and electrochemical operations in the battery pack. To address this situation, a median expectation-based regression approach is proposed for parameter estimation of vehicle batteries in V2G systems. The proposed method is built on the property of uncertainty prediction of Gaussian processes for parameter estimation while considering the cell variations as an exogenous function. First, a median expectation-based Gaussian process model is derived to predict the fused and individual cell variations of a battery pack. Second, a magnitude-squared coherence model is developed by the error matrix to detect and isolate each variation. This is obtained by extracting the cross-spectral densities for the measurements. The proposed regression-based approach is evaluated using experimental measurements collected from lithium-ion battery pack in EVs. The parametric analysis of the battery pack has been verified using D-SAT Chroma 8000ATS hardware platform. Performance evaluation shows an accurate estimation of these dynamics even in the presence of injected faults.
Author Khalid, Haris M.
Yu, Xinghuo
Muyeen, S. M.
Sweidan, Thaer
Flitti, Farid
Elmoursi, Mohamed
Author_xml – sequence: 1
  givenname: Haris M.
  orcidid: 0000-0002-1136-6433
  surname: Khalid
  fullname: Khalid, Haris M.
  email: harism.khalid@ieee.org
  organization: Higher Colleges of Technology-Sharjah Campuses, University City, Sharjah, UAE
– sequence: 2
  givenname: Farid
  surname: Flitti
  fullname: Flitti, Farid
  email: fflitti@hct.ac.ae
  organization: Department of Electrical and Electronics Engineering, Higher Colleges of Technology, Dubai, UAE
– sequence: 3
  givenname: S. M.
  surname: Muyeen
  fullname: Muyeen, S. M.
  email: sm.muyeen@qu.edu.qa
  organization: Department of Electrical Engineering, Qatar University, Doha, Qatar
– sequence: 4
  givenname: Mohamed
  orcidid: 0000-0001-6695-5342
  surname: Elmoursi
  fullname: Elmoursi, Mohamed
  email: mohamed.elmoursi@ku.ac.ae
  organization: Department of Electrical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
– sequence: 5
  givenname: Thaer
  surname: Sweidan
  fullname: Sweidan, Thaer
  email: tsweidan@hct.ac.ae
  organization: Department of Electrical and Electronics Engineering, Higher Colleges of Technology, Dubai, UAE
– sequence: 6
  givenname: Xinghuo
  orcidid: 0000-0001-8093-9787
  surname: Yu
  fullname: Yu, Xinghuo
  email: x.yu@rmit.edu.au
  organization: Research & Innovation Department, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
BookMark eNo9kM1PwjAYhxuDiYDeTbw08Tzsx7qt3oAMJCHRRORoU7p3MgIttlsi_72bEE_v4f0978czQD3rLCB0T8mIUiKfVot8xAijI04pkxm5Qn0qRBpJGWc91CcszSJC4uQGDULYEUJjQUUffb5prw9Qg8d5qKuDritnsSvxGraV2QOe6LptVhBwZfGazfH7KdRwCM94bHH-477AuibgWWNNh0YTHaDA4-PRO222t-i61PsAd5c6RB-zfDV9iZav88V0vIwM51kdZQUpJS83lEpNpciMSAzbSOBGUrbpzk5TItOiZJLwgm8SWZRaFCwVghctyYfo8Ty3XfvdQKjVzjXetisVS-I0ZiL5S5FzyngXgodSHX37sj8pSlRnUbUWVWdRXSy2yMMZqQDgPy5FnCQx47-nkG5a
CODEN ITIED6
CitedBy_id crossref_primary_10_3389_fenrg_2023_1037587
crossref_primary_10_3390_en16135084
crossref_primary_10_3390_wevj15050190
crossref_primary_10_3390_su15054424
crossref_primary_10_1016_j_prime_2024_100613
crossref_primary_10_3390_electronics13132527
crossref_primary_10_3390_en16031213
crossref_primary_10_3390_en16186755
crossref_primary_10_1049_rpg2_12706
crossref_primary_10_3389_fenrg_2023_1176680
crossref_primary_10_1016_j_heliyon_2024_e27255
crossref_primary_10_1088_1742_6596_2552_1_012003
crossref_primary_10_1016_j_est_2023_108694
crossref_primary_10_1016_j_heliyon_2023_e14216
crossref_primary_10_1109_TTE_2023_3265189
crossref_primary_10_3390_app14114495
crossref_primary_10_32604_cmc_2023_035690
crossref_primary_10_1109_TTE_2023_3274819
crossref_primary_10_3390_wevj14060138
Cites_doi 10.1109/9.62283
10.1149/2.f04151if
10.1109/TIE.2011.2114312
10.1109/TPEL.2017.2664922
10.1109/JSYST.2019.2958967
10.1109/TSTE.2016.2558500
10.1109/TSTE.2017.2746097
10.1109/GlobalSIP.2014.7032118
10.1109/TIE.2015.2396873
10.1038/463018a
10.1109/TIE.2014.2336599
10.1109/TVT.2011.2132812
10.1016/j.apenergy.2015.01.120
10.1017/s0269888998004019
10.1109/MPE.2008.931384
10.1109/TIE.2017.2786199
10.1016/j.jpowsour.2016.12.083
10.5547/ISSN0195-6574-EJ-Vol31-No3-1
10.1109/TSTE.2018.2890145
10.1109/TSG.2017.2681961
10.1016/j.jpowsour.2012.12.120
10.1016/j.jpowsour.2017.05.015
10.1016/j.apenergy.2015.11.014
10.1109/TTE.2015.2426431
10.1016/j.apenergy.2014.06.063
10.1017/cbo9780511809682
10.1109/JSYST.2015.2391284
10.1109/TCOMM.2010.01.080296
10.1016/j.jpowsour.2014.12.048
10.1109/TVT.2018.2864688
10.1038/451652a
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2021.3112980
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 9546
ExternalDocumentID 10_1109_TIE_2021_3112980
9546642
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c338t-8d0f93fb119a1958c56c2b9e3c912b004677097df2903d3b69dfa5d27553df933
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Thu Oct 10 17:49:22 EDT 2024
Fri Aug 23 02:26:53 EDT 2024
Wed Jun 26 19:25:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-8d0f93fb119a1958c56c2b9e3c912b004677097df2903d3b69dfa5d27553df933
ORCID 0000-0002-1136-6433
0000-0001-6695-5342
0000-0001-8093-9787
PQID 2647425693
PQPubID 85464
PageCount 12
ParticipantIDs proquest_journals_2647425693
ieee_primary_9546642
crossref_primary_10_1109_TIE_2021_3112980
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref2
MacKay (ref32) 2002
ref1
ref17
ref16
ref19
(ref28) 2008
ref18
ref24
ref26
ref25
ref20
ref22
ref21
Rancilio (ref23) 2018
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.1109/9.62283
– ident: ref3
  doi: 10.1149/2.f04151if
– ident: ref6
  doi: 10.1109/TIE.2011.2114312
– start-page: 1
  year: 2002
  ident: ref32
  article-title: Information Theory, Inference and Learning Algorithms
  contributor:
    fullname: MacKay
– ident: ref16
  doi: 10.1109/TPEL.2017.2664922
– ident: ref22
  doi: 10.1109/JSYST.2019.2958967
– ident: ref19
  doi: 10.1109/TSTE.2016.2558500
– ident: ref11
  doi: 10.1109/TSTE.2017.2746097
– volume-title: Battery Test Manual for PHEVs
  year: 2008
  ident: ref28
– ident: ref2
  doi: 10.1109/GlobalSIP.2014.7032118
– ident: ref5
  doi: 10.1109/TIE.2015.2396873
– ident: ref9
  doi: 10.1038/463018a
– ident: ref29
  doi: 10.1109/TIE.2014.2336599
– ident: ref30
  doi: 10.1109/TVT.2011.2132812
– ident: ref31
  doi: 10.1016/j.apenergy.2015.01.120
– ident: ref33
  doi: 10.1017/s0269888998004019
– ident: ref1
  doi: 10.1109/MPE.2008.931384
– ident: ref15
  doi: 10.1109/TIE.2017.2786199
– ident: ref14
  doi: 10.1016/j.jpowsour.2016.12.083
– ident: ref7
  doi: 10.5547/ISSN0195-6574-EJ-Vol31-No3-1
– ident: ref10
  doi: 10.1109/TSTE.2018.2890145
– ident: ref4
  doi: 10.1109/TSG.2017.2681961
– ident: ref27
  doi: 10.1016/j.jpowsour.2012.12.120
– ident: ref21
  doi: 10.1016/j.jpowsour.2017.05.015
– ident: ref13
  doi: 10.1016/j.apenergy.2015.11.014
– ident: ref18
  doi: 10.1109/TTE.2015.2426431
– ident: ref20
  doi: 10.1016/j.apenergy.2014.06.063
– ident: ref34
  doi: 10.1017/cbo9780511809682
– ident: ref8
  doi: 10.1109/JSYST.2015.2391284
– ident: ref25
  doi: 10.1109/TCOMM.2010.01.080296
– ident: ref26
  doi: 10.1016/j.jpowsour.2014.12.048
– ident: ref17
  doi: 10.1109/TVT.2018.2864688
– start-page: 1
  volume-title: Politecnico Di Milano
  year: 2018
  ident: ref23
  article-title: Battery energy storage systems for ancillary services provision
  contributor:
    fullname: Rancilio
– ident: ref12
  doi: 10.1038/451652a
SSID ssj0014515
Score 2.572139
Snippet The rapid introduction of electric vehicles (EVs) in the transportation market has initiated the concept of vehicle-to-grid (V2G) technology in smart grids....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 9535
SubjectTerms Aging analysis
Ancillary services
Battery charge measurement
battery degradation
bidirectional charging
Depletion
Electric power grids
electric transportation
Electric vehicles
electric vehicles (EVs)
Error detection
estimation
Gaussian process
grid-to-vehicle
Integrated circuit modeling
Li-ion batteries
Lithium
Lithium-ion batteries
Load modeling
Mathematical models
median filter
Parameter estimation
Parametric analysis
Performance evaluation
Power system dynamics
prediction
Process parameters
Rechargeable batteries
recursive
regression
renewable energy
Smart grid
Vehicle-to-grid
Title Parameter Estimation of Vehicle Batteries in V2G Systems: An Exogenous Function-Based Approach
URI https://ieeexplore.ieee.org/document/9546642
https://www.proquest.com/docview/2647425693
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLXYTnDgayAGA-XABYmwNmmbhtuAjnFBSIyJE1XWJIJLi9gm8fNx0m6aBBdulVpLlZ3EfrH9DHAuhWbKGEsLEzIaMSWoQkdIA6GENREGHMrd6Y6exeNrepc5mpzLVS-MMcYXn5kr9-hz-boqFu6qrC9jR4aOB25LyLTu1VplDKK4nlbAHGMsgr5lSjKQ_fFDhkCQhYhP0bs5Asg1F-Rnqvw6iL13Ge787792YbuJIsmgNvsebJhyH7bWuAU78PakXN0Vqo1kuI3rDkVSWTIx706I1MyaCJTJR0km7J405OXXZFCS7Luq2VvJEB2fE6U36O80GTQc5AfwMszGtyPaDFOgBaLQOU11YCW30zCUyhHMFHFSsKk0vJAh8xlOIQK0nGUy4JpPE6mtijUTccw1SvJDaJdVaY6A4HuMG1PHb2yjRHGFsINz44cjMDkVXbhY6jf_rDkzco81ApmjLXJni7yxRRc6Tp-r7xpVdqG3NEjebKpZjrEbAvk4kfz4b6kT2GSuO8GXgPWgPf9amFNozfTizC-WH5gPuoM
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gHIADXwMxGJADFyTC2qRtFm4DOjYxJiTGxIkobVLBpUVsk_j5OGk3TYILt0qtpcpOYr_YfkboXHBNlTEZSY1PSUAVJwocIfG44pkJIOBQ9k6398yHr-272NLkXC56YYwxrvjMXNlHl8vXRTqzV2UtEVoydDhw18KAR7zs1lrkDIKwnFdALWcswL55UtITrVE_BihIfUCo4N8sBeSSE3JTVX4dxc6_dLf_92c7aKuKI3GnNPwuWjH5HtpcYheso7cnZSuvQHE4ho1c9ijiIsNj826FcMmtCVAZf-R4TO9xRV9-jTs5jr-Lkr8Vd8H1WVFyAx5P407FQr6PXrrx6LZHqnEKJAUcOiVt7WWCZYnvC2UpZtIwSmkiDEuFT12Ok3MPbJdR4THNkkjoTIWa8jBkGiTZAarlRW4OEYb3EDm2LcNxFkSKKQAejBk3HoGKhDfQxVy_8rNkzZAObXhCgi2ktYWsbNFAdavPxXeVKhuoOTeIrLbVREL0BlA-jAQ7-lvqDK33Ro8DOegPH47RBrW9Cq4grIlq06-ZOUGrEz07dQvnB5j4vdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+Estimation+of+Vehicle+Batteries+in+V2G+Systems%3A+An+Exogenous+Function-Based+Approach&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Khalid%2C+Haris+M.&rft.au=Flitti%2C+Farid&rft.au=Muyeen%2C+S.+M.&rft.au=Elmoursi%2C+Mohamed&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=69&rft.issue=9&rft.spage=9535&rft.epage=9546&rft_id=info:doi/10.1109%2FTIE.2021.3112980&rft.externalDocID=9546642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon