The brain landscape of the two-hit model of posttraumatic stress disorder

The neurophysiological mechanisms underlying the development of posttraumatic stress disorder (PTSD) are poorly understood. Here we test a proposal that PTSD symptoms reflect fixed, highly correlated neural networks resulting from massive engagement of sensory inputs and the sequential involvement o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurophysiology Vol. 128; no. 6; pp. 1617 - 1624
Main Authors: James, Lisa M, Engdahl, Brian E, Christova, Peka, Lewis, Scott M, Georgopoulos, Apostolos P
Format: Journal Article
Language:English
Published: United States American Physiological Society 01-12-2022
Series:Neuroscience of Disease
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The neurophysiological mechanisms underlying the development of posttraumatic stress disorder (PTSD) are poorly understood. Here we test a proposal that PTSD symptoms reflect fixed, highly correlated neural networks resulting from massive engagement of sensory inputs and the sequential involvement of those projections to limbic areas. Three-tesla functional magnetic resonance imaging (fMRI) data were acquired at rest in 15 veterans diagnosed with PTSD and 21 healthy control veterans from which zero-lag cross correlations between 50 brain areas ( = 1,225 pairs) were computed and analyzed. The brain areas were assigned to tiers based on the neurocircuitry of successively converging sensory pathways proposed by Jones and Powell (Jones EG, Powell TP. 93: 793-820, 1970). The primary analyses assessed normalized proportional differences in cross correlation strength within and across tiers in veterans with PTSD and control veterans. Compared with control veterans, cross correlation strength was higher in veterans with PTSD, within and across tiers of areas involved in processing sensory inputs, and systematically increased from sensory processing areas to limbic areas. The functional relevance of this hypercorrelation was further documented by the finding that the severity of self-reported PTSD symptomatology was positively associated with higher neural correlations. The neurophysiological mechanisms underlying the development of PTSD are poorly understood. Here we document that massive engagement of sensory modalities during trauma exposure leads to fixed, hypercorrelated frontal, parietal, temporal, and limbic networks, reflecting the successive integration of salient sensory inputs along the framework of Jones and Powell.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00340.2022