Application of sentinel-1 SAR-derived vegetation descriptors for soil moisture retrieval and plant height prediction during the wheat growth cycle
Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used semi-empirical models for retrieval of soil moisture of vegetated lands from synthetic aperture radar (SAR) images. The model considers the effec...
Saved in:
Published in: | International journal of remote sensing Vol. 44; no. 3; pp. 786 - 801 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Taylor & Francis
01-02-2023
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used semi-empirical models for retrieval of soil moisture of vegetated lands from synthetic aperture radar (SAR) images. The model considers the effect of soil as well as vegetation on the radar backscatter. The study assesses the applicability of Sentinel-1 SAR-derived vegetation descriptors in the WCM for soil moisture retrieval during the wheat growth cycle. Various combinations of vegetation descriptors (V
1
and V
2
), viz. VH polarized backscatter coefficient (σ
0
VH
), Radar Vegetation Index (RVI) and depolarization ratio (χ
v
), were used in the model. The model performed better when different parameters are used as vegetation descriptors (V
1
≠V
2
) in the WCM rather than using the same parameter for both the vegetation descriptors (V
1
= V
2
). The best results were observed when σ
0
VH
was considered as one of the vegetation descriptors (V
1
) while either χ
v
or RVI were utilized as the other vegetation descriptor (V
2
) giving a Pearson correlation coefficient (R) of 0.959 and 0.958 and a root mean square error (RMSE) of 0.499 dB and 0.516 dB respectively. The validation of the model-retrieved soil moisture against the in-situ measured values gave an R value of 0.72 and a RMSE of 0.096m
3
/m
3
. The plant height was also predicted by the WCM in which the retrieved soil moisture from SAR data was used as a parameter. The predicted plant height was compared to in-situ measured plant height and an R value of 0.76 and RMSE of 0.214 was obtained as the best result. The study demonstrates the capability of SAR-derived parameters as vegetation descriptors in the WCM for soil moisture retrieval. |
---|---|
AbstractList | Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used semi-empirical models for retrieval of soil moisture of vegetated lands from synthetic aperture radar (SAR) images. The model considers the effect of soil as well as vegetation on the radar backscatter. The study assesses the applicability of Sentinel-1 SAR-derived vegetation descriptors in the WCM for soil moisture retrieval during the wheat growth cycle. Various combinations of vegetation descriptors (V
1
and V
2
), viz. VH polarized backscatter coefficient (σ
0
VH
), Radar Vegetation Index (RVI) and depolarization ratio (χ
v
), were used in the model. The model performed better when different parameters are used as vegetation descriptors (V
1
≠V
2
) in the WCM rather than using the same parameter for both the vegetation descriptors (V
1
= V
2
). The best results were observed when σ
0
VH
was considered as one of the vegetation descriptors (V
1
) while either χ
v
or RVI were utilized as the other vegetation descriptor (V
2
) giving a Pearson correlation coefficient (R) of 0.959 and 0.958 and a root mean square error (RMSE) of 0.499 dB and 0.516 dB respectively. The validation of the model-retrieved soil moisture against the in-situ measured values gave an R value of 0.72 and a RMSE of 0.096m
3
/m
3
. The plant height was also predicted by the WCM in which the retrieved soil moisture from SAR data was used as a parameter. The predicted plant height was compared to in-situ measured plant height and an R value of 0.76 and RMSE of 0.214 was obtained as the best result. The study demonstrates the capability of SAR-derived parameters as vegetation descriptors in the WCM for soil moisture retrieval. Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used semi-empirical models for retrieval of soil moisture of vegetated lands from synthetic aperture radar (SAR) images. The model considers the effect of soil as well as vegetation on the radar backscatter. The study assesses the applicability of Sentinel-1 SAR-derived vegetation descriptors in the WCM for soil moisture retrieval during the wheat growth cycle. Various combinations of vegetation descriptors (V1and V2), viz. VH polarized backscatter coefficient (σ0VH), Radar Vegetation Index (RVI) and depolarization ratio (χv), were used in the model. The model performed better when different parameters are used as vegetation descriptors (V1≠V2) in the WCM rather than using the same parameter for both the vegetation descriptors (V1= V2). The best results were observed when σ0VHwas considered as one of the vegetation descriptors (V1) while either χvor RVI were utilized as the other vegetation descriptor (V2) giving a Pearson correlation coefficient (R) of 0.959 and 0.958 and a root mean square error (RMSE) of 0.499 dB and 0.516 dB respectively. The validation of the model-retrieved soil moisture against the in-situ measured values gave an R value of 0.72 and a RMSE of 0.096m3/m3. The plant height was also predicted by the WCM in which the retrieved soil moisture from SAR data was used as a parameter. The predicted plant height was compared to in-situ measured plant height and an R value of 0.76 and RMSE of 0.214 was obtained as the best result. The study demonstrates the capability of SAR-derived parameters as vegetation descriptors in the WCM for soil moisture retrieval. |
Author | Dave, Rucha Pandey, Dharmendra Kumar Parath, Nidhin Kushwaha, Amit Vithalpura, Manisha Saha, Koushik Murugesan, Abishek |
Author_xml | – sequence: 1 givenname: Rucha surname: Dave fullname: Dave, Rucha email: rch.dave1@gmail.com organization: Indus University – sequence: 2 givenname: Koushik surname: Saha fullname: Saha, Koushik organization: Indian Institute of Technology Dharwad – sequence: 3 givenname: Amit surname: Kushwaha fullname: Kushwaha, Amit organization: Indian Institute of Technology Palakkad – sequence: 4 givenname: Dharmendra Kumar surname: Pandey fullname: Pandey, Dharmendra Kumar organization: ISRO – sequence: 5 givenname: Manisha surname: Vithalpura fullname: Vithalpura, Manisha organization: Indus University – sequence: 6 givenname: Nidhin surname: Parath fullname: Parath, Nidhin organization: Anand Agricultural University – sequence: 7 givenname: Abishek surname: Murugesan fullname: Murugesan, Abishek organization: Anand Agricultural University |
BookMark | eNp9kMFq3DAURUVJoZNpP6Eg6NpTybJle9chtEkhEGizF4r0NFbQSO6TZob5jXxxPTjZZvUW99z74FyTq5giEPKVsw1nPfvOeCM4l3xTs1psat4xPogPZMWFlFU7MH5FVhemukCfyHXOz4wx2bXdirxspyl4o4tPkSZHM8TiI4SK07_bP5UF9Eew9Ag7KAtkIRv0U0mYqUtIc_KB7pPP5YBAEQp6OOpAdbR0CjoWOoLfjYVOCNabZeOAPu5oGYGeRtCF7jCdykjN2QT4TD46HTJ8eb1r8vjr5-PNXXX_cPv7ZntfGSH6UnVaSOa4tMaJ4Unwp2aAxrU9t70VwwCtcE4aaMygtRVt3WgJAxNtA3NoarEm35bZCdO_A-SintMB4_xR1V0_c7Jj3Uy1C2Uw5Yzg1IR-r_GsOFMX--rNvrrYV6_2596PpefjLGmvTwmDVUWfQ0KHOhqflXh_4j83kJCS |
CitedBy_id | crossref_primary_10_1016_j_asr_2024_06_026 crossref_primary_10_3390_agriculture14050695 |
Cites_doi | 10.1109/TGRS.2002.807587 10.1016/j.rse.2014.05.009 10.1109/TGRS.2015.2501372 10.3390/rs8010007 10.3390/app9040655 10.1016/j.compag.2020.105833 10.3390/rs8100878 10.1016/j.asr.2022.02.021 10.3390/rs9090969 10.3390/rs10010012 10.1109/TGRS.2006.872287 10.1109/TGRS.2012.2205264 10.3390/w9010038 10.1016/j.jhydrol.2014.02.058 10.3390/w13020135 10.1109/IGARSS.1994.399504 10.1016/j.pce.2015.02.009 10.1163/156939302X01119 10.1029/RS013i002p00357 10.3390/rs70608128 10.1109/TGRS.2008.920370 10.1016/j.jag.2018.05.026 10.1109/36.406677 10.1080/10106049.2019.1655801 10.1109/TGE.1978.294586 10.3390/rs9040395 10.1109/LGRS.2013.2279255 10.1109/TGRS.2009.2018448 10.1109/IGARSS.2017.8127912 10.4236/ars.2016.54023 10.1109/TGRS.2008.2009642 10.1109/36.917914 10.1002/2014JD021951 10.1016/j.rse.2013.02.027 10.1080/02626667.2012.665608 10.1016/j.rse.2017.10.016 10.3390/rs10091370 10.1080/01431160500239032 10.1109/TGRS.2012.2209433 10.3390/rs9121292 10.3390/s19184013 10.1109/LGRS.2019.2927468 10.14358/PERS.85.1.43 10.1080/01431161.2019.1629503 10.3390/s17112617 10.1016/j.ejrs.2018.05.002 10.1109/36.134086 10.1016/j.rse.2010.07.011 10.3390/rs12010072 10.1109/JSEN.2021.3099937 10.5194/hess-15-345-2011 10.1191/0309133303pp378ra 10.5194/isprsarchives-XL-1-W3-225-2013 10.3390/s17061455 10.1002/hyp.10344 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1080/01431161.2023.2170193 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 801 |
ExternalDocumentID | 10_1080_01431161_2023_2170193 2170193 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 29J 30N 4.4 5GY 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABFIM ABHAV ABJVF ABLIJ ABLJU ABPEM ABPTK ABQHQ ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P FUNRP FVPDL H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TWF UPT UT5 UU3 V1K ZGOLN ~02 ~S~ 0R~ AAHBH AAYXX ABJNI ABPAQ ABRLO ABXYU AHDZW CITATION TBQAZ TDBHL TUROJ 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c338t-7a360f16dcf39b31b49e4f581d8d399e53ff6ce4c9aad3524a6e90354e99ec23 |
IEDL.DBID | TFW |
ISSN | 0143-1161 |
IngestDate | Tue Nov 05 15:40:14 EST 2024 Thu Sep 26 17:39:02 EDT 2024 Tue Jun 13 19:26:49 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-7a360f16dcf39b31b49e4f581d8d399e53ff6ce4c9aad3524a6e90354e99ec23 |
PQID | 2783546707 |
PQPubID | 2045515 |
PageCount | 16 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_01431161_2023_2170193 crossref_primary_10_1080_01431161_2023_2170193 proquest_journals_2783546707 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0033 Charbonneau F. (cit0009) 2005 cit0034 cit0032 cit0030 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 Toan T. L. (cit0047) 1982 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0011 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 cit0051 Kumar D. (cit0031) 2013 cit0052 cit0050 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0057 cit0014 cit0058 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 cit0041 cit0008 cit0006 cit0007 cit0004 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 |
References_xml | – ident: cit0011 doi: 10.1109/TGRS.2002.807587 – ident: cit0058 doi: 10.1016/j.rse.2014.05.009 – ident: cit0006 doi: 10.1109/TGRS.2015.2501372 – ident: cit0054 doi: 10.3390/rs8010007 – ident: cit0036 doi: 10.3390/app9040655 – ident: cit0025 doi: 10.1016/j.compag.2020.105833 – ident: cit0053 doi: 10.3390/rs8100878 – ident: cit0032 doi: 10.1016/j.asr.2022.02.021 – ident: cit0004 doi: 10.3390/rs9090969 – ident: cit0055 doi: 10.3390/rs10010012 – ident: cit0037 doi: 10.1109/TGRS.2006.872287 – ident: cit0035 doi: 10.1109/TGRS.2012.2205264 – ident: cit0012 doi: 10.3390/w9010038 – ident: cit0051 doi: 10.1016/j.jhydrol.2014.02.058 – ident: cit0056 doi: 10.3390/w13020135 – ident: cit0039 doi: 10.1109/IGARSS.1994.399504 – ident: cit0043 doi: 10.1016/j.pce.2015.02.009 – ident: cit0017 doi: 10.1163/156939302X01119 – ident: cit0002 doi: 10.1029/RS013i002p00357 – ident: cit0048 doi: 10.3390/rs70608128 – ident: cit0041 doi: 10.1109/TGRS.2008.920370 – ident: cit0007 doi: 10.1016/j.jag.2018.05.026 – ident: cit0014 doi: 10.1109/36.406677 – ident: cit0013 doi: 10.1080/10106049.2019.1655801 – ident: cit0049 doi: 10.1109/TGE.1978.294586 – ident: cit0040 doi: 10.3390/rs9040395 – ident: cit0028 doi: 10.1109/LGRS.2013.2279255 – ident: cit0046 doi: 10.1109/TGRS.2009.2018448 – ident: cit0003 doi: 10.1109/IGARSS.2017.8127912 – ident: cit0016 doi: 10.4236/ars.2016.54023 – ident: cit0022 doi: 10.1109/TGRS.2008.2009642 – ident: cit0034 doi: 10.1109/36.917914 – ident: cit0052 doi: 10.1002/2014JD021951 – ident: cit0042 doi: 10.1016/j.rse.2013.02.027 – ident: cit0044 doi: 10.1080/02626667.2012.665608 – ident: cit0029 doi: 10.1016/j.rse.2017.10.016 – ident: cit0033 doi: 10.3390/rs10091370 – ident: cit0005 doi: 10.1080/01431160500239032 – ident: cit0026 doi: 10.1109/TGRS.2012.2209433 – ident: cit0021 doi: 10.3390/rs9121292 – ident: cit0024 doi: 10.3390/s19184013 – ident: cit0045 doi: 10.1109/LGRS.2019.2927468 – ident: cit0050 doi: 10.14358/PERS.85.1.43 – ident: cit0020 doi: 10.1080/01431161.2019.1629503 – ident: cit0008 doi: 10.3390/s17112617 – ident: cit0023 doi: 10.1016/j.ejrs.2018.05.002 – start-page: 19 volume-title: Proceedings of the XXXIII INCA International Congress (Indian Cartographer) year: 2013 ident: cit0031 contributor: fullname: Kumar D. – ident: cit0038 doi: 10.1109/36.134086 – ident: cit0018 doi: 10.1016/j.rse.2010.07.011 – ident: cit0015 doi: 10.3390/rs12010072 – ident: cit0010 doi: 10.1109/JSEN.2021.3099937 – ident: cit0057 doi: 10.5194/hess-15-345-2011 – ident: cit0019 doi: 10.1191/0309133303pp378ra – volume-title: Proceedings of the 1982 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), year: 1982 ident: cit0047 contributor: fullname: Toan T. L. – volume-title: Proceedings of the 2005 Advanced Synthetic Aperture Radar (ASAR) Workshop year: 2005 ident: cit0009 contributor: fullname: Charbonneau F. – ident: cit0027 doi: 10.5194/isprsarchives-XL-1-W3-225-2013 – ident: cit0001 doi: 10.3390/s17061455 – ident: cit0030 doi: 10.1002/hyp.10344 |
SSID | ssj0006757 |
Score | 2.4657323 |
Snippet | Soil moisture is the crucialparameter impacting the plant growth during its phenological cycle. The Water Cloud Model (WCM) is one of the most widely used... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 786 |
SubjectTerms | Backscatter Backscattering Correlation coefficient Correlation coefficients Depolarization Empirical models Height Mathematical models Modelling Moisture effects Parameters Plant growth Plant height Plants Radar Radar backscatter Radar imaging Retrieval Root-mean-square errors SAR (radar) Soil Soil moisture Synthetic aperture radar Vegetation Vegetation descriptors Vegetation index Water Cloud Model, Sentinel-1 Wheat |
Title | Application of sentinel-1 SAR-derived vegetation descriptors for soil moisture retrieval and plant height prediction during the wheat growth cycle |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2023.2170193 https://www.proquest.com/docview/2783546707 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyy8EeWlG1hd4sRJmrGCVkwMtBJskeNHi1SaKmmL-Bv8Ys5OwkMIMcAYRXYc-_P5s333HSEXivsiFBGnvvAyyhWPqVBMUwSHTjzJeei7JLbD-Pahe923Mjm9JhbGulXaPbSphCKcrbaTW2Rl4xF3aSXpGDKVjk393fGdorjV-7Sa24jo0eD-3RYjHa4Cpq0QJxZpYnh-quXL6vRFu_SbrXYL0GD7H5q-Q7Zq9gm9Ci67ZE3P9shGnQh98rJPXnsfF9qQG7ChSfiVKWUw7N1RhXhdaQUrPa7dFEHpyvDkRQn4H1Dmj1N4yhE9y0JD4RJ2IZoBmwzzKY4jTNxpLMwLe0dU1eFiJQG5KDzbxQHGRf68mIB8wVYekNGgP7q6oXXaBipxv7ugsQgiz7BISRMkWcAynmhuQiTGXYV0SIeBMZHUXCZCKOR_XEQIiyDkGl9KPzgkrVk-00cEGAuYMpxJ3PZwZDYZi4wnva7pyigxcdwmnWa00nklzpGyRvO07unU9nRa93SbJJ_HNF24UxFTpTBJg1_KnjYASOt5Xqa-OziLYi8-_kPVJ2TTPlbO4KektSiW-oysl2p57uD8BtIf8ro |
link.rule.ids | 315,782,786,1455,1509,27935,27936,58024,59737,60526 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVYDnBhR-zMgatLHDtJc6yACsRygEpws1IvFKk0VdqC-A2-mLGTsAghDnC27Dj28_jNeBZCDrQIsyiLBQ2zoEuFFgnNNDMUwWHSQAkRhb6I7U1yddc8PnFpct5jYZxbpdOhbZkowstqd7idMbp2iTt0OekYUpWGq_3dCH1KcT5NZpEcc6eAddq379IYCXEZMu1ScWKfOornp2G-3E9fspd-k9b-Cmov_sfkl8hCRUChVSJmmUyZwQqZq2qh915WyWvr400bcgsuOgk_06cMblrXVCNkn4yGJ3NfeSqCNqXsyYsR4I_AKH_ow2OOAJoUBgpfswsBDThnGPZxK6HnDbIwLNwzUTmGD5cEpKPw7O4HuC_y53EP1AvOco102iedo1NaVW6gClXeMU0yHgeWxVpZnnY564rUCBshN25qZEQm4tbGygiVZplGCiiyGJHBI2GwUYV8ncwM8oHZIMAYZ9oKplDzEUhuuiy2gQqatqni1CbJJmnU2yWHZX4Oyeq0p9VKS7fSslrpTZJ-3lQ59oYRW1YxkfyXvjs1AmR11Ecy9LazOAmSrT8MvU_mTjuXF_Li7Op8m8y7ptI3fIfMjIuJ2SXTIz3Z89h-AzCE9uE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYKlaAXWh5VA2mZQ68O67X3dYyAiKoVQhCp3KyNHwQpZKPNS_yN_mLG3l1KhBAHOFv2eu3P48_2zDeE_NQizKM8FjTMgwEVWiQ018xQBIfJAiVEFPoktlfJ-XV6cupkcrpNLIxzq3RnaFsJRXhb7Rb3RNvGI-7ISdIxZCodl_q7E3pFcb5GPkYpbjgI6X7v76MxRj5cRUw7JU6s0wTxvNTMyva0Il76zFj7Haj3-R36_oVs1fQTuhVetskHM94hm3Um9OH9LvnX_f-iDYUFF5uEXxlRBlfdS6oRsAujYWFuaj9F0KayPEU5BfwPmBa3I7grED7z0kDpM3YhnAG7DJMRTiQM_XUsTEr3SFS14YMlAckoLN3uADdlsZwNQd1jL_dIv3faPz6jdd4GqvDAO6NJzuPAslgry7MBZwORGWEjZMapRj5kIm5trIxQWZ5rJIAijxEXPBIGC1XIv5L1cTE23wgwxpm2gik89wikNgMW20AFqU1VnNkkaZFOM1tyUqlzSNaIntYjLd1Iy3qkWyR7Oqdy5q9FbJXDRPJX6rYbAMh6oU9l6G_O4iRI9t_Q9CHZuDjpyT-_zn8fkE-upHIMb5P1WTk338naVM9_eGQ_ACck9YU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+sentinel-1+SAR-derived+vegetation+descriptors+for+soil+moisture+retrieval+and+plant+height+prediction+during+the+wheat+growth+cycle&rft.jtitle=International+journal+of+remote+sensing&rft.au=Dave%2C+Rucha&rft.au=Saha%2C+Koushik&rft.au=Kushwaha%2C+Amit&rft.au=Pandey%2C+Dharmendra+Kumar&rft.date=2023-02-01&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=44&rft.issue=3&rft.spage=786&rft.epage=801&rft_id=info:doi/10.1080%2F01431161.2023.2170193&rft.externalDocID=2170193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |