Maximizing survival time in a random walk on an interval

A gambler buys N tokens that enable him to play N rounds of the following game. A symmetric random walk on a discrete interval { − r, ..., r} starts from the point 0. The gambler knows only the number of steps made so far, but is unaware of the current position of the walk. Once the walk hits one of...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic models Vol. 34; no. 2; pp. 154 - 165
Main Authors: Kubicka, Ewa M., Kubicki, Grzegorz, Kuchta, Małgorzata, Morayne, Michał
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 03-04-2018
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A gambler buys N tokens that enable him to play N rounds of the following game. A symmetric random walk on a discrete interval { − r, ..., r} starts from the point 0. The gambler knows only the number of steps made so far, but is unaware of the current position of the walk. Once the walk hits one of the barriers − r or r for the first time in the current round, the round ends with no payoff. The gambler can start a new round by inserting a new token, if there are any tokens left. The gambler can end the game at any time getting the payoff equal to the number of steps made in the current round. We find the optimal stopping strategy for this game and calculate the expected payoff once the optimal strategy is applied.
AbstractList A gambler buys N tokens that enable him to play N rounds of the following game. A symmetric random walk on a discrete interval { - r, ..., r} starts from the point 0. The gambler knows only the number of steps made so far, but is unaware of the current position of the walk. Once the walk hits one of the barriers - r or r for the first time in the current round, the round ends with no payoff. The gambler can start a new round by inserting a new token, if there are any tokens left. The gambler can end the game at any time getting the payoff equal to the number of steps made in the current round. We find the optimal stopping strategy for this game and calculate the expected payoff once the optimal strategy is applied.
A gambler buys N tokens that enable him to play N rounds of the following game. A symmetric random walk on a discrete interval { − r, ..., r} starts from the point 0. The gambler knows only the number of steps made so far, but is unaware of the current position of the walk. Once the walk hits one of the barriers − r or r for the first time in the current round, the round ends with no payoff. The gambler can start a new round by inserting a new token, if there are any tokens left. The gambler can end the game at any time getting the payoff equal to the number of steps made in the current round. We find the optimal stopping strategy for this game and calculate the expected payoff once the optimal strategy is applied.
Author Kubicka, Ewa M.
Kubicki, Grzegorz
Kuchta, Małgorzata
Morayne, Michał
Author_xml – sequence: 1
  givenname: Ewa M.
  surname: Kubicka
  fullname: Kubicka, Ewa M.
  organization: University of Louisville
– sequence: 2
  givenname: Grzegorz
  surname: Kubicki
  fullname: Kubicki, Grzegorz
  email: gkubicki@louisville.edu
  organization: University of Louisville
– sequence: 3
  givenname: Małgorzata
  surname: Kuchta
  fullname: Kuchta, Małgorzata
  organization: Wrocław University of Technology
– sequence: 4
  givenname: Michał
  surname: Morayne
  fullname: Morayne, Michał
  organization: Wrocław University of Technology
BookMark eNp9kF9LwzAUxYNMcJt-BCHgc2eSm7bpmzJ0ChNf9DlkaSqZbTKTbnN-elM2X326l8Pv3D9ngkbOO4PQNSUzSgS5pTmwAng1Y4SWM8oJA16eofGgZ5xRPjr1A3SBJjGuCaF5KcQYiRf1bTv7Y90HjtuwszvV4t52BluHFQ7K1b7De9V-Yp8El-TehARdovNGtdFcneoUvT8-vM2fsuXr4nl-v8w0gOgzyKGqRQGirEst-CrnJC8qoTUFXjdARJ3OaEq6MrqqtGgKQgvCKq7YyhRCMJiim-PcTfBfWxN7ufbb4NJKyQgwKGlBIVH5kdLBxxhMIzfBdiocJCVyCEn-hSSHkOQppOS7O_qsa3zo1N6Htpa9OrQ-NOl5baOE_0f8ArwbbUM
CitedBy_id crossref_primary_10_1080_03610926_2019_1662044
Cites_doi 10.1016/S0899-8256(03)00121-0
10.1007/978-3-662-11281-6
10.1007/978-1-4684-6257-9
10.1287/opre.20.1.37
10.1239/aap/1418396245
10.1093/imamci/dnt021
10.1002/nav.3800130105
10.1002/nav.3800290103
10.1214/EJP.v14-631
10.1016/j.jet.2011.03.003
10.1073/pnas.1400987111
10.1002/nav.3800060203
10.1214/aop/1176988174
10.1007/s00186-017-0594-0
10.1080/03610926.2011.654040
ContentType Journal Article
Copyright 2018 Taylor & Francis 2018
2018 Taylor & Francis
Copyright_xml – notice: 2018 Taylor & Francis 2018
– notice: 2018 Taylor & Francis
DBID AAYXX
CITATION
DOI 10.1080/15326349.2017.1402347
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-4214
EndPage 165
ExternalDocumentID 10_1080_15326349_2017_1402347
1402347
Genre Articles
GrantInformation_xml – fundername: National Science Center (Narodowe Centrum Nauki), Poland
  grantid: NCN Grant DEC-2015/17/B/ST6/01868
  funderid: 10.13039/501100004281
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29Q
30N
4.4
8V8
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABDBF
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBR
EBS
EBU
EJD
EMK
EPL
EST
ESX
E~A
E~B
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NHB
NY~
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TH9
TN5
TTHFI
TUS
TWF
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
AWYRJ
CITATION
K1G
TBQAZ
TDBHL
TUROJ
ID FETCH-LOGICAL-c338t-3539d86387d7c84b5405698cc134df308d788f71bec99c8f60160294a2be68823
IEDL.DBID TFW
ISSN 1532-6349
IngestDate Thu Oct 10 21:53:04 EDT 2024
Thu Nov 21 21:33:50 EST 2024
Tue Jun 13 19:51:28 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-3539d86387d7c84b5405698cc134df308d788f71bec99c8f60160294a2be68823
PQID 2032371613
PQPubID 216161
PageCount 12
ParticipantIDs proquest_journals_2032371613
crossref_primary_10_1080_15326349_2017_1402347
informaworld_taylorfrancis_310_1080_15326349_2017_1402347
PublicationCentury 2000
PublicationDate 2018-04-03
PublicationDateYYYYMMDD 2018-04-03
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Stochastic models
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0001
cit0012
Chow Y.S. (cit0003) 1971
cit0008
cit0009
cit0006
cit0017
Fudenberg D. (cit0005) 1998
cit0007
cit0018
cit0004
cit0015
cit0016
cit0002
cit0013
cit0014
References_xml – ident: cit0004
  doi: 10.1016/S0899-8256(03)00121-0
– volume-title: Great Expectations: The Theory of Optimal Stopping
  year: 1971
  ident: cit0003
  contributor:
    fullname: Chow Y.S.
– ident: cit0018
  doi: 10.1007/978-3-662-11281-6
– ident: cit0017
  doi: 10.1007/978-1-4684-6257-9
– ident: cit0009
  doi: 10.1287/opre.20.1.37
– ident: cit0013
  doi: 10.1239/aap/1418396245
– ident: cit0014
  doi: 10.1093/imamci/dnt021
– ident: cit0015
  doi: 10.1002/nav.3800130105
– ident: cit0002
  doi: 10.1002/nav.3800290103
– ident: cit0008
  doi: 10.1214/EJP.v14-631
– volume-title: The Theory of Learning in Games
  year: 1998
  ident: cit0005
  contributor:
    fullname: Fudenberg D.
– ident: cit0007
  doi: 10.1016/j.jet.2011.03.003
– ident: cit0006
  doi: 10.1073/pnas.1400987111
– ident: cit0016
  doi: 10.1002/nav.3800060203
– ident: cit0001
  doi: 10.1214/aop/1176988174
– ident: cit0011
  doi: 10.1007/s00186-017-0594-0
– ident: cit0012
  doi: 10.1080/03610926.2011.654040
SSID ssj0015788
Score 2.1582592
Snippet A gambler buys N tokens that enable him to play N rounds of the following game. A symmetric random walk on a discrete interval { − r, ..., r} starts from the...
A gambler buys N tokens that enable him to play N rounds of the following game. A symmetric random walk on a discrete interval { - r, ..., r} starts from the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 154
SubjectTerms Economic models
Game theory
Optimal stopping time
Optimization
Random walk
Random walk theory
Title Maximizing survival time in a random walk on an interval
URI https://www.tandfonline.com/doi/abs/10.1080/15326349.2017.1402347
https://www.proquest.com/docview/2032371613
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagUxl4FBCFgjywBprYceyxglZdykIRbJZjJ1JEmyLSCsSv5y6PigohBhgTyVZ0vsd3zt13hFyGwrrQt6C8QgqPm5B7KlbWcyowIoptIi3eQ47vo7sneTtEmpxB0wuDZZWYQ6cVUUTpq9G4TVw0FXHXYKSBYBzbTPwITB3CDsd-csA2qNfT0eP6PwLoo6wYUwMPlzQ9PD_tshGdNrhLv_nqMgCN9v7h0_fJbo0-6aBSlwOyleQdsjNZU7cWHdJG-FmxNx8SOTHv2Tz7gPhGixV4FdBLiuPoaZZTQyHOucWcvpnZM13Ai5xmZQmlmR2Rh9FwejP26lkLnoUkdemxkCknwRgjF1nJYwRyQklrfcZdyvrSgSTTyIcjV8rKFFlc-oHiJogTASidHZNWvsiTE0IBgSlEahbn3yC5DYRJTIXjMBXOWNUlV42M9UtFqaH9mqm0kY9G-ehaPl2ivp6EXpZ3GWk1eESzX9b2mmPTtXUWGqfGM0gUfXb6h63PSBseZVnGw3qktXxdJedku3Cri1IJPwFS3tQ9
link.rule.ids 315,782,786,1455,1509,27933,27934,58021,59734,60523
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4IHsSDD9SIou7Ba5V2-9g9GoVgBC5i9LZpd9uECMUIROOvd6YPIjHGg17b7KaZx84309lvAM49XxvP1mi8vvAtN_RcS0ZSW0Y6oR9EOhaa6pDd-2DwJG7aRJOzvAtDbZWUQyc5UUR2VpNzUzG6bIm7RC91fO7SPRM7QF_HuOMGFVhHcMyJP3_YeVz-SUCLFDlnqmPRmvIWz0_brMSnFfbSb6d1FoI62__x8TuwVQBQdpVbzC6sxWkdNvtL9tZZHWqEQHMC5z0Q_fB9NBl9YIhjswUeLGiajCbSs1HKQoahzkwn7C0cP7MpPkjZKOuiDMf78NBpD6-7VjFuwdKYp84t7nFpBPpjYAIt3IiwnC-F1jZ3TcJbwqAok8BGrUupRUJELi1HuqETxT4CdX4A1XSaxofAEIRJAmuaRuAQvw1GSsqGIy_xTahlAy5KIauXnFVD2QVZaSkfRfJRhXwaIL-qQs2zckaSzx5R_Je1zVJvqnDQmaLB8RxzRZsf_WHrM9joDvs91bsd3B1DDV-JrKuHN6E6f13EJ1CZmcVpZpGf4AvYYQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5sBdGDj6pYrboHr1GTzWP3WGyLohXBit6WZDeBYJsW26L4653JoygiHvSasEuYnZlvZjPzDcCJ52vj2RqV1xe-5Yaea8lIastIJ_SDSMdC0z3k5X1w-yQ6XaLJaVe9MFRWSTl0UhBF5L6ajHtikqoi7gyN1PG5S20mdoCmjrDjBjVY9gQCFqr0oPe4-JGACikKylTHojVVE89P23yBpy_kpd-cdY5AvY1_-PZNWC_DT9Yu9GULluKsAWv9BXfrtAGrFH8W9M3bIPrhWzpK3xHg2HSObgUVk9E8epZmLGQIdGY8Yq_h8JmN8UHG0ryGMhzuwEOvO7i4tMphC5bGLHVmcY9LI9AaAxNo4UYUyflSaG1z1yT8XBiUZBLYeOZSapEQjcu5I93QiWIfw3S-C_VsnMV7wDAEkxSqaRqAQ-w2iJOUC0de4ptQyyacVjJWk4JTQ9klVWklH0XyUaV8miA_n4Sa5ZcZSTF5RPFf1raqY1OleU4VjY3nmCnafP8PWx_Dyl2np26ubq8PYBXfiLykh7egPnuZx4dQm5r5Ua6PHz7X1wU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+survival+time+in+a+random+walk+on+an+interval&rft.jtitle=Stochastic+models&rft.au=Kubicka%2C+Ewa+M.&rft.au=Kubicki%2C+Grzegorz&rft.au=Kuchta%2C+Ma%C5%82gorzata&rft.au=Morayne%2C+Micha%C5%82&rft.date=2018-04-03&rft.pub=Taylor+%26+Francis&rft.issn=1532-6349&rft.eissn=1532-4214&rft.volume=34&rft.issue=2&rft.spage=154&rft.epage=165&rft_id=info:doi/10.1080%2F15326349.2017.1402347&rft.externalDocID=1402347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-6349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-6349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-6349&client=summon