Cold atmospheric‐pressure plasma treatment of turmeric powder: microbial load, essential oil profile, bioactivity and microstructure analyses

Cold atmospheric‐pressure plasma treatment was applied to decontaminate turmeric powder. Cold plasma reduced the aerobic microbial count of turmeric powder by approximately 1.5 log CFU g−1. Cold plasma exerted both improving and deteriorating effects on essential oil profile of turmeric. Cold plasma...

Full description

Saved in:
Bibliographic Details
Published in:International journal of food science & technology Vol. 56; no. 5; pp. 2224 - 2232
Main Authors: Hemmati, Vahid, Garavand, Farhad, Goudarzi, Mostafa, Sarlak, Zahra, Cacciotti, Ilaria, Tiwari, Brijesh K.
Format: Journal Article
Language:English
Published: Oxford Wiley Subscription Services, Inc 01-05-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cold atmospheric‐pressure plasma treatment was applied to decontaminate turmeric powder. Cold plasma reduced the aerobic microbial count of turmeric powder by approximately 1.5 log CFU g−1. Cold plasma exerted both improving and deteriorating effects on essential oil profile of turmeric. Cold plasma enhanced total phenolic and flavonoid contents and diminished antioxidant activity. Cold plasma caused damages on microstructure of turmeric powder. Summary Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil profile, colour parameters, total phenolic content, total flavonoid content, antioxidant activity and microstructure. CAPP treatment caused a reduction of approximately 1.5 log CFU g−1 in aerobic viable cell count of turmeric powder, which was most pronounced during the first 3 min of the treatment. The inactivation kinetic was fitted to the Weibull model with R2 of 0.9913 and RMSE of 0.0641. Gas chromatography–mass spectrometry analysis of essential oils identified twelve different components for turmeric powder of which 1,8‐Cineole, α‐Terpinolene and trans‐Caryophyllene were lost and ar‐Turmerone and α‐Zingiberene experienced considerable increases after plasma treatment. The double‐edged effect of plasma treatment was also observed on bioactivity. Scanning electron microscopy showed formation of super‐agglomerates in plasma‐treated samples due probably to coalescence of the granules with plasma‐damaged walls.
AbstractList Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil profile, colour parameters, total phenolic content, total flavonoid content, antioxidant activity and microstructure. CAPP treatment caused a reduction of approximately 1.5 log CFU g−1 in aerobic viable cell count of turmeric powder, which was most pronounced during the first 3 min of the treatment. The inactivation kinetic was fitted to the Weibull model with R2 of 0.9913 and RMSE of 0.0641. Gas chromatography–mass spectrometry analysis of essential oils identified twelve different components for turmeric powder of which 1,8‐Cineole, α‐Terpinolene and trans‐Caryophyllene were lost and ar‐Turmerone and α‐Zingiberene experienced considerable increases after plasma treatment. The double‐edged effect of plasma treatment was also observed on bioactivity. Scanning electron microscopy showed formation of super‐agglomerates in plasma‐treated samples due probably to coalescence of the granules with plasma‐damaged walls.
Cold atmospheric‐pressure plasma treatment was applied to decontaminate turmeric powder. Cold plasma reduced the aerobic microbial count of turmeric powder by approximately 1.5 log CFU g−1. Cold plasma exerted both improving and deteriorating effects on essential oil profile of turmeric. Cold plasma enhanced total phenolic and flavonoid contents and diminished antioxidant activity. Cold plasma caused damages on microstructure of turmeric powder. Summary Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil profile, colour parameters, total phenolic content, total flavonoid content, antioxidant activity and microstructure. CAPP treatment caused a reduction of approximately 1.5 log CFU g−1 in aerobic viable cell count of turmeric powder, which was most pronounced during the first 3 min of the treatment. The inactivation kinetic was fitted to the Weibull model with R2 of 0.9913 and RMSE of 0.0641. Gas chromatography–mass spectrometry analysis of essential oils identified twelve different components for turmeric powder of which 1,8‐Cineole, α‐Terpinolene and trans‐Caryophyllene were lost and ar‐Turmerone and α‐Zingiberene experienced considerable increases after plasma treatment. The double‐edged effect of plasma treatment was also observed on bioactivity. Scanning electron microscopy showed formation of super‐agglomerates in plasma‐treated samples due probably to coalescence of the granules with plasma‐damaged walls.
Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil profile, colour parameters, total phenolic content, total flavonoid content, antioxidant activity and microstructure. CAPP treatment caused a reduction of approximately 1.5 log CFU g −1 in aerobic viable cell count of turmeric powder, which was most pronounced during the first 3 min of the treatment. The inactivation kinetic was fitted to the Weibull model with R 2 of 0.9913 and RMSE of 0.0641. Gas chromatography–mass spectrometry analysis of essential oils identified twelve different components for turmeric powder of which 1,8‐Cineole, α‐Terpinolene and trans‐Caryophyllene were lost and ar‐Turmerone and α‐Zingiberene experienced considerable increases after plasma treatment. The double‐edged effect of plasma treatment was also observed on bioactivity. Scanning electron microscopy showed formation of super‐agglomerates in plasma‐treated samples due probably to coalescence of the granules with plasma‐damaged walls.
Author Cacciotti, Ilaria
Sarlak, Zahra
Hemmati, Vahid
Garavand, Farhad
Tiwari, Brijesh K.
Goudarzi, Mostafa
Author_xml – sequence: 1
  givenname: Vahid
  surname: Hemmati
  fullname: Hemmati, Vahid
  organization: University of Tehran
– sequence: 2
  givenname: Farhad
  orcidid: 0000-0002-9448-7010
  surname: Garavand
  fullname: Garavand, Farhad
  email: farhad.garavand@teagasc.ie
  organization: Teagasc Food Research Centre
– sequence: 3
  givenname: Mostafa
  surname: Goudarzi
  fullname: Goudarzi, Mostafa
  organization: University of Tehran
– sequence: 4
  givenname: Zahra
  surname: Sarlak
  fullname: Sarlak, Zahra
  organization: Shahid Beheshti University of Medical Sciences
– sequence: 5
  givenname: Ilaria
  surname: Cacciotti
  fullname: Cacciotti, Ilaria
  organization: University of Rome 'Niccolò Cusano'
– sequence: 6
  givenname: Brijesh K.
  surname: Tiwari
  fullname: Tiwari, Brijesh K.
  organization: Teagasc Food Research Centre
BookMark eNp9kEFOwzAQRS1UJNrChhNYYoeaYsd247JDFYWiSiyAdeTEtnCVxMF2qLrjBnBGToJDWDOb0Ujvz_z5EzBqbKMAOMdojmNdmZ32c0w54UdgjMmCJekixSMwRkuGEkZTcgIm3u8QQinJ6Bh8rmwloQi19e2rcqb8_vhqnfK-cwq2lfC1gMGpCKgmQKth6Fzdc7C1e6ncNaxN6WxhRAUrK-QMRm1E-9maCrbOalOpGSyMFWUw7yYcoGjkIPPBdWXoT4lGVAev_Ck41qLy6uyvT8HL-vZ5dZ9sH-82q5ttUhLCeUI0TsuCI42XGJWYL5XgCutCl2iJJBMkE1TgNKN8IWiGFeM6ZVSygmZSaonJFFwMe6PBt075kO9s56IJn6cs7lswltFIXQ5U79U7pfPWmVq4Q45R3gee94Hnv4FHGA_wPj58-IfMNw_rp0HzA5D4id0
CitedBy_id crossref_primary_10_1016_j_tifs_2022_03_004
crossref_primary_10_3390_antiox10111740
crossref_primary_10_1016_j_foodchem_2023_136408
crossref_primary_10_1016_j_foodchem_2024_138699
crossref_primary_10_46300_91011_2023_17_2
crossref_primary_10_1007_s12393_022_09329_9
crossref_primary_10_1016_j_jafr_2024_101061
crossref_primary_10_1016_j_algal_2024_103432
crossref_primary_10_1016_j_focha_2023_100295
crossref_primary_10_1111_jfpe_14203
crossref_primary_10_1016_j_foodchem_2024_139233
crossref_primary_10_1039_D2FB00014H
crossref_primary_10_1016_j_foodres_2023_113920
crossref_primary_10_1016_j_ifset_2023_103294
crossref_primary_10_1007_s11694_024_02720_6
crossref_primary_10_1016_j_lwt_2023_114585
crossref_primary_10_3390_foods12173181
crossref_primary_10_3390_foods10020326
crossref_primary_10_1007_s00217_021_03750_w
crossref_primary_10_1080_03067319_2021_1970149
crossref_primary_10_1016_j_meafoo_2024_100183
Cites_doi 10.1016/j.ifset.2017.02.012
10.1016/j.jtcme.2016.05.005
10.1016/j.ifset.2015.11.019
10.1111/1541-4337.12379
10.1016/j.jfoodeng.2014.12.017
10.1016/j.radphyschem.2018.02.028
10.1016/j.postharvbio.2015.04.008
10.1016/j.fm.2013.08.019
10.1007/s13197-017-2882-3
10.1016/j.lwt.2014.08.036
10.9734/AJEA/2015/16517
10.1016/j.tifs.2018.07.014
10.1140/epjd/e2012-30053-1
10.1016/j.lwt.2017.06.010
10.1111/jfpp.13334
10.1016/j.foodcont.2017.04.032
10.1111/ijfs.12933
10.1016/j.fm.2016.10.006
10.1016/j.ifset.2020.102392
10.1016/j.ifset.2017.10.001
10.1016/j.foodcont.2020.107378
10.1016/j.jfoodeng.2018.08.002
10.1080/10942912.2015.1099045
10.14511/jasa.2012.010403
10.1002/fsn3.876
10.1016/j.jfoodeng.2013.10.023
10.3923/jm.2016.42.46
10.1016/j.jfoodeng.2020.110075
10.1007/s13762-015-0796-z
10.1002/jsfa.8268
10.1016/j.fm.2016.07.007
ContentType Journal Article
Copyright 2020 Institute of Food Science and Technology
International Journal of Food Science and Technology © 2021 Institute of Food Science and Technology
Copyright_xml – notice: 2020 Institute of Food Science and Technology
– notice: International Journal of Food Science and Technology © 2021 Institute of Food Science and Technology
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7ST
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
SOI
DOI 10.1111/ijfs.14838
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Environment Abstracts
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Diet & Clinical Nutrition
EISSN 1365-2621
EndPage 2232
ExternalDocumentID 10_1111_ijfs_14838
IJFS14838
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
3-9
31~
33P
3EH
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
Y6R
YFH
YUY
ZZTAW
~IA
~WT
AAYXX
ABEJV
CITATION
TOX
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7ST
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
SOI
ID FETCH-LOGICAL-c3388-3f12cb80f1910c189ea8e1fbfc090d5a37a4a127486a471e58f254d5b47ddfd13
IEDL.DBID 33P
ISSN 0950-5423
IngestDate Tue Nov 19 05:19:29 EST 2024
Fri Nov 22 01:00:24 EST 2024
Sat Aug 24 01:04:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3388-3f12cb80f1910c189ea8e1fbfc090d5a37a4a127486a471e58f254d5b47ddfd13
ORCID 0000-0002-9448-7010
PQID 2518965574
PQPubID 2026381
PageCount 9
ParticipantIDs proquest_journals_2518965574
crossref_primary_10_1111_ijfs_14838
wiley_primary_10_1111_ijfs_14838_IJFS14838
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of food science & technology
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2017; 84
2019; 7
2015; 12
2017; 7
2017; 20
2019; 53
2020; 284
2015; 50
2017; 44
2015; 167
2018; 148
2018; 80
2018; 83
2015; 107
2015; 8
2018; 42
2016; 34
2019; 241
2016; 11
2017; 97
2018; 17
2012; 1
2015; 62
2020
2017; 54
2014; 38
2020; 118
2016; 60
2012; 66
2014; 125
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 42
  year: 2018
  article-title: Effectiveness of electron beam irradiation for microbial decontamination of turmeric powder ( Linne) and analysis of curcuminoid degradation
  publication-title: Journal of Food Processing and Preservation
– volume: 8
  start-page: 335
  year: 2015
  end-page: 341
  article-title: Promotion of turmeric for the food/pharmaceutical industry in Nigeria
  publication-title: Journal of Experimental Agriculture International
– volume: 284
  year: 2020
  article-title: Microbial decontamination of red pepper powder using pulsed light plasma
  publication-title: Journal of Food Engineering
– volume: 84
  start-page: 457
  year: 2017
  end-page: 463
  article-title: Effect of indirect cold plasma treatment on cashew apple juice ( L.)
  publication-title: LWT. Journal of Food Science and Technology
– volume: 54
  start-page: 4078
  year: 2017
  end-page: 4091
  article-title: Development of novel high power‐short time (HPST) microwave assisted commercial decontamination process for dried turmeric powder ( L.)
  publication-title: Journal of Food Science and Technology
– volume: 38
  start-page: 128
  year: 2014
  end-page: 136
  article-title: Microbial decontamination of red pepper powder by cold plasma
  publication-title: Food Microbiology
– volume: 17
  start-page: 1379
  year: 2018
  end-page: 1394
  article-title: Effects of nonthermal plasma technology on functional food components
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 60
  start-page: 142
  year: 2016
  end-page: 146
  article-title: Influence of in‐package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets
  publication-title: Food Microbiology
– volume: 20
  start-page: 19
  year: 2017
  end-page: 29
  article-title: Determination of phenolic profile and antioxidant activity of pistachio hull using high‐performance liquid chromatography–diode array detector–electro‐spray ionization–mass spectrometry as affected by ultrasound and microwave
  publication-title: International Journal of Food Properties
– volume: 148
  start-page: 60
  year: 2018
  end-page: 67
  article-title: Effect of gamma irradiation under various atmospheres of packaging on the microbial and physicochemical properties of turmeric powder
  publication-title: Radiation Physics and Chemistry
– volume: 7
  start-page: 205
  year: 2017
  end-page: 233
  article-title: Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review
  publication-title: Journal of Traditional and Complementary Medicine
– volume: 62
  start-page: 894
  year: 2015
  end-page: 900
  article-title: The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca ( var. Marasca) juice
  publication-title: LWT ‐ Food Science and Technology
– volume: 80
  start-page: 93
  year: 2018
  end-page: 103
  article-title: Recent developments in cold plasma decontamination technology in the food industry
  publication-title: Trends in Food Science and Technology
– volume: 66
  start-page: 276
  year: 2012
  article-title: Atmospheric‐pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation
  publication-title: European Physical Journal D: Atomic, Molecular and Optical Physics
– volume: 34
  start-page: 196
  year: 2016
  end-page: 204
  article-title: Structural characteristics and rheological properties of plasma‐treated starch
  publication-title: Innovative Food Science and Emerging Technologies
– volume: 107
  start-page: 55
  year: 2015
  end-page: 65
  article-title: Effect of cold plasma treatment on physico‐chemical parameters and antioxidant activity of minimally processed kiwifruit
  publication-title: Postharvest Biology and Technology
– volume: 50
  start-page: 2630
  year: 2015
  end-page: 2638
  article-title: Dielectric barrier discharge plasma for microbial decontamination of dried laver: effects on physicochemical characteristics
  publication-title: International Journal of Food Science and Technology
– volume: 53
  start-page: 63
  year: 2019
  end-page: 69
  article-title: An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice
  publication-title: Innovative Food Science and Emerging Technologies
– volume: 167
  start-page: 12
  year: 2015
  end-page: 17
  article-title: Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices
  publication-title: Journal of Food Engineering
– volume: 7
  start-page: 1166
  year: 2019
  end-page: 1171
  article-title: Effect of cold plasma on essential oil content and composition of lemon verbena
  publication-title: Food Sciences and Nutrition
– volume: 1
  start-page: 99
  year: 2012
  end-page: 105
  article-title: Decontamination of microbiologically contaminated seeds by microwave driven discharge processed gas
  publication-title: Journal of Agricultural Science and Applications
– volume: 11
  start-page: 42
  year: 2016
  article-title: Black and green tea decontamination by cold plasma
  publication-title: Research Journal of Microbiology
– volume: 97
  start-page: 4016
  year: 2017
  end-page: 4021
  article-title: Effect of high voltage atmospheric cold plasma on white grape juice quality
  publication-title: Journal of the Science of Food and Agriculture
– volume: 241
  start-page: 51
  year: 2019
  end-page: 57
  article-title: Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper ( L.)
  publication-title: Journal of Food Engineering
– volume: 12
  start-page: 3767
  year: 2015
  end-page: 3772
  article-title: Effects of non‐thermal plasma sterilization on volatile components of tomato juice
  publication-title: International Journal of Environmental Science and Technology
– volume: 83
  start-page: 131
  year: 2018
  end-page: 140
  article-title: The effect of different decontamination methods on the microbial load, bioactive components, aroma and colour of spice paprika
  publication-title: Food Control
– volume: 44
  start-page: 235
  year: 2017
  end-page: 241
  article-title: Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries
  publication-title: Innovative Food Science and Emerging Technologies
– volume: 62
  start-page: 112
  year: 2017
  end-page: 123
  article-title: Microbial decontamination of onion powder using microwave‐powered cold plasma treatments
  publication-title: Food Microbiology
– volume: 118
  year: 2020
  article-title: Cold plasma processing of powdered Spirulina algae for spore inactivation and preservation of bioactive compounds
  publication-title: Food Control
– volume: 125
  start-page: 131
  year: 2014
  end-page: 138
  article-title: In‐package atmospheric pressure cold plasma treatment of strawberries
  publication-title: Journal of Food Engineering
– year: 2020
  article-title: Microbial decontamination of black peppercorns by simultaneous treatment with cold plasma and ultraviolet C
  publication-title: Innovative Food Science and Emerging Technologies
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ifset.2017.02.012
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jtcme.2016.05.005
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ifset.2015.11.019
– ident: e_1_2_9_22_1
  doi: 10.1111/1541-4337.12379
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jfoodeng.2014.12.017
– ident: e_1_2_9_10_1
  doi: 10.1016/j.radphyschem.2018.02.028
– ident: e_1_2_9_25_1
  doi: 10.1016/j.postharvbio.2015.04.008
– ident: e_1_2_9_14_1
  doi: 10.1016/j.fm.2013.08.019
– ident: e_1_2_9_6_1
  doi: 10.1007/s13197-017-2882-3
– ident: e_1_2_9_12_1
  doi: 10.1016/j.lwt.2014.08.036
– ident: e_1_2_9_23_1
  doi: 10.9734/AJEA/2015/16517
– ident: e_1_2_9_19_1
  doi: 10.1016/j.tifs.2018.07.014
– ident: e_1_2_9_29_1
  doi: 10.1140/epjd/e2012-30053-1
– ident: e_1_2_9_26_1
  doi: 10.1016/j.lwt.2017.06.010
– ident: e_1_2_9_31_1
  doi: 10.1111/jfpp.13334
– ident: e_1_2_9_21_1
  doi: 10.1016/j.foodcont.2017.04.032
– ident: e_1_2_9_16_1
  doi: 10.1111/ijfs.12933
– ident: e_1_2_9_15_1
  doi: 10.1016/j.fm.2016.10.006
– ident: e_1_2_9_5_1
  doi: 10.1016/j.ifset.2020.102392
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ifset.2017.10.001
– ident: e_1_2_9_7_1
  doi: 10.1016/j.foodcont.2020.107378
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jfoodeng.2018.08.002
– ident: e_1_2_9_11_1
  doi: 10.1080/10942912.2015.1099045
– ident: e_1_2_9_28_1
  doi: 10.14511/jasa.2012.010403
– ident: e_1_2_9_9_1
  doi: 10.1002/fsn3.876
– ident: e_1_2_9_20_1
  doi: 10.1016/j.jfoodeng.2013.10.023
– ident: e_1_2_9_4_1
  doi: 10.3923/jm.2016.42.46
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jfoodeng.2020.110075
– ident: e_1_2_9_18_1
  doi: 10.1007/s13762-015-0796-z
– ident: e_1_2_9_24_1
  doi: 10.1002/jsfa.8268
– ident: e_1_2_9_30_1
  doi: 10.1016/j.fm.2016.07.007
SSID ssj0002374
Score 2.4564724
Snippet Cold atmospheric‐pressure plasma treatment was applied to decontaminate turmeric powder. Cold plasma reduced the aerobic microbial count of turmeric powder by...
Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil...
Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2224
SubjectTerms Antioxidants
Bioactive compounds
Biological activity
Caryophyllene
Cineole
Coalescence
Coalescing
cold plasma
decontamination
Essential oils
Flavonoids
Gas chromatography
Inactivation
Mass spectrometry
Mass spectroscopy
Microorganisms
Microstructure
Oils & fats
Phenolic compounds
Phenols
Plasma
Powder
Scanning electron microscopy
Terpinolene
turmeric powder
Title Cold atmospheric‐pressure plasma treatment of turmeric powder: microbial load, essential oil profile, bioactivity and microstructure analyses
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fijfs.14838
https://www.proquest.com/docview/2518965574
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMeD7qIXX6bidEpA8SArtE2zpuJF9sL0MIQpeCt5hcrWjnXDq99AP6OfxCRtt3kRxFsLTVuSPHn-T_s8vwBwqbhPifS5o8VD5ARhqBxDL3QI4lIEXCiPmnrnwSgcvpBuz2BybqtamIIPsfzgZizDrtfGwCnL14w8eVW5tnOCTKWvDhNs_QZ6XC7DPioQzBF2HaxFQ8kmNWk8q6Y_vdFKYq4LVetp-rv_e8c9sFMqTHhXTIl9sCHTOmh0EzmHV7DEgI7hsKLw18FWVZycH4CPTjYWkM4nWW54Awn_ev-0qbKLmYRTrbQnFC5z02GmoPZY9p8PnGZvQs5u4CSxaCf9iHFGRQsaNnk6N-dZMoblFuEtyJLMlFSYnSsgTUXRrIDZmkdRy0qR-SF47veeOgOn3LPB4TrYJQ5Sns8ZcZWOA13ukUjqqeApprgbuQJTFNKAejoUJm2q_aLEROkQVWAWhEIo4aEjUEuzVB4DiCT2sVSCMi3qCGcM05Aol5EwUFQg1AAX1djF0wLNEVchjen42HZ8AzSrYY1L88xjLepI1MY4DBrg2g7gL3eI7x_6I3t08peLT8G2b_JfbHJkE9R0D8ozsJmLxbmdqN-vR_By
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HPTiW1xdNaB4EAtt02xTwYOsLutrEVTwVtI8oLLbLtsVr_4D_Y3-EpO0XfUiiLcWmqbMI_NNOvMFYF9xn1Hpc0eDh8gJwlA5hr3QoZhLEXChPGb6nbt3Ye-Rnp0bmpyTuhem5IeYbLgZz7DrtXFwsyH9zcvTJ1VoR6eYTsNs0NKWaDo48O1kIfZxScIcEdchGjZU7KSmkOdr7M949AUyv0NVG2s6i__8yiVYqEAmOi2tYhmmZLYCjbNUjtEBqphA-6hXE_GvwFzdn1yswls77wvExoO8MJQDKf94fbfVss8jiYYabA8YmpSno1whHbTsbx80zF-EHB2jQWrZnfQU_ZyJI2ToybOxuc_TPqpOCT9CSZqbrgpzeAVimSiHlXy2Zipm6VJksQYPnfP7dtepjm1wuM53qYOV5_OEukqngi73aCS1NXgqUdyNXEEYDlnAPJ0N0xbToVESqnSWKkgShEIo4eF1mMnyTG4AwpL4RCrBEo3rKE8SwkKq3ISGgWIC4wbs1cqLhyU7R1xnNUbwsRV8A5q1XuPKQ4tY4zoatQgJgwYcWg3-8ob44rJzZ682__LwLsx172-u4-uL3tUWzPumHMbWSjZhRktTbsN0IZ53rNV-Asz99Jo
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcHH6BefKyK6zOgeBALbdPYVLyI67KrsggqeCtpHlDZbRe74tVvoJ_RT2KStrt6EcRbC01bkkzmP-3MLwAHivuMSp87WjxEThCGyjH0QodiLkXAhfKYqXfu3IW9R9q6NJics7oWpuRDjD-4Gcuw67Ux8KFQ34w8fVKFtnOK6TTMBlqHG3I-xrfjddjHJYM5Iq5DtGqo4KQmj2fS9qc7mmjM70rVupr20v9echkWK4mJzss5sQJTMmtAs5XKETpEFQe0j3o1hr8B83V1crEK7xd5XyA2GuSFAQ6k_PPtw-bKvjxLNNRSe8DQODkd5Qppl2V_-qBh_irk8ykapJbtpB_Rz5k4RgZOno3MeZ72UbVH-DFK0tzUVJitKxDLRNmspNmaRzELS5HFGjy0L-8vOk61aYPDdbRLHaw8nyfUVToQdLlHI6nngqcSxd3IFYThkAXM07EwPWHaMUpClY5RBUmCUAglPLwOM1meyQ1AWBKfSCVYolUd5UlCWEiVm9AwUExg3IT9euziYcnmiOuYxnR8bDu-Cdv1sMaVfRaxVnU0OiEkDJpwZAfwlzvE3av2nT3a_MvFezB322rHN93e9RYs-CYXxiZKbsOM7ky5A9OFeNm1c_YL7iTzQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cold+atmospheric%E2%80%90pressure+plasma+treatment+of+turmeric+powder%3A+microbial+load%2C+essential+oil+profile%2C+bioactivity+and+microstructure+analyses&rft.jtitle=International+journal+of+food+science+%26+technology&rft.au=Hemmati%2C+Vahid&rft.au=Garavand%2C+Farhad&rft.au=Goudarzi%2C+Mostafa&rft.au=Sarlak%2C+Zahra&rft.date=2021-05-01&rft.issn=0950-5423&rft.eissn=1365-2621&rft.volume=56&rft.issue=5&rft.spage=2224&rft.epage=2232&rft_id=info:doi/10.1111%2Fijfs.14838&rft.externalDBID=10.1111%252Fijfs.14838&rft.externalDocID=IJFS14838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5423&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5423&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5423&client=summon