Application of sentinel-1 SAR-derived vegetation descriptors for soil moisture retrieval and plant height prediction during the wheat growth cycle

Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used semi-empirical models for retrieval of soil moisture of vegetated lands from synthetic aperture radar (SAR) images. The model considers the effec...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing Vol. 44; no. 3; pp. 786 - 801
Main Authors: Dave, Rucha, Saha, Koushik, Kushwaha, Amit, Pandey, Dharmendra Kumar, Vithalpura, Manisha, Parath, Nidhin, Murugesan, Abishek
Format: Journal Article
Language:English
Published: London Taylor & Francis 01-02-2023
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used semi-empirical models for retrieval of soil moisture of vegetated lands from synthetic aperture radar (SAR) images. The model considers the effect of soil as well as vegetation on the radar backscatter. The study assesses the applicability of Sentinel-1 SAR-derived vegetation descriptors in the WCM for soil moisture retrieval during the wheat growth cycle. Various combinations of vegetation descriptors (V 1 and V 2 ), viz. VH polarized backscatter coefficient (σ 0 VH ), Radar Vegetation Index (RVI) and depolarization ratio (χ v ), were used in the model. The model performed better when different parameters are used as vegetation descriptors (V 1 ≠V 2 ) in the WCM rather than using the same parameter for both the vegetation descriptors (V 1 = V 2 ). The best results were observed when σ 0 VH was considered as one of the vegetation descriptors (V 1 ) while either χ v or RVI were utilized as the other vegetation descriptor (V 2 ) giving a Pearson correlation coefficient (R) of 0.959 and 0.958 and a root mean square error (RMSE) of 0.499 dB and 0.516 dB respectively. The validation of the model-retrieved soil moisture against the in-situ measured values gave an R value of 0.72 and a RMSE of 0.096m 3 /m 3 . The plant height was also predicted by the WCM in which the retrieved soil moisture from SAR data was used as a parameter. The predicted plant height was compared to in-situ measured plant height and an R value of 0.76 and RMSE of 0.214 was obtained as the best result. The study demonstrates the capability of SAR-derived parameters as vegetation descriptors in the WCM for soil moisture retrieval.
AbstractList Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used semi-empirical models for retrieval of soil moisture of vegetated lands from synthetic aperture radar (SAR) images. The model considers the effect of soil as well as vegetation on the radar backscatter. The study assesses the applicability of Sentinel-1 SAR-derived vegetation descriptors in the WCM for soil moisture retrieval during the wheat growth cycle. Various combinations of vegetation descriptors (V 1 and V 2 ), viz. VH polarized backscatter coefficient (σ 0 VH ), Radar Vegetation Index (RVI) and depolarization ratio (χ v ), were used in the model. The model performed better when different parameters are used as vegetation descriptors (V 1 ≠V 2 ) in the WCM rather than using the same parameter for both the vegetation descriptors (V 1 = V 2 ). The best results were observed when σ 0 VH was considered as one of the vegetation descriptors (V 1 ) while either χ v or RVI were utilized as the other vegetation descriptor (V 2 ) giving a Pearson correlation coefficient (R) of 0.959 and 0.958 and a root mean square error (RMSE) of 0.499 dB and 0.516 dB respectively. The validation of the model-retrieved soil moisture against the in-situ measured values gave an R value of 0.72 and a RMSE of 0.096m 3 /m 3 . The plant height was also predicted by the WCM in which the retrieved soil moisture from SAR data was used as a parameter. The predicted plant height was compared to in-situ measured plant height and an R value of 0.76 and RMSE of 0.214 was obtained as the best result. The study demonstrates the capability of SAR-derived parameters as vegetation descriptors in the WCM for soil moisture retrieval.
Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used semi-empirical models for retrieval of soil moisture of vegetated lands from synthetic aperture radar (SAR) images. The model considers the effect of soil as well as vegetation on the radar backscatter. The study assesses the applicability of Sentinel-1 SAR-derived vegetation descriptors in the WCM for soil moisture retrieval during the wheat growth cycle. Various combinations of vegetation descriptors (V1and V2), viz. VH polarized backscatter coefficient (σ0VH), Radar Vegetation Index (RVI) and depolarization ratio (χv), were used in the model. The model performed better when different parameters are used as vegetation descriptors (V1≠V2) in the WCM rather than using the same parameter for both the vegetation descriptors (V1= V2). The best results were observed when σ0VHwas considered as one of the vegetation descriptors (V1) while either χvor RVI were utilized as the other vegetation descriptor (V2) giving a Pearson correlation coefficient (R) of 0.959 and 0.958 and a root mean square error (RMSE) of 0.499 dB and 0.516 dB respectively. The validation of the model-retrieved soil moisture against the in-situ measured values gave an R value of 0.72 and a RMSE of 0.096m3/m3. The plant height was also predicted by the WCM in which the retrieved soil moisture from SAR data was used as a parameter. The predicted plant height was compared to in-situ measured plant height and an R value of 0.76 and RMSE of 0.214 was obtained as the best result. The study demonstrates the capability of SAR-derived parameters as vegetation descriptors in the WCM for soil moisture retrieval.
Author Dave, Rucha
Pandey, Dharmendra Kumar
Parath, Nidhin
Kushwaha, Amit
Vithalpura, Manisha
Saha, Koushik
Murugesan, Abishek
Author_xml – sequence: 1
  givenname: Rucha
  surname: Dave
  fullname: Dave, Rucha
  email: rch.dave1@gmail.com
  organization: Indus University
– sequence: 2
  givenname: Koushik
  surname: Saha
  fullname: Saha, Koushik
  organization: Indian Institute of Technology Dharwad
– sequence: 3
  givenname: Amit
  surname: Kushwaha
  fullname: Kushwaha, Amit
  organization: Indian Institute of Technology Palakkad
– sequence: 4
  givenname: Dharmendra Kumar
  surname: Pandey
  fullname: Pandey, Dharmendra Kumar
  organization: ISRO
– sequence: 5
  givenname: Manisha
  surname: Vithalpura
  fullname: Vithalpura, Manisha
  organization: Indus University
– sequence: 6
  givenname: Nidhin
  surname: Parath
  fullname: Parath, Nidhin
  organization: Anand Agricultural University
– sequence: 7
  givenname: Abishek
  surname: Murugesan
  fullname: Murugesan, Abishek
  organization: Anand Agricultural University
BookMark eNp9kMFq3DAURUVJoZNpP6Eg6NpTybJle9chtEkhEGizF4r0NFbQSO6TZob5jXxxPTjZZvUW99z74FyTq5giEPKVsw1nPfvOeCM4l3xTs1psat4xPogPZMWFlFU7MH5FVhemukCfyHXOz4wx2bXdirxspyl4o4tPkSZHM8TiI4SK07_bP5UF9Eew9Ag7KAtkIRv0U0mYqUtIc_KB7pPP5YBAEQp6OOpAdbR0CjoWOoLfjYVOCNabZeOAPu5oGYGeRtCF7jCdykjN2QT4TD46HTJ8eb1r8vjr5-PNXXX_cPv7ZntfGSH6UnVaSOa4tMaJ4Unwp2aAxrU9t70VwwCtcE4aaMygtRVt3WgJAxNtA3NoarEm35bZCdO_A-SintMB4_xR1V0_c7Jj3Uy1C2Uw5Yzg1IR-r_GsOFMX--rNvrrYV6_2596PpefjLGmvTwmDVUWfQ0KHOhqflXh_4j83kJCS
CitedBy_id crossref_primary_10_1016_j_asr_2024_06_026
crossref_primary_10_3390_agriculture14050695
Cites_doi 10.1109/TGRS.2002.807587
10.1016/j.rse.2014.05.009
10.1109/TGRS.2015.2501372
10.3390/rs8010007
10.3390/app9040655
10.1016/j.compag.2020.105833
10.3390/rs8100878
10.1016/j.asr.2022.02.021
10.3390/rs9090969
10.3390/rs10010012
10.1109/TGRS.2006.872287
10.1109/TGRS.2012.2205264
10.3390/w9010038
10.1016/j.jhydrol.2014.02.058
10.3390/w13020135
10.1109/IGARSS.1994.399504
10.1016/j.pce.2015.02.009
10.1163/156939302X01119
10.1029/RS013i002p00357
10.3390/rs70608128
10.1109/TGRS.2008.920370
10.1016/j.jag.2018.05.026
10.1109/36.406677
10.1080/10106049.2019.1655801
10.1109/TGE.1978.294586
10.3390/rs9040395
10.1109/LGRS.2013.2279255
10.1109/TGRS.2009.2018448
10.1109/IGARSS.2017.8127912
10.4236/ars.2016.54023
10.1109/TGRS.2008.2009642
10.1109/36.917914
10.1002/2014JD021951
10.1016/j.rse.2013.02.027
10.1080/02626667.2012.665608
10.1016/j.rse.2017.10.016
10.3390/rs10091370
10.1080/01431160500239032
10.1109/TGRS.2012.2209433
10.3390/rs9121292
10.3390/s19184013
10.1109/LGRS.2019.2927468
10.14358/PERS.85.1.43
10.1080/01431161.2019.1629503
10.3390/s17112617
10.1016/j.ejrs.2018.05.002
10.1109/36.134086
10.1016/j.rse.2010.07.011
10.3390/rs12010072
10.1109/JSEN.2021.3099937
10.5194/hess-15-345-2011
10.1191/0309133303pp378ra
10.5194/isprsarchives-XL-1-W3-225-2013
10.3390/s17061455
10.1002/hyp.10344
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1080/01431161.2023.2170193
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 801
ExternalDocumentID 10_1080_01431161_2023_2170193
2170193
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
29J
30N
4.4
5GY
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABLJU
ABPEM
ABPTK
ABQHQ
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FUNRP
FVPDL
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TWF
UPT
UT5
UU3
V1K
ZGOLN
~02
~S~
0R~
AAHBH
AAYXX
ABJNI
ABPAQ
ABRLO
ABXYU
AHDZW
CITATION
TBQAZ
TDBHL
TUROJ
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c338t-7a360f16dcf39b31b49e4f581d8d399e53ff6ce4c9aad3524a6e90354e99ec23
IEDL.DBID TFW
ISSN 0143-1161
IngestDate Tue Nov 05 15:40:14 EST 2024
Thu Sep 26 17:39:02 EDT 2024
Tue Jun 13 19:26:49 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-7a360f16dcf39b31b49e4f581d8d399e53ff6ce4c9aad3524a6e90354e99ec23
PQID 2783546707
PQPubID 2045515
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_01431161_2023_2170193
crossref_primary_10_1080_01431161_2023_2170193
proquest_journals_2783546707
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0033
Charbonneau F. (cit0009) 2005
cit0034
cit0032
cit0030
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0023
cit0020
cit0021
Toan T. L. (cit0047) 1982
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0011
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0051
Kumar D. (cit0031) 2013
cit0052
cit0050
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0057
cit0014
cit0058
cit0044
cit0001
cit0045
cit0042
cit0043
cit0040
cit0041
cit0008
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
References_xml – ident: cit0011
  doi: 10.1109/TGRS.2002.807587
– ident: cit0058
  doi: 10.1016/j.rse.2014.05.009
– ident: cit0006
  doi: 10.1109/TGRS.2015.2501372
– ident: cit0054
  doi: 10.3390/rs8010007
– ident: cit0036
  doi: 10.3390/app9040655
– ident: cit0025
  doi: 10.1016/j.compag.2020.105833
– ident: cit0053
  doi: 10.3390/rs8100878
– ident: cit0032
  doi: 10.1016/j.asr.2022.02.021
– ident: cit0004
  doi: 10.3390/rs9090969
– ident: cit0055
  doi: 10.3390/rs10010012
– ident: cit0037
  doi: 10.1109/TGRS.2006.872287
– ident: cit0035
  doi: 10.1109/TGRS.2012.2205264
– ident: cit0012
  doi: 10.3390/w9010038
– ident: cit0051
  doi: 10.1016/j.jhydrol.2014.02.058
– ident: cit0056
  doi: 10.3390/w13020135
– ident: cit0039
  doi: 10.1109/IGARSS.1994.399504
– ident: cit0043
  doi: 10.1016/j.pce.2015.02.009
– ident: cit0017
  doi: 10.1163/156939302X01119
– ident: cit0002
  doi: 10.1029/RS013i002p00357
– ident: cit0048
  doi: 10.3390/rs70608128
– ident: cit0041
  doi: 10.1109/TGRS.2008.920370
– ident: cit0007
  doi: 10.1016/j.jag.2018.05.026
– ident: cit0014
  doi: 10.1109/36.406677
– ident: cit0013
  doi: 10.1080/10106049.2019.1655801
– ident: cit0049
  doi: 10.1109/TGE.1978.294586
– ident: cit0040
  doi: 10.3390/rs9040395
– ident: cit0028
  doi: 10.1109/LGRS.2013.2279255
– ident: cit0046
  doi: 10.1109/TGRS.2009.2018448
– ident: cit0003
  doi: 10.1109/IGARSS.2017.8127912
– ident: cit0016
  doi: 10.4236/ars.2016.54023
– ident: cit0022
  doi: 10.1109/TGRS.2008.2009642
– ident: cit0034
  doi: 10.1109/36.917914
– ident: cit0052
  doi: 10.1002/2014JD021951
– ident: cit0042
  doi: 10.1016/j.rse.2013.02.027
– ident: cit0044
  doi: 10.1080/02626667.2012.665608
– ident: cit0029
  doi: 10.1016/j.rse.2017.10.016
– ident: cit0033
  doi: 10.3390/rs10091370
– ident: cit0005
  doi: 10.1080/01431160500239032
– ident: cit0026
  doi: 10.1109/TGRS.2012.2209433
– ident: cit0021
  doi: 10.3390/rs9121292
– ident: cit0024
  doi: 10.3390/s19184013
– ident: cit0045
  doi: 10.1109/LGRS.2019.2927468
– ident: cit0050
  doi: 10.14358/PERS.85.1.43
– ident: cit0020
  doi: 10.1080/01431161.2019.1629503
– ident: cit0008
  doi: 10.3390/s17112617
– ident: cit0023
  doi: 10.1016/j.ejrs.2018.05.002
– start-page: 19
  volume-title: Proceedings of the XXXIII INCA International Congress (Indian Cartographer)
  year: 2013
  ident: cit0031
  contributor:
    fullname: Kumar D.
– ident: cit0038
  doi: 10.1109/36.134086
– ident: cit0018
  doi: 10.1016/j.rse.2010.07.011
– ident: cit0015
  doi: 10.3390/rs12010072
– ident: cit0010
  doi: 10.1109/JSEN.2021.3099937
– ident: cit0057
  doi: 10.5194/hess-15-345-2011
– ident: cit0019
  doi: 10.1191/0309133303pp378ra
– volume-title: Proceedings of the 1982 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
  year: 1982
  ident: cit0047
  contributor:
    fullname: Toan T. L.
– volume-title: Proceedings of the 2005 Advanced Synthetic Aperture Radar (ASAR) Workshop
  year: 2005
  ident: cit0009
  contributor:
    fullname: Charbonneau F.
– ident: cit0027
  doi: 10.5194/isprsarchives-XL-1-W3-225-2013
– ident: cit0001
  doi: 10.3390/s17061455
– ident: cit0030
  doi: 10.1002/hyp.10344
SSID ssj0006757
Score 2.4657323
Snippet Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 786
SubjectTerms Backscatter
Backscattering
Correlation coefficient
Correlation coefficients
Depolarization
Empirical models
Height
Mathematical models
Modelling
Moisture effects
Parameters
Plant growth
Plant height
Plants
Radar
Radar backscatter
Radar imaging
Retrieval
Root-mean-square errors
SAR (radar)
Soil
Soil moisture
Synthetic aperture radar
Vegetation
Vegetation descriptors
Vegetation index
Water Cloud Model, Sentinel-1
Wheat
Title Application of sentinel-1 SAR-derived vegetation descriptors for soil moisture retrieval and plant height prediction during the wheat growth cycle
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2023.2170193
https://www.proquest.com/docview/2783546707
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyy8EeWlG1hd4sRJmrGCVkwMtBJskeNHi1SaKmmL-Bv8Ys5OwkMIMcAYRXYc-_P5s333HSEXivsiFBGnvvAyyhWPqVBMUwSHTjzJeei7JLbD-Pahe923Mjm9JhbGulXaPbSphCKcrbaTW2Rl4xF3aSXpGDKVjk393fGdorjV-7Sa24jo0eD-3RYjHa4Cpq0QJxZpYnh-quXL6vRFu_SbrXYL0GD7H5q-Q7Zq9gm9Ci67ZE3P9shGnQh98rJPXnsfF9qQG7ChSfiVKWUw7N1RhXhdaQUrPa7dFEHpyvDkRQn4H1Dmj1N4yhE9y0JD4RJ2IZoBmwzzKY4jTNxpLMwLe0dU1eFiJQG5KDzbxQHGRf68mIB8wVYekNGgP7q6oXXaBipxv7ugsQgiz7BISRMkWcAynmhuQiTGXYV0SIeBMZHUXCZCKOR_XEQIiyDkGl9KPzgkrVk-00cEGAuYMpxJ3PZwZDYZi4wnva7pyigxcdwmnWa00nklzpGyRvO07unU9nRa93SbJJ_HNF24UxFTpTBJg1_KnjYASOt5Xqa-OziLYi8-_kPVJ2TTPlbO4KektSiW-oysl2p57uD8BtIf8ro
link.rule.ids 315,782,786,1455,1509,27935,27936,58024,59737,60526
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVYDnBhR-zMgatLHDtJc6yACsRygEpws1IvFKk0VdqC-A2-mLGTsAghDnC27Dj28_jNeBZCDrQIsyiLBQ2zoEuFFgnNNDMUwWHSQAkRhb6I7U1yddc8PnFpct5jYZxbpdOhbZkowstqd7idMbp2iTt0OekYUpWGq_3dCH1KcT5NZpEcc6eAddq379IYCXEZMu1ScWKfOornp2G-3E9fspd-k9b-Cmov_sfkl8hCRUChVSJmmUyZwQqZq2qh915WyWvr400bcgsuOgk_06cMblrXVCNkn4yGJ3NfeSqCNqXsyYsR4I_AKH_ow2OOAJoUBgpfswsBDThnGPZxK6HnDbIwLNwzUTmGD5cEpKPw7O4HuC_y53EP1AvOco102iedo1NaVW6gClXeMU0yHgeWxVpZnnY564rUCBshN25qZEQm4tbGygiVZplGCiiyGJHBI2GwUYV8ncwM8oHZIMAYZ9oKplDzEUhuuiy2gQqatqni1CbJJmnU2yWHZX4Oyeq0p9VKS7fSslrpTZJ-3lQ59oYRW1YxkfyXvjs1AmR11Ecy9LazOAmSrT8MvU_mTjuXF_Li7Op8m8y7ptI3fIfMjIuJ2SXTIz3Z89h-AzCE9uE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYKlaAXWh5VA2mZQ68O67X3dYyAiKoVQhCp3KyNHwQpZKPNS_yN_mLG3l1KhBAHOFv2eu3P48_2zDeE_NQizKM8FjTMgwEVWiQ018xQBIfJAiVEFPoktlfJ-XV6cupkcrpNLIxzq3RnaFsJRXhb7Rb3RNvGI-7ISdIxZCodl_q7E3pFcb5GPkYpbjgI6X7v76MxRj5cRUw7JU6s0wTxvNTMyva0Il76zFj7Haj3-R36_oVs1fQTuhVetskHM94hm3Um9OH9LvnX_f-iDYUFF5uEXxlRBlfdS6oRsAujYWFuaj9F0KayPEU5BfwPmBa3I7grED7z0kDpM3YhnAG7DJMRTiQM_XUsTEr3SFS14YMlAckoLN3uADdlsZwNQd1jL_dIv3faPz6jdd4GqvDAO6NJzuPAslgry7MBZwORGWEjZMapRj5kIm5trIxQWZ5rJIAijxEXPBIGC1XIv5L1cTE23wgwxpm2gik89wikNgMW20AFqU1VnNkkaZFOM1tyUqlzSNaIntYjLd1Iy3qkWyR7Oqdy5q9FbJXDRPJX6rYbAMh6oU9l6G_O4iRI9t_Q9CHZuDjpyT-_zn8fkE-upHIMb5P1WTk338naVM9_eGQ_ACck9YU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+sentinel-1+SAR-derived+vegetation+descriptors+for+soil+moisture+retrieval+and+plant+height+prediction+during+the+wheat+growth+cycle&rft.jtitle=International+journal+of+remote+sensing&rft.au=Dave%2C+Rucha&rft.au=Saha%2C+Koushik&rft.au=Kushwaha%2C+Amit&rft.au=Pandey%2C+Dharmendra+Kumar&rft.date=2023-02-01&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=44&rft.issue=3&rft.spage=786&rft.epage=801&rft_id=info:doi/10.1080%2F01431161.2023.2170193&rft.externalDocID=2170193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon