Cold atmospheric‐pressure plasma treatment of turmeric powder: microbial load, essential oil profile, bioactivity and microstructure analyses
Cold atmospheric‐pressure plasma treatment was applied to decontaminate turmeric powder. Cold plasma reduced the aerobic microbial count of turmeric powder by approximately 1.5 log CFU g−1. Cold plasma exerted both improving and deteriorating effects on essential oil profile of turmeric. Cold plasma...
Saved in:
Published in: | International journal of food science & technology Vol. 56; no. 5; pp. 2224 - 2232 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Wiley Subscription Services, Inc
01-05-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Cold atmospheric‐pressure plasma treatment was applied to decontaminate turmeric powder. Cold plasma reduced the aerobic microbial count of turmeric powder by approximately 1.5 log CFU g−1. Cold plasma exerted both improving and deteriorating effects on essential oil profile of turmeric. Cold plasma enhanced total phenolic and flavonoid contents and diminished antioxidant activity. Cold plasma caused damages on microstructure of turmeric powder.
Summary
Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil profile, colour parameters, total phenolic content, total flavonoid content, antioxidant activity and microstructure. CAPP treatment caused a reduction of approximately 1.5 log CFU g−1 in aerobic viable cell count of turmeric powder, which was most pronounced during the first 3 min of the treatment. The inactivation kinetic was fitted to the Weibull model with R2 of 0.9913 and RMSE of 0.0641. Gas chromatography–mass spectrometry analysis of essential oils identified twelve different components for turmeric powder of which 1,8‐Cineole, α‐Terpinolene and trans‐Caryophyllene were lost and ar‐Turmerone and α‐Zingiberene experienced considerable increases after plasma treatment. The double‐edged effect of plasma treatment was also observed on bioactivity. Scanning electron microscopy showed formation of super‐agglomerates in plasma‐treated samples due probably to coalescence of the granules with plasma‐damaged walls. |
---|---|
AbstractList | Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil profile, colour parameters, total phenolic content, total flavonoid content, antioxidant activity and microstructure. CAPP treatment caused a reduction of approximately 1.5 log CFU g−1 in aerobic viable cell count of turmeric powder, which was most pronounced during the first 3 min of the treatment. The inactivation kinetic was fitted to the Weibull model with R2 of 0.9913 and RMSE of 0.0641. Gas chromatography–mass spectrometry analysis of essential oils identified twelve different components for turmeric powder of which 1,8‐Cineole, α‐Terpinolene and trans‐Caryophyllene were lost and ar‐Turmerone and α‐Zingiberene experienced considerable increases after plasma treatment. The double‐edged effect of plasma treatment was also observed on bioactivity. Scanning electron microscopy showed formation of super‐agglomerates in plasma‐treated samples due probably to coalescence of the granules with plasma‐damaged walls. Cold atmospheric‐pressure plasma treatment was applied to decontaminate turmeric powder. Cold plasma reduced the aerobic microbial count of turmeric powder by approximately 1.5 log CFU g−1. Cold plasma exerted both improving and deteriorating effects on essential oil profile of turmeric. Cold plasma enhanced total phenolic and flavonoid contents and diminished antioxidant activity. Cold plasma caused damages on microstructure of turmeric powder. Summary Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil profile, colour parameters, total phenolic content, total flavonoid content, antioxidant activity and microstructure. CAPP treatment caused a reduction of approximately 1.5 log CFU g−1 in aerobic viable cell count of turmeric powder, which was most pronounced during the first 3 min of the treatment. The inactivation kinetic was fitted to the Weibull model with R2 of 0.9913 and RMSE of 0.0641. Gas chromatography–mass spectrometry analysis of essential oils identified twelve different components for turmeric powder of which 1,8‐Cineole, α‐Terpinolene and trans‐Caryophyllene were lost and ar‐Turmerone and α‐Zingiberene experienced considerable increases after plasma treatment. The double‐edged effect of plasma treatment was also observed on bioactivity. Scanning electron microscopy showed formation of super‐agglomerates in plasma‐treated samples due probably to coalescence of the granules with plasma‐damaged walls. Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil profile, colour parameters, total phenolic content, total flavonoid content, antioxidant activity and microstructure. CAPP treatment caused a reduction of approximately 1.5 log CFU g −1 in aerobic viable cell count of turmeric powder, which was most pronounced during the first 3 min of the treatment. The inactivation kinetic was fitted to the Weibull model with R 2 of 0.9913 and RMSE of 0.0641. Gas chromatography–mass spectrometry analysis of essential oils identified twelve different components for turmeric powder of which 1,8‐Cineole, α‐Terpinolene and trans‐Caryophyllene were lost and ar‐Turmerone and α‐Zingiberene experienced considerable increases after plasma treatment. The double‐edged effect of plasma treatment was also observed on bioactivity. Scanning electron microscopy showed formation of super‐agglomerates in plasma‐treated samples due probably to coalescence of the granules with plasma‐damaged walls. |
Author | Cacciotti, Ilaria Sarlak, Zahra Hemmati, Vahid Garavand, Farhad Tiwari, Brijesh K. Goudarzi, Mostafa |
Author_xml | – sequence: 1 givenname: Vahid surname: Hemmati fullname: Hemmati, Vahid organization: University of Tehran – sequence: 2 givenname: Farhad orcidid: 0000-0002-9448-7010 surname: Garavand fullname: Garavand, Farhad email: farhad.garavand@teagasc.ie organization: Teagasc Food Research Centre – sequence: 3 givenname: Mostafa surname: Goudarzi fullname: Goudarzi, Mostafa organization: University of Tehran – sequence: 4 givenname: Zahra surname: Sarlak fullname: Sarlak, Zahra organization: Shahid Beheshti University of Medical Sciences – sequence: 5 givenname: Ilaria surname: Cacciotti fullname: Cacciotti, Ilaria organization: University of Rome 'Niccolò Cusano' – sequence: 6 givenname: Brijesh K. surname: Tiwari fullname: Tiwari, Brijesh K. organization: Teagasc Food Research Centre |
BookMark | eNp9kEFOwzAQRS1UJNrChhNYYoeaYsd247JDFYWiSiyAdeTEtnCVxMF2qLrjBnBGToJDWDOb0Ujvz_z5EzBqbKMAOMdojmNdmZ32c0w54UdgjMmCJekixSMwRkuGEkZTcgIm3u8QQinJ6Bh8rmwloQi19e2rcqb8_vhqnfK-cwq2lfC1gMGpCKgmQKth6Fzdc7C1e6ncNaxN6WxhRAUrK-QMRm1E-9maCrbOalOpGSyMFWUw7yYcoGjkIPPBdWXoT4lGVAev_Ck41qLy6uyvT8HL-vZ5dZ9sH-82q5ttUhLCeUI0TsuCI42XGJWYL5XgCutCl2iJJBMkE1TgNKN8IWiGFeM6ZVSygmZSaonJFFwMe6PBt075kO9s56IJn6cs7lswltFIXQ5U79U7pfPWmVq4Q45R3gee94Hnv4FHGA_wPj58-IfMNw_rp0HzA5D4id0 |
CitedBy_id | crossref_primary_10_1016_j_tifs_2022_03_004 crossref_primary_10_3390_antiox10111740 crossref_primary_10_1016_j_foodchem_2023_136408 crossref_primary_10_1016_j_foodchem_2024_138699 crossref_primary_10_46300_91011_2023_17_2 crossref_primary_10_1007_s12393_022_09329_9 crossref_primary_10_1016_j_jafr_2024_101061 crossref_primary_10_1016_j_algal_2024_103432 crossref_primary_10_1016_j_focha_2023_100295 crossref_primary_10_1111_jfpe_14203 crossref_primary_10_1016_j_foodchem_2024_139233 crossref_primary_10_1039_D2FB00014H crossref_primary_10_1016_j_foodres_2023_113920 crossref_primary_10_1016_j_ifset_2023_103294 crossref_primary_10_1007_s11694_024_02720_6 crossref_primary_10_1016_j_lwt_2023_114585 crossref_primary_10_3390_foods12173181 crossref_primary_10_3390_foods10020326 crossref_primary_10_1007_s00217_021_03750_w crossref_primary_10_1080_03067319_2021_1970149 crossref_primary_10_1016_j_meafoo_2024_100183 |
Cites_doi | 10.1016/j.ifset.2017.02.012 10.1016/j.jtcme.2016.05.005 10.1016/j.ifset.2015.11.019 10.1111/1541-4337.12379 10.1016/j.jfoodeng.2014.12.017 10.1016/j.radphyschem.2018.02.028 10.1016/j.postharvbio.2015.04.008 10.1016/j.fm.2013.08.019 10.1007/s13197-017-2882-3 10.1016/j.lwt.2014.08.036 10.9734/AJEA/2015/16517 10.1016/j.tifs.2018.07.014 10.1140/epjd/e2012-30053-1 10.1016/j.lwt.2017.06.010 10.1111/jfpp.13334 10.1016/j.foodcont.2017.04.032 10.1111/ijfs.12933 10.1016/j.fm.2016.10.006 10.1016/j.ifset.2020.102392 10.1016/j.ifset.2017.10.001 10.1016/j.foodcont.2020.107378 10.1016/j.jfoodeng.2018.08.002 10.1080/10942912.2015.1099045 10.14511/jasa.2012.010403 10.1002/fsn3.876 10.1016/j.jfoodeng.2013.10.023 10.3923/jm.2016.42.46 10.1016/j.jfoodeng.2020.110075 10.1007/s13762-015-0796-z 10.1002/jsfa.8268 10.1016/j.fm.2016.07.007 |
ContentType | Journal Article |
Copyright | 2020 Institute of Food Science and Technology International Journal of Food Science and Technology © 2021 Institute of Food Science and Technology |
Copyright_xml | – notice: 2020 Institute of Food Science and Technology – notice: International Journal of Food Science and Technology © 2021 Institute of Food Science and Technology |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7ST 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 SOI |
DOI | 10.1111/ijfs.14838 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Environment Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Diet & Clinical Nutrition |
EISSN | 1365-2621 |
EndPage | 2232 |
ExternalDocumentID | 10_1111_ijfs_14838 IJFS14838 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 3-9 31~ 33P 3EH 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACKIV ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 V8K VH1 W8V W99 WBFHL WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 Y6R YFH YUY ZZTAW ~IA ~WT AAYXX ABEJV CITATION TOX 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7ST 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 SOI |
ID | FETCH-LOGICAL-c3388-3f12cb80f1910c189ea8e1fbfc090d5a37a4a127486a471e58f254d5b47ddfd13 |
IEDL.DBID | 33P |
ISSN | 0950-5423 |
IngestDate | Tue Nov 19 05:19:29 EST 2024 Fri Nov 22 01:00:24 EST 2024 Sat Aug 24 01:04:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3388-3f12cb80f1910c189ea8e1fbfc090d5a37a4a127486a471e58f254d5b47ddfd13 |
ORCID | 0000-0002-9448-7010 |
PQID | 2518965574 |
PQPubID | 2026381 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2518965574 crossref_primary_10_1111_ijfs_14838 wiley_primary_10_1111_ijfs_14838_IJFS14838 |
PublicationCentury | 2000 |
PublicationDate | May 2021 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of food science & technology |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 62 2017; 84 2019; 7 2015; 12 2017; 7 2017; 20 2019; 53 2020; 284 2015; 50 2017; 44 2015; 167 2018; 148 2018; 80 2018; 83 2015; 107 2015; 8 2018; 42 2016; 34 2019; 241 2016; 11 2017; 97 2018; 17 2012; 1 2015; 62 2020 2017; 54 2014; 38 2020; 118 2016; 60 2012; 66 2014; 125 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 42 year: 2018 article-title: Effectiveness of electron beam irradiation for microbial decontamination of turmeric powder ( Linne) and analysis of curcuminoid degradation publication-title: Journal of Food Processing and Preservation – volume: 8 start-page: 335 year: 2015 end-page: 341 article-title: Promotion of turmeric for the food/pharmaceutical industry in Nigeria publication-title: Journal of Experimental Agriculture International – volume: 284 year: 2020 article-title: Microbial decontamination of red pepper powder using pulsed light plasma publication-title: Journal of Food Engineering – volume: 84 start-page: 457 year: 2017 end-page: 463 article-title: Effect of indirect cold plasma treatment on cashew apple juice ( L.) publication-title: LWT. Journal of Food Science and Technology – volume: 54 start-page: 4078 year: 2017 end-page: 4091 article-title: Development of novel high power‐short time (HPST) microwave assisted commercial decontamination process for dried turmeric powder ( L.) publication-title: Journal of Food Science and Technology – volume: 38 start-page: 128 year: 2014 end-page: 136 article-title: Microbial decontamination of red pepper powder by cold plasma publication-title: Food Microbiology – volume: 17 start-page: 1379 year: 2018 end-page: 1394 article-title: Effects of nonthermal plasma technology on functional food components publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 60 start-page: 142 year: 2016 end-page: 146 article-title: Influence of in‐package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets publication-title: Food Microbiology – volume: 20 start-page: 19 year: 2017 end-page: 29 article-title: Determination of phenolic profile and antioxidant activity of pistachio hull using high‐performance liquid chromatography–diode array detector–electro‐spray ionization–mass spectrometry as affected by ultrasound and microwave publication-title: International Journal of Food Properties – volume: 148 start-page: 60 year: 2018 end-page: 67 article-title: Effect of gamma irradiation under various atmospheres of packaging on the microbial and physicochemical properties of turmeric powder publication-title: Radiation Physics and Chemistry – volume: 7 start-page: 205 year: 2017 end-page: 233 article-title: Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review publication-title: Journal of Traditional and Complementary Medicine – volume: 62 start-page: 894 year: 2015 end-page: 900 article-title: The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca ( var. Marasca) juice publication-title: LWT ‐ Food Science and Technology – volume: 80 start-page: 93 year: 2018 end-page: 103 article-title: Recent developments in cold plasma decontamination technology in the food industry publication-title: Trends in Food Science and Technology – volume: 66 start-page: 276 year: 2012 article-title: Atmospheric‐pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation publication-title: European Physical Journal D: Atomic, Molecular and Optical Physics – volume: 34 start-page: 196 year: 2016 end-page: 204 article-title: Structural characteristics and rheological properties of plasma‐treated starch publication-title: Innovative Food Science and Emerging Technologies – volume: 107 start-page: 55 year: 2015 end-page: 65 article-title: Effect of cold plasma treatment on physico‐chemical parameters and antioxidant activity of minimally processed kiwifruit publication-title: Postharvest Biology and Technology – volume: 50 start-page: 2630 year: 2015 end-page: 2638 article-title: Dielectric barrier discharge plasma for microbial decontamination of dried laver: effects on physicochemical characteristics publication-title: International Journal of Food Science and Technology – volume: 53 start-page: 63 year: 2019 end-page: 69 article-title: An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice publication-title: Innovative Food Science and Emerging Technologies – volume: 167 start-page: 12 year: 2015 end-page: 17 article-title: Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices publication-title: Journal of Food Engineering – volume: 7 start-page: 1166 year: 2019 end-page: 1171 article-title: Effect of cold plasma on essential oil content and composition of lemon verbena publication-title: Food Sciences and Nutrition – volume: 1 start-page: 99 year: 2012 end-page: 105 article-title: Decontamination of microbiologically contaminated seeds by microwave driven discharge processed gas publication-title: Journal of Agricultural Science and Applications – volume: 11 start-page: 42 year: 2016 article-title: Black and green tea decontamination by cold plasma publication-title: Research Journal of Microbiology – volume: 97 start-page: 4016 year: 2017 end-page: 4021 article-title: Effect of high voltage atmospheric cold plasma on white grape juice quality publication-title: Journal of the Science of Food and Agriculture – volume: 241 start-page: 51 year: 2019 end-page: 57 article-title: Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper ( L.) publication-title: Journal of Food Engineering – volume: 12 start-page: 3767 year: 2015 end-page: 3772 article-title: Effects of non‐thermal plasma sterilization on volatile components of tomato juice publication-title: International Journal of Environmental Science and Technology – volume: 83 start-page: 131 year: 2018 end-page: 140 article-title: The effect of different decontamination methods on the microbial load, bioactive components, aroma and colour of spice paprika publication-title: Food Control – volume: 44 start-page: 235 year: 2017 end-page: 241 article-title: Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries publication-title: Innovative Food Science and Emerging Technologies – volume: 62 start-page: 112 year: 2017 end-page: 123 article-title: Microbial decontamination of onion powder using microwave‐powered cold plasma treatments publication-title: Food Microbiology – volume: 118 year: 2020 article-title: Cold plasma processing of powdered Spirulina algae for spore inactivation and preservation of bioactive compounds publication-title: Food Control – volume: 125 start-page: 131 year: 2014 end-page: 138 article-title: In‐package atmospheric pressure cold plasma treatment of strawberries publication-title: Journal of Food Engineering – year: 2020 article-title: Microbial decontamination of black peppercorns by simultaneous treatment with cold plasma and ultraviolet C publication-title: Innovative Food Science and Emerging Technologies – ident: e_1_2_9_27_1 doi: 10.1016/j.ifset.2017.02.012 – ident: e_1_2_9_3_1 doi: 10.1016/j.jtcme.2016.05.005 – ident: e_1_2_9_8_1 doi: 10.1016/j.ifset.2015.11.019 – ident: e_1_2_9_22_1 doi: 10.1111/1541-4337.12379 – ident: e_1_2_9_13_1 doi: 10.1016/j.jfoodeng.2014.12.017 – ident: e_1_2_9_10_1 doi: 10.1016/j.radphyschem.2018.02.028 – ident: e_1_2_9_25_1 doi: 10.1016/j.postharvbio.2015.04.008 – ident: e_1_2_9_14_1 doi: 10.1016/j.fm.2013.08.019 – ident: e_1_2_9_6_1 doi: 10.1007/s13197-017-2882-3 – ident: e_1_2_9_12_1 doi: 10.1016/j.lwt.2014.08.036 – ident: e_1_2_9_23_1 doi: 10.9734/AJEA/2015/16517 – ident: e_1_2_9_19_1 doi: 10.1016/j.tifs.2018.07.014 – ident: e_1_2_9_29_1 doi: 10.1140/epjd/e2012-30053-1 – ident: e_1_2_9_26_1 doi: 10.1016/j.lwt.2017.06.010 – ident: e_1_2_9_31_1 doi: 10.1111/jfpp.13334 – ident: e_1_2_9_21_1 doi: 10.1016/j.foodcont.2017.04.032 – ident: e_1_2_9_16_1 doi: 10.1111/ijfs.12933 – ident: e_1_2_9_15_1 doi: 10.1016/j.fm.2016.10.006 – ident: e_1_2_9_5_1 doi: 10.1016/j.ifset.2020.102392 – ident: e_1_2_9_2_1 doi: 10.1016/j.ifset.2017.10.001 – ident: e_1_2_9_7_1 doi: 10.1016/j.foodcont.2020.107378 – ident: e_1_2_9_32_1 doi: 10.1016/j.jfoodeng.2018.08.002 – ident: e_1_2_9_11_1 doi: 10.1080/10942912.2015.1099045 – ident: e_1_2_9_28_1 doi: 10.14511/jasa.2012.010403 – ident: e_1_2_9_9_1 doi: 10.1002/fsn3.876 – ident: e_1_2_9_20_1 doi: 10.1016/j.jfoodeng.2013.10.023 – ident: e_1_2_9_4_1 doi: 10.3923/jm.2016.42.46 – ident: e_1_2_9_17_1 doi: 10.1016/j.jfoodeng.2020.110075 – ident: e_1_2_9_18_1 doi: 10.1007/s13762-015-0796-z – ident: e_1_2_9_24_1 doi: 10.1002/jsfa.8268 – ident: e_1_2_9_30_1 doi: 10.1016/j.fm.2016.07.007 |
SSID | ssj0002374 |
Score | 2.4564724 |
Snippet | Cold atmospheric‐pressure plasma treatment was applied to decontaminate turmeric powder. Cold plasma reduced the aerobic microbial count of turmeric powder by... Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil... Turmeric powder treated by cold atmospheric‐pressure plasma (CAPP) at 25 kV for various times of 3, 5 and 7 min was examined for microbial load, essential oil... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 2224 |
SubjectTerms | Antioxidants Bioactive compounds Biological activity Caryophyllene Cineole Coalescence Coalescing cold plasma decontamination Essential oils Flavonoids Gas chromatography Inactivation Mass spectrometry Mass spectroscopy Microorganisms Microstructure Oils & fats Phenolic compounds Phenols Plasma Powder Scanning electron microscopy Terpinolene turmeric powder |
Title | Cold atmospheric‐pressure plasma treatment of turmeric powder: microbial load, essential oil profile, bioactivity and microstructure analyses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fijfs.14838 https://www.proquest.com/docview/2518965574 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMeD7qIXX6bidEpA8SArtE2zpuJF9sL0MIQpeCt5hcrWjnXDq99AP6OfxCRtt3kRxFsLTVuSPHn-T_s8vwBwqbhPifS5o8VD5ARhqBxDL3QI4lIEXCiPmnrnwSgcvpBuz2BybqtamIIPsfzgZizDrtfGwCnL14w8eVW5tnOCTKWvDhNs_QZ6XC7DPioQzBF2HaxFQ8kmNWk8q6Y_vdFKYq4LVetp-rv_e8c9sFMqTHhXTIl9sCHTOmh0EzmHV7DEgI7hsKLw18FWVZycH4CPTjYWkM4nWW54Awn_ev-0qbKLmYRTrbQnFC5z02GmoPZY9p8PnGZvQs5u4CSxaCf9iHFGRQsaNnk6N-dZMoblFuEtyJLMlFSYnSsgTUXRrIDZmkdRy0qR-SF47veeOgOn3LPB4TrYJQ5Sns8ZcZWOA13ukUjqqeApprgbuQJTFNKAejoUJm2q_aLEROkQVWAWhEIo4aEjUEuzVB4DiCT2sVSCMi3qCGcM05Aol5EwUFQg1AAX1djF0wLNEVchjen42HZ8AzSrYY1L88xjLepI1MY4DBrg2g7gL3eI7x_6I3t08peLT8G2b_JfbHJkE9R0D8ozsJmLxbmdqN-vR_By |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HPTiW1xdNaB4EAtt02xTwYOsLutrEVTwVtI8oLLbLtsVr_4D_Y3-EpO0XfUiiLcWmqbMI_NNOvMFYF9xn1Hpc0eDh8gJwlA5hr3QoZhLEXChPGb6nbt3Ye-Rnp0bmpyTuhem5IeYbLgZz7DrtXFwsyH9zcvTJ1VoR6eYTsNs0NKWaDo48O1kIfZxScIcEdchGjZU7KSmkOdr7M949AUyv0NVG2s6i__8yiVYqEAmOi2tYhmmZLYCjbNUjtEBqphA-6hXE_GvwFzdn1yswls77wvExoO8MJQDKf94fbfVss8jiYYabA8YmpSno1whHbTsbx80zF-EHB2jQWrZnfQU_ZyJI2ToybOxuc_TPqpOCT9CSZqbrgpzeAVimSiHlXy2Zipm6VJksQYPnfP7dtepjm1wuM53qYOV5_OEukqngi73aCS1NXgqUdyNXEEYDlnAPJ0N0xbToVESqnSWKkgShEIo4eF1mMnyTG4AwpL4RCrBEo3rKE8SwkKq3ISGgWIC4wbs1cqLhyU7R1xnNUbwsRV8A5q1XuPKQ4tY4zoatQgJgwYcWg3-8ob44rJzZ682__LwLsx172-u4-uL3tUWzPumHMbWSjZhRktTbsN0IZ53rNV-Asz99Jo |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcHH6BefKyK6zOgeBALbdPYVLyI67KrsggqeCtpHlDZbRe74tVvoJ_RT2KStrt6EcRbC01bkkzmP-3MLwAHivuMSp87WjxEThCGyjH0QodiLkXAhfKYqXfu3IW9R9q6NJics7oWpuRDjD-4Gcuw67Ux8KFQ34w8fVKFtnOK6TTMBlqHG3I-xrfjddjHJYM5Iq5DtGqo4KQmj2fS9qc7mmjM70rVupr20v9echkWK4mJzss5sQJTMmtAs5XKETpEFQe0j3o1hr8B83V1crEK7xd5XyA2GuSFAQ6k_PPtw-bKvjxLNNRSe8DQODkd5Qppl2V_-qBh_irk8ykapJbtpB_Rz5k4RgZOno3MeZ72UbVH-DFK0tzUVJitKxDLRNmspNmaRzELS5HFGjy0L-8vOk61aYPDdbRLHaw8nyfUVToQdLlHI6nngqcSxd3IFYThkAXM07EwPWHaMUpClY5RBUmCUAglPLwOM1meyQ1AWBKfSCVYolUd5UlCWEiVm9AwUExg3IT9euziYcnmiOuYxnR8bDu-Cdv1sMaVfRaxVnU0OiEkDJpwZAfwlzvE3av2nT3a_MvFezB322rHN93e9RYs-CYXxiZKbsOM7ky5A9OFeNm1c_YL7iTzQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cold+atmospheric%E2%80%90pressure+plasma+treatment+of+turmeric+powder%3A+microbial+load%2C+essential+oil+profile%2C+bioactivity+and+microstructure+analyses&rft.jtitle=International+journal+of+food+science+%26+technology&rft.au=Hemmati%2C+Vahid&rft.au=Garavand%2C+Farhad&rft.au=Goudarzi%2C+Mostafa&rft.au=Sarlak%2C+Zahra&rft.date=2021-05-01&rft.issn=0950-5423&rft.eissn=1365-2621&rft.volume=56&rft.issue=5&rft.spage=2224&rft.epage=2232&rft_id=info:doi/10.1111%2Fijfs.14838&rft.externalDBID=10.1111%252Fijfs.14838&rft.externalDocID=IJFS14838 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5423&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5423&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5423&client=summon |