A Molecular Generative Model of COVID-19 Main Protease Inhibitors Using Long Short-Term Memory-Based Recurrent Neural Network
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious threat to public health and prompted researchers to find anti-coronavirus 2019 (COVID-19) compounds. In this study, the long short-term memory-based recurrent neural network was used to generate new inhibitors for...
Saved in:
Published in: | Journal of computational biology Vol. 31; no. 1; pp. 83 - 98 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Mary Ann Liebert, Inc., publishers
01-01-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious threat to public health and prompted researchers to find anti-coronavirus 2019 (COVID-19) compounds. In this study, the long short-term memory-based recurrent neural network was used to generate new inhibitors for the coronavirus. First, the model was trained to generate drug compounds in the form of valid simplified molecular-input line-entry system strings. Then, the structures of COVID-19 main protease inhibitors were applied to fine-tune the model. After fine-tuning, the network could generate new molecular structures as novel SARS-CoV-2 main protease inhibitors. Molecular docking exhibited that some generated compounds have the proper affinity to the active site of the protease. Molecular Dynamics simulations explored binding free energies of the compounds over simulation trajectories. In addition, in silico absorption, distribution, metabolism, and excretion studies showed that some novel compounds could be formulated as orally active agents. Based on molecular docking and molecular dynamics simulation studies, compound AADH possessed significant binding affinity and presumably inhibition against the SARS-CoV-2 main protease enzyme. Therefore, the proposed deep learning-based model was capable of generating promising anti-COVID-19 drugs. |
---|---|
AbstractList | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious threat to public health and prompted researchers to find anti-coronavirus 2019 (COVID-19) compounds. In this study, the long short-term memory-based recurrent neural network was used to generate new inhibitors for the coronavirus. First, the model was trained to generate drug compounds in the form of valid simplified molecular-input line-entry system strings. Then, the structures of COVID-19 main protease inhibitors were applied to fine-tune the model. After fine-tuning, the network could generate new molecular structures as novel SARS-CoV-2 main protease inhibitors. Molecular docking exhibited that some generated compounds have the proper affinity to the active site of the protease. Molecular Dynamics simulations explored binding free energies of the compounds over simulation trajectories. In addition, in silico absorption, distribution, metabolism, and excretion studies showed that some novel compounds could be formulated as orally active agents. Based on molecular docking and molecular dynamics simulation studies, compound AADH possessed significant binding affinity and presumably inhibition against the SARS-CoV-2 main protease enzyme. Therefore, the proposed deep learning-based model was capable of generating promising anti-COVID-19 drugs. |
Author | Fakhar, Zeynab Mirhosseini, Seyed Mohsen Rezaee, Elham Gharaghani, Sajjad Mehrzadi, Arash |
Author_xml | – sequence: 1 givenname: Arash surname: Mehrzadi fullname: Mehrzadi, Arash organization: Department of Electrical, Computer and IT Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran – sequence: 2 givenname: Elham surname: Rezaee fullname: Rezaee, Elham organization: Department of Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 3 givenname: Sajjad surname: Gharaghani fullname: Gharaghani, Sajjad organization: Department of Bioinformatics, Laboratory of Bioinformatics and Drug Design (LBD), University of Tehran, Tehran, Iran – sequence: 4 givenname: Zeynab surname: Fakhar fullname: Fakhar, Zeynab organization: Department of Bioinformatics, Laboratory of Bioinformatics and Drug Design (LBD), University of Tehran, Tehran, Iran – sequence: 5 givenname: Seyed Mohsen orcidid: 0000-0002-2990-9598 surname: Mirhosseini fullname: Mirhosseini, Seyed Mohsen organization: Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38054946$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1P3DAQhq0KVD7aY6-Vj1yyOHFix0fYFlhpF1ALvUa2MykpiQ1jB8SB_45XCxU3LjOjV4_ekZ49suW8A0K-5WyWs1od2tHMClbwGWOi_ER286qSWS2E2Hp375C9EP4xlnPB5Geyw2tWlaoUu-T5iK78AHYaNNJTcIA69g-QwhYG6js6v_iz-JHliq507-gl-gg6AF24m9700WOg16F3f-nSp_H7xmPMrgBHuoLR41N2nOCW_koPEMFFeg4T6iGt-Ojx9gvZ7vQQ4Ovr3ifXJz-v5mfZ8uJ0MT9aZpZzGTNtKii1NUppm_O2Zsx2rQHDStVJlUspTQmq4rY1NReiqgGKTopSCFNJqxjfJweb3jv09xOE2Ix9sDAM2oGfQlPUqlZVKVSR0GyDWvQhIHTNHfajxqcmZ83aeJOMN2vjzdp44r-_Vk9mhPY__aY4AXwDrGPt3NCDAYwf1L4AaqSPVA |
CitedBy_id | crossref_primary_10_3390_rs16122067 |
Cites_doi | 10.1021/jp994072s 10.1021/ct400314y 10.1021/jm000942e 10.1021/acs.jctc.9b00591 10.1007/s10827-015-0574-4 10.1016/j.biopha.2021.111313 10.1093/nar/gkw1074 10.1063/1.4872239 10.1016/j.chemolab.2020.104122 10.1080/0952813X.2022.2093407 10.1038/srep42717 10.1021/ja981844+ 10.1021/acs.jctc.5b00864 10.1002/minf.201700111 10.1002/wcms.1121 10.1016/j.sbi.2021.10.001 10.1038/s41586-020-2223-y 10.1007/s10822-013-9644-8 10.1021/jp980230o 10.1080/0952813X.2022.2067247 10.1021/acs.jcim.6b00754 10.1016/s0022-2836(03)00610-7 10.1002/jcc.20035 10.1002/wcms.1608 10.1016/S0169-409X(00)00129-0 10.1021/acscentsci.7b00512 10.1186/s13321-017-0235-x 10.1016/0021-9991(77)90098-5 10.1021/acs.chemrev.9b00055 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A 10.1021/acs.jcim.5b00559 10.1021/ct900275y 10.1126/science.abb3405 |
ContentType | Journal Article |
Copyright | 2024, Mary Ann Liebert, Inc., publishers |
Copyright_xml | – notice: 2024, Mary Ann Liebert, Inc., publishers |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1089/cmb.2023.0064 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1557-8666 |
EndPage | 98 |
ExternalDocumentID | 10_1089_cmb_2023_0064 38054946 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 29K 4.4 53G 5GY ABBKN ACGFO ADBBV AENEX AFOSN ALMA_UNASSIGNED_HOLDINGS BAWUL BNQNF CS3 D-I DIK DU5 EBS F5P IAO IHR IM4 MV1 NQHIM O9- P2P RIG RML RNS TN5 TR2 UE5 1-M 34G 39C ABEFU AI. CAG CGR COF CUY CVF ECM EIF EJD IER IGS ISR ITC NPM OK1 R.V RMSOB VH1 AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c337t-ab5e4acb99ac13d800cfdbeb049f791777b4e953cdb836658ee2f76466b57c903 |
ISSN | 1557-8666 |
IngestDate | Sat Oct 26 05:11:50 EDT 2024 Fri Aug 23 00:33:52 EDT 2024 Sat Nov 02 12:31:26 EDT 2024 Tue Oct 01 17:28:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | COVID-19 MD simulations deep learning molecular docking recurrent neural network main protease |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-ab5e4acb99ac13d800cfdbeb049f791777b4e953cdb836658ee2f76466b57c903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2990-9598 |
PMID | 38054946 |
PQID | 2898954692 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2898954692 crossref_primary_10_1089_cmb_2023_0064 pubmed_primary_38054946 maryannliebert_primary_10_1089_cmb_2023_0064 |
PublicationCentury | 2000 |
PublicationDate | 20240101 2024-01-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computational biology |
PublicationTitleAlternate | J Comput Biol |
PublicationYear | 2024 |
Publisher | Mary Ann Liebert, Inc., publishers |
Publisher_xml | – name: Mary Ann Liebert, Inc., publishers |
References | B21 B43 B22 B44 B25 B27 B28 Friesner RA (B7) 2004; 47 B29 Karade D (B17) 2022 Polykovskiy D (B24) 2020 B30 B31 B10 B32 B11 B33 B12 B13 B35 B14 B36 B37 B16 B38 B39 B18 B19 B1 B2 B3 B4 B5 B6 Roe DR. (B26) 2013; 9 B8 B9 B40 B41 |
References_xml | – ident: B22 doi: 10.1021/jp994072s – ident: B29 doi: 10.1021/ct400314y – volume: 47 start-page: 1739 issue: 7 year: 2004 ident: B7 publication-title: 1. Method and Assessment of Docking Accuracy. J Med Chem contributor: fullname: Friesner RA – ident: B5 doi: 10.1021/jm000942e – ident: B35 doi: 10.1021/acs.jctc.9b00591 – ident: B37 doi: 10.1007/s10827-015-0574-4 – ident: B3 – ident: B36 doi: 10.1016/j.biopha.2021.111313 – ident: B8 doi: 10.1093/nar/gkw1074 – ident: B13 doi: 10.1063/1.4872239 – ident: B31 doi: 10.1016/j.chemolab.2020.104122 – ident: B2 doi: 10.1080/0952813X.2022.2093407 – ident: B4 doi: 10.1038/srep42717 – ident: B25 – ident: B32 doi: 10.1021/ja981844+ – ident: B12 doi: 10.1021/acs.jctc.5b00864 – ident: B11 doi: 10.1002/minf.201700111 – volume: 9 start-page: 3084 year: 2013 ident: B26 publication-title: PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput contributor: fullname: Roe DR. – ident: B28 doi: 10.1002/wcms.1121 – ident: B39 doi: 10.1016/j.sbi.2021.10.001 – ident: B16 doi: 10.1038/s41586-020-2223-y – ident: B19 doi: 10.1007/s10822-013-9644-8 – start-page: 11 year: 2020 ident: B24 publication-title: Front Pharmacol contributor: fullname: Polykovskiy D – ident: B9 doi: 10.1021/jp980230o – start-page: 1 year: 2022 ident: B17 publication-title: J Exp Theor Artif Intell contributor: fullname: Karade D – ident: B6 doi: 10.1080/0952813X.2022.2067247 – ident: B43 doi: 10.1021/acs.jcim.6b00754 – ident: B10 doi: 10.1016/s0022-2836(03)00610-7 – ident: B40 doi: 10.1002/jcc.20035 – ident: B1 doi: 10.1002/wcms.1608 – ident: B18 doi: 10.1016/S0169-409X(00)00129-0 – ident: B30 doi: 10.1021/acscentsci.7b00512 – ident: B21 doi: 10.1186/s13321-017-0235-x – ident: B27 doi: 10.1016/0021-9991(77)90098-5 – ident: B38 doi: 10.1021/acs.chemrev.9b00055 – ident: B41 doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A – ident: B33 doi: 10.1021/acs.jcim.5b00559 – ident: B14 doi: 10.1021/ct900275y – ident: B44 doi: 10.1126/science.abb3405 |
SSID | ssj0013607 |
Score | 2.4461446 |
Snippet | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious threat to public health and prompted researchers to find anti-coronavirus... |
SourceID | proquest crossref pubmed maryannliebert |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 83 |
SubjectTerms | COVID-19 Humans Memory, Short-Term Molecular Docking Simulation Molecular Dynamics Simulation Neural Networks, Computer Protease Inhibitors - chemistry Protease Inhibitors - pharmacology Protease Inhibitors - therapeutic use SARS-CoV-2 |
Title | A Molecular Generative Model of COVID-19 Main Protease Inhibitors Using Long Short-Term Memory-Based Recurrent Neural Network |
URI | https://www.liebertpub.com/doi/abs/10.1089/cmb.2023.0064 https://www.ncbi.nlm.nih.gov/pubmed/38054946 https://www.proquest.com/docview/2898954692 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6ISQmgWDcyk1GQryMjDZx4vixbJ020XUS7dDES2Q7DtnGUtTLQyfx3znHzqUVmhgPvESVlfqh39fjc-zP5yPkncxioRTXXsZ95THOmIfuDl6sjMiiQEOGjxeFD0d8eBbv91m_1aq8G5ux_4o0jAHWeHP2H9CuJ4UB-AyYwxNQh-etcO_B37R0vC17SltxEHqe2bRz7-Tr0b7XFaiuKPCewBwPaCBO5Ofq3FrvOBXBAE2IRjlk594YovfOMUpyl94neBlvNOqyrxM29wCUh05NfkOqq611RLXtWPZ9qqE2-fRaplZV0JvKWb0__cVcSycT6v_I5VWtFMIW099z50W1M5IXFzKtWSgvc6cY_2aWhVSrexo-W9nTMGUcDmHxjJwhSxWoy-VilZAu6jornHL9dqbWf6wMnRgbq-ortYuG8SjnY80SWB37D0-Sg9PBIBn3z8Yb5I4PwcuW6Uefm5OpqMPLXq0w5ce1Cddym_t49VAWBZQSKJG_uYKxmcz4IXlQ4kJ7jjuPSMsU2-SuMyVdbpOt47qT7-wx-dWjNZ9owydq-UQnGa34RJFPtOITbfhELZ8o8ok2fKKrfKI1n6jjEy359IScHvTHe4deadnh6SDgc0-q0DCplRBSd4MUqhGdpcooqEMzLrqcc8WMCAOdqjiIIPs1xs94xKJIhVyLTvCUbBaTwjwntMO6QnVhujjIWKo5GgGEsc6EL9Ms89M2eV_92MlP15klsYqKWCSASoKoJIhKm3xYh-Jvr7-tgEog1OL5mSzMZDFLfLRaDVkk_DZ55hCspwpiqH0Ei17c4tsvyb2G9K_I5ny6MK_JxixdvLFc-w0N9qo5 |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Molecular+Generative+Model+of+COVID-19+Main+Protease+Inhibitors+Using+Long+Short-Term+Memory-Based+Recurrent+Neural+Network&rft.jtitle=Journal+of+computational+biology&rft.au=Mehrzadi%2C+Arash&rft.au=Rezaee%2C+Elham&rft.au=Gharaghani%2C+Sajjad&rft.au=Fakhar%2C+Zeynab&rft.date=2024-01-01&rft.eissn=1557-8666&rft.volume=31&rft.issue=1&rft.spage=83&rft.epage=98&rft_id=info:doi/10.1089%2Fcmb.2023.0064&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-8666&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-8666&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-8666&client=summon |