High Precision Error Prediction Algorithm Based on Ridge Regression Predictor for Reversible Data Hiding
An efficient predictor is crucial for high embedding capacity and low image distortion. In this letter, a ridge regression-based high precision error prediction algorithm for reversible data hiding is proposed. The ridge regression is a penalized least-square algorithm, which solves the overfitting...
Saved in:
Published in: | IEEE signal processing letters Vol. 28; pp. 1125 - 1129 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | An efficient predictor is crucial for high embedding capacity and low image distortion. In this letter, a ridge regression-based high precision error prediction algorithm for reversible data hiding is proposed. The ridge regression is a penalized least-square algorithm, which solves the overfitting problem of the least-square method. Reversible data hiding based on ridge regression predictor minimizes the residual sum of squares between predicted and target pixels subject to the constraint expressed in terms of the L2-norm. Compared to a least-square-based predictor, the ridge regression-based predictor can obtain more small prediction errors, proving that the proposed method has a higher accuracy. In addition, the eight neighbor pixels of the target pixels and their two different combinations are selected as training and support sets, respectively. This selection scheme further improves the prediction accuracy. Experimental results show that the proposed method outperforms state-of-the-art adaptive reversible data hiding in terms of prediction accuracy and embedding performance. |
---|---|
AbstractList | An efficient predictor is crucial for high embedding capacity and low image distortion. In this letter, a ridge regression-based high precision error prediction algorithm for reversible data hiding is proposed. The ridge regression is a penalized least-square algorithm, which solves the overfitting problem of the least-square method. Reversible data hiding based on ridge regression predictor minimizes the residual sum of squares between predicted and target pixels subject to the constraint expressed in terms of the L2-norm. Compared to a least-square-based predictor, the ridge regression-based predictor can obtain more small prediction errors, proving that the proposed method has a higher accuracy. In addition, the eight neighbor pixels of the target pixels and their two different combinations are selected as training and support sets, respectively. This selection scheme further improves the prediction accuracy. Experimental results show that the proposed method outperforms state-of-the-art adaptive reversible data hiding in terms of prediction accuracy and embedding performance. |
Author | Wang, Xingyuan Wang, Xiaoyu Shi, Yun-Qing Li, Qi Ma, Bin |
Author_xml | – sequence: 1 givenname: Xiaoyu orcidid: 0000-0002-7030-4291 surname: Wang fullname: Wang, Xiaoyu email: qluwxy@163.com organization: School of Information Science & Technology, Dalian Maritime University, Dalian, China – sequence: 2 givenname: Xingyuan orcidid: 0000-0002-9724-0152 surname: Wang fullname: Wang, Xingyuan email: wangxy@dlut.edu.cn organization: School of Information Science & Technology, Dalian Maritime University, Dalian, China – sequence: 3 givenname: Bin orcidid: 0000-0002-9030-7393 surname: Ma fullname: Ma, Bin email: sddxmb@126.com organization: School of Cyber Security, Qilu University of Technology, Jinan, China – sequence: 4 givenname: Qi orcidid: 0000-0001-7729-1422 surname: Li fullname: Li, Qi email: qluliqi@163.com organization: School of Information Science & Technology, Dalian Maritime University, Dalian, China – sequence: 5 givenname: Yun-Qing surname: Shi fullname: Shi, Yun-Qing email: 2625007557@qq.com organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA |
BookMark | eNo9kM1Lw0AQxRepYFu9C14CnlNnstnN7rHWaoWCpfa-5GOSbmmTupsK_vcmtngYZubxezPwRmxQNzUxdo8wQQT9tPxcTSKIcMJBASq8YkMUQoURlzjoZkgg1BrUDRt5vwMAhUoM2XZhq22wcpRbb5s6mDvXuH4vbN72wnRfNc6220PwnHoqgk5a26KiYE2VI_9nuuCdsexqTd_kvM32FLykbRosbGHr6pZdl-ne092lj9nmdb6ZLcLlx9v7bLoMc85VGwrBheaFjgVKmaGQIOK0EJFMUlGARJWXEGeKy6yMI-SlTihRSkOeaChB8DF7PJ89uubrRL41u-bk6u6jiUSMsYpB9BScqdw13jsqzdHZQ-p-DILp4zRdnKaP01zi7CwPZ4slon9cxxylSPgvLi1xJA |
CODEN | ISPLEM |
CitedBy_id | crossref_primary_10_1007_s11042_023_17358_7 crossref_primary_10_32604_csse_2023_036152 crossref_primary_10_1007_s11042_023_14609_5 crossref_primary_10_1007_s11071_023_08622_4 crossref_primary_10_1093_comjnl_bxab203 crossref_primary_10_1109_TCSI_2022_3172116 crossref_primary_10_32604_csse_2023_037281 crossref_primary_10_1155_2022_2699802 crossref_primary_10_3389_fphy_2022_912229 crossref_primary_10_1016_j_eswa_2022_118426 crossref_primary_10_32604_cmc_2023_036090 crossref_primary_10_1088_1402_4896_acc5b6 crossref_primary_10_3390_e24091266 crossref_primary_10_1016_j_aej_2023_08_059 crossref_primary_10_3389_fphy_2022_1006324 crossref_primary_10_1016_j_jisa_2023_103572 crossref_primary_10_1007_s11042_022_14032_2 crossref_primary_10_32604_cmc_2023_035668 crossref_primary_10_1007_s11042_023_15354_5 crossref_primary_10_1016_j_cjph_2023_06_016 crossref_primary_10_1016_j_sigpro_2022_108818 crossref_primary_10_1016_j_sigpro_2023_108956 crossref_primary_10_1140_epjs_s11734_022_00566_x crossref_primary_10_1109_LSP_2022_3149706 crossref_primary_10_1007_s11227_022_04428_0 crossref_primary_10_1109_TCE_2024_3371440 crossref_primary_10_1007_s11042_023_15390_1 crossref_primary_10_1155_2022_9508749 crossref_primary_10_1016_j_gsf_2023_101732 crossref_primary_10_1145_3645105 crossref_primary_10_1109_TCSVT_2021_3138795 crossref_primary_10_1109_TCSVT_2022_3222559 crossref_primary_10_1007_s11036_023_02147_1 crossref_primary_10_1088_1674_1056_ac6861 crossref_primary_10_32604_csse_2023_036652 crossref_primary_10_1109_ACCESS_2022_3218643 crossref_primary_10_1631_FITEE_2300041 crossref_primary_10_1049_ipr2_12392 crossref_primary_10_1109_ACCESS_2022_3212145 crossref_primary_10_1109_ACCESS_2023_3275019 crossref_primary_10_1109_TCSVT_2021_3125711 crossref_primary_10_1007_s11042_023_16338_1 crossref_primary_10_1080_09500340_2022_2138593 crossref_primary_10_1007_s11036_023_02133_7 crossref_primary_10_3390_math10224249 crossref_primary_10_1016_j_engappai_2021_104450 crossref_primary_10_1080_13682199_2023_2195090 crossref_primary_10_1016_j_aej_2023_05_051 crossref_primary_10_1007_s10851_021_01048_w crossref_primary_10_1109_TMM_2023_3295578 crossref_primary_10_1016_j_chaos_2022_112770 crossref_primary_10_1109_ACCESS_2022_3194730 crossref_primary_10_1007_s11063_021_10582_y crossref_primary_10_1155_2022_1720842 crossref_primary_10_1088_1402_4896_ac95d9 crossref_primary_10_1007_s11042_023_15682_6 crossref_primary_10_1155_2022_4858806 crossref_primary_10_1016_j_eswa_2023_120811 crossref_primary_10_3390_app14083153 crossref_primary_10_1109_LSP_2023_3313444 crossref_primary_10_1142_S0218127422501863 crossref_primary_10_32604_cmc_2023_035695 crossref_primary_10_1007_s11042_023_14683_9 |
Cites_doi | 10.1186/s13640-016-0144-3 10.1109/LSP.2020.2996507 10.1109/TIP.2006.891046 10.1109/LSP.2019.2909080 10.1109/83.855427 10.1109/TCSVT.2003.815962 10.1109/TIP.2014.2307482 10.1109/TIP.2004.840686 10.1109/TKDE.2013.45 10.1109/TIFS.2016.2566261 10.1587/elex.5.870 10.5370/JEET.2016.11.4.974 10.1109/TIFS.2011.2145372 10.1109/TCSVT.2009.2020257 10.1016/j.ins.2020.12.002 10.1007/s11554-019-00891-w 10.1109/TIFS.2015.2485163 10.1109/TKDE.2018.2837745 10.1109/TCSVT.2006.869964 10.1109/ACCESS.2016.2573308 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LSP.2021.3080181 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2361 |
EndPage | 1129 |
ExternalDocumentID | 10_1109_LSP_2021_3080181 9431657 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key R&D Projects of Liaoning Province grantid: 2019020105-JH2/103 – fundername: National Natural Science Foundation of China grantid: 61672124; 61802212; 61872203 funderid: 10.13039/501100001809 – fundername: Jinan City "20 universities" Funding Projects Introducing Innovation Team Program grantid: 2019GXRC031 – fundername: Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund grantid: MMJJ20170203 – fundername: Liaoning Province Science and Technology Innovation Leading Talents Program grantid: XLYC1802013 |
GroupedDBID | -~X .DC 0R~ 0ZS 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAYJJ ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 XFK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-553593d945166b156054ad5267a5d0618cf04b836bf4213f97e78890c790f053 |
IEDL.DBID | RIE |
ISSN | 1070-9908 |
IngestDate | Thu Oct 10 18:06:28 EDT 2024 Fri Aug 23 02:31:15 EDT 2024 Wed Jun 26 19:26:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-553593d945166b156054ad5267a5d0618cf04b836bf4213f97e78890c790f053 |
ORCID | 0000-0002-7030-4291 0000-0002-9030-7393 0000-0001-7729-1422 0000-0002-9724-0152 |
PQID | 2541484055 |
PQPubID | 75747 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1109_LSP_2021_3080181 ieee_primary_9431657 proquest_journals_2541484055 |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE signal processing letters |
PublicationTitleAbbrev | LSP |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ni (ref9) 2006; 16 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref19 doi: 10.1186/s13640-016-0144-3 – ident: ref12 doi: 10.1109/LSP.2020.2996507 – ident: ref10 doi: 10.1109/TIP.2006.891046 – ident: ref11 doi: 10.1109/LSP.2019.2909080 – ident: ref13 doi: 10.1109/83.855427 – ident: ref8 doi: 10.1109/TCSVT.2003.815962 – ident: ref17 doi: 10.1109/TIP.2014.2307482 – ident: ref7 doi: 10.1109/TIP.2004.840686 – ident: ref5 doi: 10.1109/TKDE.2013.45 – ident: ref2 doi: 10.1109/TIFS.2016.2566261 – ident: ref14 doi: 10.1587/elex.5.870 – ident: ref18 doi: 10.5370/JEET.2016.11.4.974 – ident: ref15 doi: 10.1109/TIFS.2011.2145372 – ident: ref16 doi: 10.1109/TCSVT.2009.2020257 – ident: ref3 doi: 10.1016/j.ins.2020.12.002 – ident: ref20 doi: 10.1007/s11554-019-00891-w – ident: ref6 doi: 10.1109/TIFS.2015.2485163 – ident: ref4 doi: 10.1109/TKDE.2018.2837745 – volume: 16 start-page: 354 year: 2006 ident: ref9 article-title: Reversible data hiding publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2006.869964 contributor: fullname: ni – ident: ref1 doi: 10.1109/ACCESS.2016.2573308 |
SSID | ssj0008185 |
Score | 2.6093612 |
Snippet | An efficient predictor is crucial for high embedding capacity and low image distortion. In this letter, a ridge regression-based high precision error... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1125 |
SubjectTerms | Accuracy adaptive method Algorithms Embedding error prediction Histograms Least squares Pixels Prediction algorithms Reactive power Regression Reversible data hiding ridge regression predictor Signal processing algorithms Stability criteria Technological innovation Training |
Title | High Precision Error Prediction Algorithm Based on Ridge Regression Predictor for Reversible Data Hiding |
URI | https://ieeexplore.ieee.org/document/9431657 https://www.proquest.com/docview/2541484055 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxh4FUShIA8sSKSNEzuOxwKtOiBUtR3YIsd22kolQWn6__HlUYFgYcvDTqK7-L473wuhezekRHPtOkrywKGGEUfGPHYSqgKiWaioBo_uZM7f3sOXEZTJedznwhhjyuAz04fD0pevM7WDrbKBgLxtxluoxUVY5WrtpS4ATxVf6DpWwoaNS9IVg9f51BqCHun7Vj0iIfkBQWVPlV-CuESX8cn_vusUHddaJB5WbD9DByY9R0ffagt20AoiOPA0r3vo4FGeZzmc63WZyoCHm2WWr4vVB36ySKaxvTSD5C08M8sqODZthtuJVre1N8oYjnhj8IssJJ6sAfgu0GI8WjxPnLqtgqOsPVo4jPlM-FpAi94ghkxqRqVmXsAl0xbeQ5W4NA79IE6oR_xEcGPtZOEqLtzErtlL1E6z1FwhrJQP5QiNR61WpRWRUDzI0ywwibCGo-yih4bQ0WdVPCMqjQ5XRJYpETAlqpnSRR0g7H5cTdMu6jWcierVtY086F1uX8DY9d-zbtAhPLvaKumhdpHvzC1qbfXurvxrvgBid74F |
link.rule.ids | 315,782,786,798,4028,27932,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHtSDLzSiqHvwYmKhj91u94gCwYiEAAdvTbu7BRIEU-D_u9MWotGLtz52s81Md76ZnRfAvR1QR3FlWzLivkU1c6wo5rGVUOk7igWSKvTodoa89x40W1gm53GbC6O1zoLPdA0vM1--Wsg1HpXVBeZtM74Le4xyn-fZWlu5i9CTRxjalpGxwcYpaYt6d9g3pqDr1DyjIDmB8wOEsq4qv0Rxhi_t4_992QkcFXokaeSMP4UdPT-Dw2_VBcswwRgO0k-LLjqklaaLFO_VNEtmII3ZeJFOV5MP8mSwTBHzaIDpW2Sgx3l47Hwz3Ew02q15kUVxxDNNmtEqIp0pQt85jNqt0XPHKhorWNJYpCuLMY8JTwls0uvHmEvNaKSY6_OIKQPwgUxsGgeeHyfUdbxEcG0sZWFLLuzE7NoLKM0Xc30JREoPCxJqlxq9SkknwvJBrmK-ToQxHaMKPGwIHX7m5TPCzOywRWiYEiJTwoIpFSgjYbfjCppWoLrhTFjsr2XoYvdyswBjV3_PuoP9zuitG3Zfeq_XcIDr5AcnVSit0rW-gd2lWt9mf9AXkWfBVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Precision+Error+Prediction+Algorithm+Based+on+Ridge+Regression+Predictor+for+Reversible+Data+Hiding&rft.jtitle=IEEE+signal+processing+letters&rft.au=Wang%2C+Xiaoyu&rft.au=Wang%2C+Xingyuan&rft.au=Ma%2C+Bin&rft.au=Li%2C+Qi&rft.date=2021&rft.pub=IEEE&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=28&rft.spage=1125&rft.epage=1129&rft_id=info:doi/10.1109%2FLSP.2021.3080181&rft.externalDocID=9431657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |