Parameter Estimation of Vehicle Batteries in V2G Systems: An Exogenous Function-Based Approach
The rapid introduction of electric vehicles (EVs) in the transportation market has initiated the concept of vehicle-to-grid (V2G) technology in smart grids. However, where V2G technology is intended to facilitate the power grid ancillary services, it could also have an adverse effect on the aging of...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) Vol. 69; no. 9; pp. 9535 - 9546 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-09-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The rapid introduction of electric vehicles (EVs) in the transportation market has initiated the concept of vehicle-to-grid (V2G) technology in smart grids. However, where V2G technology is intended to facilitate the power grid ancillary services, it could also have an adverse effect on the aging of battery packs in EVs. This is due to the instant depletion of power during the charge and discharge cycles, which could eventually impact the structural complexity and electrochemical operations in the battery pack. To address this situation, a median expectation-based regression approach is proposed for parameter estimation of vehicle batteries in V2G systems. The proposed method is built on the property of uncertainty prediction of Gaussian processes for parameter estimation while considering the cell variations as an exogenous function. First, a median expectation-based Gaussian process model is derived to predict the fused and individual cell variations of a battery pack. Second, a magnitude-squared coherence model is developed by the error matrix to detect and isolate each variation. This is obtained by extracting the cross-spectral densities for the measurements. The proposed regression-based approach is evaluated using experimental measurements collected from lithium-ion battery pack in EVs. The parametric analysis of the battery pack has been verified using D-SAT Chroma 8000ATS hardware platform. Performance evaluation shows an accurate estimation of these dynamics even in the presence of injected faults. |
---|---|
AbstractList | The rapid introduction of electric vehicles (EVs) in the transportation market has initiated the concept of vehicle-to-grid (V2G) technology in smart grids. However, where V2G technology is intended to facilitate the power grid ancillary services, it could also have an adverse effect on the aging of battery packs in EVs. This is due to the instant depletion of power during the charge and discharge cycles, which could eventually impact the structural complexity and electrochemical operations in the battery pack. To address this situation, a median expectation-based regression approach is proposed for parameter estimation of vehicle batteries in V2G systems. The proposed method is built on the property of uncertainty prediction of Gaussian processes for parameter estimation while considering the cell variations as an exogenous function. First, a median expectation-based Gaussian process model is derived to predict the fused and individual cell variations of a battery pack. Second, a magnitude-squared coherence model is developed by the error matrix to detect and isolate each variation. This is obtained by extracting the cross-spectral densities for the measurements. The proposed regression-based approach is evaluated using experimental measurements collected from lithium-ion battery pack in EVs. The parametric analysis of the battery pack has been verified using D-SAT Chroma 8000ATS hardware platform. Performance evaluation shows an accurate estimation of these dynamics even in the presence of injected faults. |
Author | Khalid, Haris M. Yu, Xinghuo Muyeen, S. M. Sweidan, Thaer Flitti, Farid Elmoursi, Mohamed |
Author_xml | – sequence: 1 givenname: Haris M. orcidid: 0000-0002-1136-6433 surname: Khalid fullname: Khalid, Haris M. email: harism.khalid@ieee.org organization: Higher Colleges of Technology-Sharjah Campuses, University City, Sharjah, UAE – sequence: 2 givenname: Farid surname: Flitti fullname: Flitti, Farid email: fflitti@hct.ac.ae organization: Department of Electrical and Electronics Engineering, Higher Colleges of Technology, Dubai, UAE – sequence: 3 givenname: S. M. surname: Muyeen fullname: Muyeen, S. M. email: sm.muyeen@qu.edu.qa organization: Department of Electrical Engineering, Qatar University, Doha, Qatar – sequence: 4 givenname: Mohamed orcidid: 0000-0001-6695-5342 surname: Elmoursi fullname: Elmoursi, Mohamed email: mohamed.elmoursi@ku.ac.ae organization: Department of Electrical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE – sequence: 5 givenname: Thaer surname: Sweidan fullname: Sweidan, Thaer email: tsweidan@hct.ac.ae organization: Department of Electrical and Electronics Engineering, Higher Colleges of Technology, Dubai, UAE – sequence: 6 givenname: Xinghuo orcidid: 0000-0001-8093-9787 surname: Yu fullname: Yu, Xinghuo email: x.yu@rmit.edu.au organization: Research & Innovation Department, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia |
BookMark | eNo9kM1PwjAYhxuDiYDeTbw08Tzsx7qt3oAMJCHRRORoU7p3MgIttlsi_72bEE_v4f0978czQD3rLCB0T8mIUiKfVot8xAijI04pkxm5Qn0qRBpJGWc91CcszSJC4uQGDULYEUJjQUUffb5prw9Qg8d5qKuDritnsSvxGraV2QOe6LptVhBwZfGazfH7KdRwCM94bHH-477AuibgWWNNh0YTHaDA4-PRO222t-i61PsAd5c6RB-zfDV9iZav88V0vIwM51kdZQUpJS83lEpNpciMSAzbSOBGUrbpzk5TItOiZJLwgm8SWZRaFCwVghctyYfo8Ty3XfvdQKjVzjXetisVS-I0ZiL5S5FzyngXgodSHX37sj8pSlRnUbUWVWdRXSy2yMMZqQDgPy5FnCQx47-nkG5a |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_3389_fenrg_2023_1037587 crossref_primary_10_3390_en16135084 crossref_primary_10_3390_wevj15050190 crossref_primary_10_3390_su15054424 crossref_primary_10_1016_j_prime_2024_100613 crossref_primary_10_3390_electronics13132527 crossref_primary_10_3390_en16031213 crossref_primary_10_3390_en16186755 crossref_primary_10_1049_rpg2_12706 crossref_primary_10_3389_fenrg_2023_1176680 crossref_primary_10_1016_j_heliyon_2024_e27255 crossref_primary_10_1088_1742_6596_2552_1_012003 crossref_primary_10_1016_j_est_2023_108694 crossref_primary_10_1016_j_heliyon_2023_e14216 crossref_primary_10_1109_TTE_2023_3265189 crossref_primary_10_3390_app14114495 crossref_primary_10_32604_cmc_2023_035690 crossref_primary_10_1109_TTE_2023_3274819 crossref_primary_10_3390_wevj14060138 |
Cites_doi | 10.1109/9.62283 10.1149/2.f04151if 10.1109/TIE.2011.2114312 10.1109/TPEL.2017.2664922 10.1109/JSYST.2019.2958967 10.1109/TSTE.2016.2558500 10.1109/TSTE.2017.2746097 10.1109/GlobalSIP.2014.7032118 10.1109/TIE.2015.2396873 10.1038/463018a 10.1109/TIE.2014.2336599 10.1109/TVT.2011.2132812 10.1016/j.apenergy.2015.01.120 10.1017/s0269888998004019 10.1109/MPE.2008.931384 10.1109/TIE.2017.2786199 10.1016/j.jpowsour.2016.12.083 10.5547/ISSN0195-6574-EJ-Vol31-No3-1 10.1109/TSTE.2018.2890145 10.1109/TSG.2017.2681961 10.1016/j.jpowsour.2012.12.120 10.1016/j.jpowsour.2017.05.015 10.1016/j.apenergy.2015.11.014 10.1109/TTE.2015.2426431 10.1016/j.apenergy.2014.06.063 10.1017/cbo9780511809682 10.1109/JSYST.2015.2391284 10.1109/TCOMM.2010.01.080296 10.1016/j.jpowsour.2014.12.048 10.1109/TVT.2018.2864688 10.1038/451652a |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2021.3112980 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 9546 |
ExternalDocumentID | 10_1109_TIE_2021_3112980 9546642 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 TWZ VH1 VJK XFK AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c338t-8d0f93fb119a1958c56c2b9e3c912b004677097df2903d3b69dfa5d27553df933 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Thu Oct 10 17:49:22 EDT 2024 Fri Aug 23 02:26:53 EDT 2024 Wed Jun 26 19:25:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-8d0f93fb119a1958c56c2b9e3c912b004677097df2903d3b69dfa5d27553df933 |
ORCID | 0000-0002-1136-6433 0000-0001-6695-5342 0000-0001-8093-9787 |
PQID | 2647425693 |
PQPubID | 85464 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2647425693 ieee_primary_9546642 crossref_primary_10_1109_TIE_2021_3112980 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref2 MacKay (ref32) 2002 ref1 ref17 ref16 ref19 (ref28) 2008 ref18 ref24 ref26 ref25 ref20 ref22 ref21 Rancilio (ref23) 2018 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref24 doi: 10.1109/9.62283 – ident: ref3 doi: 10.1149/2.f04151if – ident: ref6 doi: 10.1109/TIE.2011.2114312 – start-page: 1 year: 2002 ident: ref32 article-title: Information Theory, Inference and Learning Algorithms contributor: fullname: MacKay – ident: ref16 doi: 10.1109/TPEL.2017.2664922 – ident: ref22 doi: 10.1109/JSYST.2019.2958967 – ident: ref19 doi: 10.1109/TSTE.2016.2558500 – ident: ref11 doi: 10.1109/TSTE.2017.2746097 – volume-title: Battery Test Manual for PHEVs year: 2008 ident: ref28 – ident: ref2 doi: 10.1109/GlobalSIP.2014.7032118 – ident: ref5 doi: 10.1109/TIE.2015.2396873 – ident: ref9 doi: 10.1038/463018a – ident: ref29 doi: 10.1109/TIE.2014.2336599 – ident: ref30 doi: 10.1109/TVT.2011.2132812 – ident: ref31 doi: 10.1016/j.apenergy.2015.01.120 – ident: ref33 doi: 10.1017/s0269888998004019 – ident: ref1 doi: 10.1109/MPE.2008.931384 – ident: ref15 doi: 10.1109/TIE.2017.2786199 – ident: ref14 doi: 10.1016/j.jpowsour.2016.12.083 – ident: ref7 doi: 10.5547/ISSN0195-6574-EJ-Vol31-No3-1 – ident: ref10 doi: 10.1109/TSTE.2018.2890145 – ident: ref4 doi: 10.1109/TSG.2017.2681961 – ident: ref27 doi: 10.1016/j.jpowsour.2012.12.120 – ident: ref21 doi: 10.1016/j.jpowsour.2017.05.015 – ident: ref13 doi: 10.1016/j.apenergy.2015.11.014 – ident: ref18 doi: 10.1109/TTE.2015.2426431 – ident: ref20 doi: 10.1016/j.apenergy.2014.06.063 – ident: ref34 doi: 10.1017/cbo9780511809682 – ident: ref8 doi: 10.1109/JSYST.2015.2391284 – ident: ref25 doi: 10.1109/TCOMM.2010.01.080296 – ident: ref26 doi: 10.1016/j.jpowsour.2014.12.048 – ident: ref17 doi: 10.1109/TVT.2018.2864688 – start-page: 1 volume-title: Politecnico Di Milano year: 2018 ident: ref23 article-title: Battery energy storage systems for ancillary services provision contributor: fullname: Rancilio – ident: ref12 doi: 10.1038/451652a |
SSID | ssj0014515 |
Score | 2.572139 |
Snippet | The rapid introduction of electric vehicles (EVs) in the transportation market has initiated the concept of vehicle-to-grid (V2G) technology in smart grids.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 9535 |
SubjectTerms | Aging analysis Ancillary services Battery charge measurement battery degradation bidirectional charging Depletion Electric power grids electric transportation Electric vehicles electric vehicles (EVs) Error detection estimation Gaussian process grid-to-vehicle Integrated circuit modeling Li-ion batteries Lithium Lithium-ion batteries Load modeling Mathematical models median filter Parameter estimation Parametric analysis Performance evaluation Power system dynamics prediction Process parameters Rechargeable batteries recursive regression renewable energy Smart grid Vehicle-to-grid |
Title | Parameter Estimation of Vehicle Batteries in V2G Systems: An Exogenous Function-Based Approach |
URI | https://ieeexplore.ieee.org/document/9546642 https://www.proquest.com/docview/2647425693 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLXYTnDgayAGA-XABYmwNmmbhtuAjnFBSIyJE1XWJIJLi9gm8fNx0m6aBBdulVpLlZ3EfrH9DHAuhWbKGEsLEzIaMSWoQkdIA6GENREGHMrd6Y6exeNrepc5mpzLVS-MMcYXn5kr9-hz-boqFu6qrC9jR4aOB25LyLTu1VplDKK4nlbAHGMsgr5lSjKQ_fFDhkCQhYhP0bs5Asg1F-Rnqvw6iL13Ge787792YbuJIsmgNvsebJhyH7bWuAU78PakXN0Vqo1kuI3rDkVSWTIx706I1MyaCJTJR0km7J405OXXZFCS7Luq2VvJEB2fE6U36O80GTQc5AfwMszGtyPaDFOgBaLQOU11YCW30zCUyhHMFHFSsKk0vJAh8xlOIQK0nGUy4JpPE6mtijUTccw1SvJDaJdVaY6A4HuMG1PHb2yjRHGFsINz44cjMDkVXbhY6jf_rDkzco81ApmjLXJni7yxRRc6Tp-r7xpVdqG3NEjebKpZjrEbAvk4kfz4b6kT2GSuO8GXgPWgPf9amFNozfTizC-WH5gPuoM |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gHIADXwMxGJADFyTC2qRtFm4DOjYxJiTGxIkobVLBpUVsk_j5OGk3TYILt0qtpcpOYr_YfkboXHBNlTEZSY1PSUAVJwocIfG44pkJIOBQ9k6398yHr-272NLkXC56YYwxrvjMXNlHl8vXRTqzV2UtEVoydDhw18KAR7zs1lrkDIKwnFdALWcswL55UtITrVE_BihIfUCo4N8sBeSSE3JTVX4dxc6_dLf_92c7aKuKI3GnNPwuWjH5HtpcYheso7cnZSuvQHE4ho1c9ijiIsNj826FcMmtCVAZf-R4TO9xRV9-jTs5jr-Lkr8Vd8H1WVFyAx5P407FQr6PXrrx6LZHqnEKJAUcOiVt7WWCZYnvC2UpZtIwSmkiDEuFT12Ok3MPbJdR4THNkkjoTIWa8jBkGiTZAarlRW4OEYb3EDm2LcNxFkSKKQAejBk3HoGKhDfQxVy_8rNkzZAObXhCgi2ktYWsbNFAdavPxXeVKhuoOTeIrLbVREL0BlA-jAQ7-lvqDK33Ro8DOegPH47RBrW9Cq4grIlq06-ZOUGrEz07dQvnB5j4vdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+Estimation+of+Vehicle+Batteries+in+V2G+Systems%3A+An+Exogenous+Function-Based+Approach&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Khalid%2C+Haris+M.&rft.au=Flitti%2C+Farid&rft.au=Muyeen%2C+S.+M.&rft.au=Elmoursi%2C+Mohamed&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=69&rft.issue=9&rft.spage=9535&rft.epage=9546&rft_id=info:doi/10.1109%2FTIE.2021.3112980&rft.externalDocID=9546642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |