High Precision Error Prediction Algorithm Based on Ridge Regression Predictor for Reversible Data Hiding

An efficient predictor is crucial for high embedding capacity and low image distortion. In this letter, a ridge regression-based high precision error prediction algorithm for reversible data hiding is proposed. The ridge regression is a penalized least-square algorithm, which solves the overfitting...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters Vol. 28; pp. 1125 - 1129
Main Authors: Wang, Xiaoyu, Wang, Xingyuan, Ma, Bin, Li, Qi, Shi, Yun-Qing
Format: Journal Article
Language:English
Published: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An efficient predictor is crucial for high embedding capacity and low image distortion. In this letter, a ridge regression-based high precision error prediction algorithm for reversible data hiding is proposed. The ridge regression is a penalized least-square algorithm, which solves the overfitting problem of the least-square method. Reversible data hiding based on ridge regression predictor minimizes the residual sum of squares between predicted and target pixels subject to the constraint expressed in terms of the L2-norm. Compared to a least-square-based predictor, the ridge regression-based predictor can obtain more small prediction errors, proving that the proposed method has a higher accuracy. In addition, the eight neighbor pixels of the target pixels and their two different combinations are selected as training and support sets, respectively. This selection scheme further improves the prediction accuracy. Experimental results show that the proposed method outperforms state-of-the-art adaptive reversible data hiding in terms of prediction accuracy and embedding performance.
AbstractList An efficient predictor is crucial for high embedding capacity and low image distortion. In this letter, a ridge regression-based high precision error prediction algorithm for reversible data hiding is proposed. The ridge regression is a penalized least-square algorithm, which solves the overfitting problem of the least-square method. Reversible data hiding based on ridge regression predictor minimizes the residual sum of squares between predicted and target pixels subject to the constraint expressed in terms of the L2-norm. Compared to a least-square-based predictor, the ridge regression-based predictor can obtain more small prediction errors, proving that the proposed method has a higher accuracy. In addition, the eight neighbor pixels of the target pixels and their two different combinations are selected as training and support sets, respectively. This selection scheme further improves the prediction accuracy. Experimental results show that the proposed method outperforms state-of-the-art adaptive reversible data hiding in terms of prediction accuracy and embedding performance.
Author Wang, Xingyuan
Wang, Xiaoyu
Shi, Yun-Qing
Li, Qi
Ma, Bin
Author_xml – sequence: 1
  givenname: Xiaoyu
  orcidid: 0000-0002-7030-4291
  surname: Wang
  fullname: Wang, Xiaoyu
  email: qluwxy@163.com
  organization: School of Information Science & Technology, Dalian Maritime University, Dalian, China
– sequence: 2
  givenname: Xingyuan
  orcidid: 0000-0002-9724-0152
  surname: Wang
  fullname: Wang, Xingyuan
  email: wangxy@dlut.edu.cn
  organization: School of Information Science & Technology, Dalian Maritime University, Dalian, China
– sequence: 3
  givenname: Bin
  orcidid: 0000-0002-9030-7393
  surname: Ma
  fullname: Ma, Bin
  email: sddxmb@126.com
  organization: School of Cyber Security, Qilu University of Technology, Jinan, China
– sequence: 4
  givenname: Qi
  orcidid: 0000-0001-7729-1422
  surname: Li
  fullname: Li, Qi
  email: qluliqi@163.com
  organization: School of Information Science & Technology, Dalian Maritime University, Dalian, China
– sequence: 5
  givenname: Yun-Qing
  surname: Shi
  fullname: Shi, Yun-Qing
  email: 2625007557@qq.com
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
BookMark eNo9kM1Lw0AQxRepYFu9C14CnlNnstnN7rHWaoWCpfa-5GOSbmmTupsK_vcmtngYZubxezPwRmxQNzUxdo8wQQT9tPxcTSKIcMJBASq8YkMUQoURlzjoZkgg1BrUDRt5vwMAhUoM2XZhq22wcpRbb5s6mDvXuH4vbN72wnRfNc6220PwnHoqgk5a26KiYE2VI_9nuuCdsexqTd_kvM32FLykbRosbGHr6pZdl-ne092lj9nmdb6ZLcLlx9v7bLoMc85VGwrBheaFjgVKmaGQIOK0EJFMUlGARJWXEGeKy6yMI-SlTihRSkOeaChB8DF7PJ89uubrRL41u-bk6u6jiUSMsYpB9BScqdw13jsqzdHZQ-p-DILp4zRdnKaP01zi7CwPZ4slon9cxxylSPgvLi1xJA
CODEN ISPLEM
CitedBy_id crossref_primary_10_1007_s11042_023_17358_7
crossref_primary_10_32604_csse_2023_036152
crossref_primary_10_1007_s11042_023_14609_5
crossref_primary_10_1007_s11071_023_08622_4
crossref_primary_10_1093_comjnl_bxab203
crossref_primary_10_1109_TCSI_2022_3172116
crossref_primary_10_32604_csse_2023_037281
crossref_primary_10_1155_2022_2699802
crossref_primary_10_3389_fphy_2022_912229
crossref_primary_10_1016_j_eswa_2022_118426
crossref_primary_10_32604_cmc_2023_036090
crossref_primary_10_1088_1402_4896_acc5b6
crossref_primary_10_3390_e24091266
crossref_primary_10_1016_j_aej_2023_08_059
crossref_primary_10_3389_fphy_2022_1006324
crossref_primary_10_1016_j_jisa_2023_103572
crossref_primary_10_1007_s11042_022_14032_2
crossref_primary_10_32604_cmc_2023_035668
crossref_primary_10_1007_s11042_023_15354_5
crossref_primary_10_1016_j_cjph_2023_06_016
crossref_primary_10_1016_j_sigpro_2022_108818
crossref_primary_10_1016_j_sigpro_2023_108956
crossref_primary_10_1140_epjs_s11734_022_00566_x
crossref_primary_10_1109_LSP_2022_3149706
crossref_primary_10_1007_s11227_022_04428_0
crossref_primary_10_1109_TCE_2024_3371440
crossref_primary_10_1007_s11042_023_15390_1
crossref_primary_10_1155_2022_9508749
crossref_primary_10_1016_j_gsf_2023_101732
crossref_primary_10_1145_3645105
crossref_primary_10_1109_TCSVT_2021_3138795
crossref_primary_10_1109_TCSVT_2022_3222559
crossref_primary_10_1007_s11036_023_02147_1
crossref_primary_10_1088_1674_1056_ac6861
crossref_primary_10_32604_csse_2023_036652
crossref_primary_10_1109_ACCESS_2022_3218643
crossref_primary_10_1631_FITEE_2300041
crossref_primary_10_1049_ipr2_12392
crossref_primary_10_1109_ACCESS_2022_3212145
crossref_primary_10_1109_ACCESS_2023_3275019
crossref_primary_10_1109_TCSVT_2021_3125711
crossref_primary_10_1007_s11042_023_16338_1
crossref_primary_10_1080_09500340_2022_2138593
crossref_primary_10_1007_s11036_023_02133_7
crossref_primary_10_3390_math10224249
crossref_primary_10_1016_j_engappai_2021_104450
crossref_primary_10_1080_13682199_2023_2195090
crossref_primary_10_1016_j_aej_2023_05_051
crossref_primary_10_1007_s10851_021_01048_w
crossref_primary_10_1109_TMM_2023_3295578
crossref_primary_10_1016_j_chaos_2022_112770
crossref_primary_10_1109_ACCESS_2022_3194730
crossref_primary_10_1007_s11063_021_10582_y
crossref_primary_10_1155_2022_1720842
crossref_primary_10_1088_1402_4896_ac95d9
crossref_primary_10_1007_s11042_023_15682_6
crossref_primary_10_1155_2022_4858806
crossref_primary_10_1016_j_eswa_2023_120811
crossref_primary_10_3390_app14083153
crossref_primary_10_1109_LSP_2023_3313444
crossref_primary_10_1142_S0218127422501863
crossref_primary_10_32604_cmc_2023_035695
crossref_primary_10_1007_s11042_023_14683_9
Cites_doi 10.1186/s13640-016-0144-3
10.1109/LSP.2020.2996507
10.1109/TIP.2006.891046
10.1109/LSP.2019.2909080
10.1109/83.855427
10.1109/TCSVT.2003.815962
10.1109/TIP.2014.2307482
10.1109/TIP.2004.840686
10.1109/TKDE.2013.45
10.1109/TIFS.2016.2566261
10.1587/elex.5.870
10.5370/JEET.2016.11.4.974
10.1109/TIFS.2011.2145372
10.1109/TCSVT.2009.2020257
10.1016/j.ins.2020.12.002
10.1007/s11554-019-00891-w
10.1109/TIFS.2015.2485163
10.1109/TKDE.2018.2837745
10.1109/TCSVT.2006.869964
10.1109/ACCESS.2016.2573308
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2021.3080181
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 1129
ExternalDocumentID 10_1109_LSP_2021_3080181
9431657
Genre orig-research
GrantInformation_xml – fundername: Key R&D Projects of Liaoning Province
  grantid: 2019020105-JH2/103
– fundername: National Natural Science Foundation of China
  grantid: 61672124; 61802212; 61872203
  funderid: 10.13039/501100001809
– fundername: Jinan City "20 universities" Funding Projects Introducing Innovation Team Program
  grantid: 2019GXRC031
– fundername: Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund
  grantid: MMJJ20170203
– fundername: Liaoning Province Science and Technology Innovation Leading Talents Program
  grantid: XLYC1802013
GroupedDBID -~X
.DC
0R~
0ZS
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAYJJ
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
XFK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-553593d945166b156054ad5267a5d0618cf04b836bf4213f97e78890c790f053
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Thu Oct 10 18:06:28 EDT 2024
Fri Aug 23 02:31:15 EDT 2024
Wed Jun 26 19:26:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-553593d945166b156054ad5267a5d0618cf04b836bf4213f97e78890c790f053
ORCID 0000-0002-7030-4291
0000-0002-9030-7393
0000-0001-7729-1422
0000-0002-9724-0152
PQID 2541484055
PQPubID 75747
PageCount 5
ParticipantIDs crossref_primary_10_1109_LSP_2021_3080181
ieee_primary_9431657
proquest_journals_2541484055
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ni (ref9) 2006; 16
ref4
ref3
ref6
ref5
References_xml – ident: ref19
  doi: 10.1186/s13640-016-0144-3
– ident: ref12
  doi: 10.1109/LSP.2020.2996507
– ident: ref10
  doi: 10.1109/TIP.2006.891046
– ident: ref11
  doi: 10.1109/LSP.2019.2909080
– ident: ref13
  doi: 10.1109/83.855427
– ident: ref8
  doi: 10.1109/TCSVT.2003.815962
– ident: ref17
  doi: 10.1109/TIP.2014.2307482
– ident: ref7
  doi: 10.1109/TIP.2004.840686
– ident: ref5
  doi: 10.1109/TKDE.2013.45
– ident: ref2
  doi: 10.1109/TIFS.2016.2566261
– ident: ref14
  doi: 10.1587/elex.5.870
– ident: ref18
  doi: 10.5370/JEET.2016.11.4.974
– ident: ref15
  doi: 10.1109/TIFS.2011.2145372
– ident: ref16
  doi: 10.1109/TCSVT.2009.2020257
– ident: ref3
  doi: 10.1016/j.ins.2020.12.002
– ident: ref20
  doi: 10.1007/s11554-019-00891-w
– ident: ref6
  doi: 10.1109/TIFS.2015.2485163
– ident: ref4
  doi: 10.1109/TKDE.2018.2837745
– volume: 16
  start-page: 354
  year: 2006
  ident: ref9
  article-title: Reversible data hiding
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2006.869964
  contributor:
    fullname: ni
– ident: ref1
  doi: 10.1109/ACCESS.2016.2573308
SSID ssj0008185
Score 2.6093612
Snippet An efficient predictor is crucial for high embedding capacity and low image distortion. In this letter, a ridge regression-based high precision error...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1125
SubjectTerms Accuracy
adaptive method
Algorithms
Embedding
error prediction
Histograms
Least squares
Pixels
Prediction algorithms
Reactive power
Regression
Reversible data hiding
ridge regression predictor
Signal processing algorithms
Stability criteria
Technological innovation
Training
Title High Precision Error Prediction Algorithm Based on Ridge Regression Predictor for Reversible Data Hiding
URI https://ieeexplore.ieee.org/document/9431657
https://www.proquest.com/docview/2541484055
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxh4FUShIA8sSKSNEzuOxwKtOiBUtR3YIsd22kolQWn6__HlUYFgYcvDTqK7-L473wuhezekRHPtOkrywKGGEUfGPHYSqgKiWaioBo_uZM7f3sOXEZTJedznwhhjyuAz04fD0pevM7WDrbKBgLxtxluoxUVY5WrtpS4ATxVf6DpWwoaNS9IVg9f51BqCHun7Vj0iIfkBQWVPlV-CuESX8cn_vusUHddaJB5WbD9DByY9R0ffagt20AoiOPA0r3vo4FGeZzmc63WZyoCHm2WWr4vVB36ySKaxvTSD5C08M8sqODZthtuJVre1N8oYjnhj8IssJJ6sAfgu0GI8WjxPnLqtgqOsPVo4jPlM-FpAi94ghkxqRqVmXsAl0xbeQ5W4NA79IE6oR_xEcGPtZOEqLtzErtlL1E6z1FwhrJQP5QiNR61WpRWRUDzI0ywwibCGo-yih4bQ0WdVPCMqjQ5XRJYpETAlqpnSRR0g7H5cTdMu6jWcierVtY086F1uX8DY9d-zbtAhPLvaKumhdpHvzC1qbfXurvxrvgBid74F
link.rule.ids 315,782,786,798,4028,27932,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHtSDLzSiqHvwYmKhj91u94gCwYiEAAdvTbu7BRIEU-D_u9MWotGLtz52s81Md76ZnRfAvR1QR3FlWzLivkU1c6wo5rGVUOk7igWSKvTodoa89x40W1gm53GbC6O1zoLPdA0vM1--Wsg1HpXVBeZtM74Le4xyn-fZWlu5i9CTRxjalpGxwcYpaYt6d9g3pqDr1DyjIDmB8wOEsq4qv0Rxhi_t4_992QkcFXokaeSMP4UdPT-Dw2_VBcswwRgO0k-LLjqklaaLFO_VNEtmII3ZeJFOV5MP8mSwTBHzaIDpW2Sgx3l47Hwz3Ew02q15kUVxxDNNmtEqIp0pQt85jNqt0XPHKhorWNJYpCuLMY8JTwls0uvHmEvNaKSY6_OIKQPwgUxsGgeeHyfUdbxEcG0sZWFLLuzE7NoLKM0Xc30JREoPCxJqlxq9SkknwvJBrmK-ToQxHaMKPGwIHX7m5TPCzOywRWiYEiJTwoIpFSgjYbfjCppWoLrhTFjsr2XoYvdyswBjV3_PuoP9zuitG3Zfeq_XcIDr5AcnVSit0rW-gd2lWt9mf9AXkWfBVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Precision+Error+Prediction+Algorithm+Based+on+Ridge+Regression+Predictor+for+Reversible+Data+Hiding&rft.jtitle=IEEE+signal+processing+letters&rft.au=Wang%2C+Xiaoyu&rft.au=Wang%2C+Xingyuan&rft.au=Ma%2C+Bin&rft.au=Li%2C+Qi&rft.date=2021&rft.pub=IEEE&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=28&rft.spage=1125&rft.epage=1129&rft_id=info:doi/10.1109%2FLSP.2021.3080181&rft.externalDocID=9431657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon