A Molecular Generative Model of COVID-19 Main Protease Inhibitors Using Long Short-Term Memory-Based Recurrent Neural Network

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious threat to public health and prompted researchers to find anti-coronavirus 2019 (COVID-19) compounds. In this study, the long short-term memory-based recurrent neural network was used to generate new inhibitors for...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational biology Vol. 31; no. 1; pp. 83 - 98
Main Authors: Mehrzadi, Arash, Rezaee, Elham, Gharaghani, Sajjad, Fakhar, Zeynab, Mirhosseini, Seyed Mohsen
Format: Journal Article
Language:English
Published: United States Mary Ann Liebert, Inc., publishers 01-01-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious threat to public health and prompted researchers to find anti-coronavirus 2019 (COVID-19) compounds. In this study, the long short-term memory-based recurrent neural network was used to generate new inhibitors for the coronavirus. First, the model was trained to generate drug compounds in the form of valid simplified molecular-input line-entry system strings. Then, the structures of COVID-19 main protease inhibitors were applied to fine-tune the model. After fine-tuning, the network could generate new molecular structures as novel SARS-CoV-2 main protease inhibitors. Molecular docking exhibited that some generated compounds have the proper affinity to the active site of the protease. Molecular Dynamics simulations explored binding free energies of the compounds over simulation trajectories. In addition, in silico absorption, distribution, metabolism, and excretion studies showed that some novel compounds could be formulated as orally active agents. Based on molecular docking and molecular dynamics simulation studies, compound AADH possessed significant binding affinity and presumably inhibition against the SARS-CoV-2 main protease enzyme. Therefore, the proposed deep learning-based model was capable of generating promising anti-COVID-19 drugs.
AbstractList The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious threat to public health and prompted researchers to find anti-coronavirus 2019 (COVID-19) compounds. In this study, the long short-term memory-based recurrent neural network was used to generate new inhibitors for the coronavirus. First, the model was trained to generate drug compounds in the form of valid simplified molecular-input line-entry system strings. Then, the structures of COVID-19 main protease inhibitors were applied to fine-tune the model. After fine-tuning, the network could generate new molecular structures as novel SARS-CoV-2 main protease inhibitors. Molecular docking exhibited that some generated compounds have the proper affinity to the active site of the protease. Molecular Dynamics simulations explored binding free energies of the compounds over simulation trajectories. In addition, in silico absorption, distribution, metabolism, and excretion studies showed that some novel compounds could be formulated as orally active agents. Based on molecular docking and molecular dynamics simulation studies, compound AADH possessed significant binding affinity and presumably inhibition against the SARS-CoV-2 main protease enzyme. Therefore, the proposed deep learning-based model was capable of generating promising anti-COVID-19 drugs.
Author Fakhar, Zeynab
Mirhosseini, Seyed Mohsen
Rezaee, Elham
Gharaghani, Sajjad
Mehrzadi, Arash
Author_xml – sequence: 1
  givenname: Arash
  surname: Mehrzadi
  fullname: Mehrzadi, Arash
  organization: Department of Electrical, Computer and IT Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
– sequence: 2
  givenname: Elham
  surname: Rezaee
  fullname: Rezaee, Elham
  organization: Department of Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– sequence: 3
  givenname: Sajjad
  surname: Gharaghani
  fullname: Gharaghani, Sajjad
  organization: Department of Bioinformatics, Laboratory of Bioinformatics and Drug Design (LBD), University of Tehran, Tehran, Iran
– sequence: 4
  givenname: Zeynab
  surname: Fakhar
  fullname: Fakhar, Zeynab
  organization: Department of Bioinformatics, Laboratory of Bioinformatics and Drug Design (LBD), University of Tehran, Tehran, Iran
– sequence: 5
  givenname: Seyed Mohsen
  orcidid: 0000-0002-2990-9598
  surname: Mirhosseini
  fullname: Mirhosseini, Seyed Mohsen
  organization: Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38054946$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1P3DAQhq0KVD7aY6-Vj1yyOHFix0fYFlhpF1ALvUa2MykpiQ1jB8SB_45XCxU3LjOjV4_ekZ49suW8A0K-5WyWs1od2tHMClbwGWOi_ER286qSWS2E2Hp375C9EP4xlnPB5Geyw2tWlaoUu-T5iK78AHYaNNJTcIA69g-QwhYG6js6v_iz-JHliq507-gl-gg6AF24m9700WOg16F3f-nSp_H7xmPMrgBHuoLR41N2nOCW_koPEMFFeg4T6iGt-Ojx9gvZ7vQQ4Ovr3ifXJz-v5mfZ8uJ0MT9aZpZzGTNtKii1NUppm_O2Zsx2rQHDStVJlUspTQmq4rY1NReiqgGKTopSCFNJqxjfJweb3jv09xOE2Ix9sDAM2oGfQlPUqlZVKVSR0GyDWvQhIHTNHfajxqcmZ83aeJOMN2vjzdp44r-_Vk9mhPY__aY4AXwDrGPt3NCDAYwf1L4AaqSPVA
CitedBy_id crossref_primary_10_3390_rs16122067
Cites_doi 10.1021/jp994072s
10.1021/ct400314y
10.1021/jm000942e
10.1021/acs.jctc.9b00591
10.1007/s10827-015-0574-4
10.1016/j.biopha.2021.111313
10.1093/nar/gkw1074
10.1063/1.4872239
10.1016/j.chemolab.2020.104122
10.1080/0952813X.2022.2093407
10.1038/srep42717
10.1021/ja981844+
10.1021/acs.jctc.5b00864
10.1002/minf.201700111
10.1002/wcms.1121
10.1016/j.sbi.2021.10.001
10.1038/s41586-020-2223-y
10.1007/s10822-013-9644-8
10.1021/jp980230o
10.1080/0952813X.2022.2067247
10.1021/acs.jcim.6b00754
10.1016/s0022-2836(03)00610-7
10.1002/jcc.20035
10.1002/wcms.1608
10.1016/S0169-409X(00)00129-0
10.1021/acscentsci.7b00512
10.1186/s13321-017-0235-x
10.1016/0021-9991(77)90098-5
10.1021/acs.chemrev.9b00055
10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
10.1021/acs.jcim.5b00559
10.1021/ct900275y
10.1126/science.abb3405
ContentType Journal Article
Copyright 2024, Mary Ann Liebert, Inc., publishers
Copyright_xml – notice: 2024, Mary Ann Liebert, Inc., publishers
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1089/cmb.2023.0064
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1557-8666
EndPage 98
ExternalDocumentID 10_1089_cmb_2023_0064
38054946
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29K
4.4
53G
5GY
ABBKN
ACGFO
ADBBV
AENEX
AFOSN
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BNQNF
CS3
D-I
DIK
DU5
EBS
F5P
IAO
IHR
IM4
MV1
NQHIM
O9-
P2P
RIG
RML
RNS
TN5
TR2
UE5
1-M
34G
39C
ABEFU
AI.
CAG
CGR
COF
CUY
CVF
ECM
EIF
EJD
IER
IGS
ISR
ITC
NPM
OK1
R.V
RMSOB
VH1
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c337t-ab5e4acb99ac13d800cfdbeb049f791777b4e953cdb836658ee2f76466b57c903
ISSN 1557-8666
IngestDate Sat Oct 26 05:11:50 EDT 2024
Fri Aug 23 00:33:52 EDT 2024
Sat Nov 02 12:31:26 EDT 2024
Tue Oct 01 17:28:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
MD simulations
deep learning
molecular docking
recurrent neural network
main protease
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-ab5e4acb99ac13d800cfdbeb049f791777b4e953cdb836658ee2f76466b57c903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2990-9598
PMID 38054946
PQID 2898954692
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2898954692
crossref_primary_10_1089_cmb_2023_0064
pubmed_primary_38054946
maryannliebert_primary_10_1089_cmb_2023_0064
PublicationCentury 2000
PublicationDate 20240101
2024-01-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational biology
PublicationTitleAlternate J Comput Biol
PublicationYear 2024
Publisher Mary Ann Liebert, Inc., publishers
Publisher_xml – name: Mary Ann Liebert, Inc., publishers
References B21
B43
B22
B44
B25
B27
B28
Friesner RA (B7) 2004; 47
B29
Karade D (B17) 2022
Polykovskiy D (B24) 2020
B30
B31
B10
B32
B11
B33
B12
B13
B35
B14
B36
B37
B16
B38
B39
B18
B19
B1
B2
B3
B4
B5
B6
Roe DR. (B26) 2013; 9
B8
B9
B40
B41
References_xml – ident: B22
  doi: 10.1021/jp994072s
– ident: B29
  doi: 10.1021/ct400314y
– volume: 47
  start-page: 1739
  issue: 7
  year: 2004
  ident: B7
  publication-title: 1. Method and Assessment of Docking Accuracy. J Med Chem
  contributor:
    fullname: Friesner RA
– ident: B5
  doi: 10.1021/jm000942e
– ident: B35
  doi: 10.1021/acs.jctc.9b00591
– ident: B37
  doi: 10.1007/s10827-015-0574-4
– ident: B3
– ident: B36
  doi: 10.1016/j.biopha.2021.111313
– ident: B8
  doi: 10.1093/nar/gkw1074
– ident: B13
  doi: 10.1063/1.4872239
– ident: B31
  doi: 10.1016/j.chemolab.2020.104122
– ident: B2
  doi: 10.1080/0952813X.2022.2093407
– ident: B4
  doi: 10.1038/srep42717
– ident: B25
– ident: B32
  doi: 10.1021/ja981844+
– ident: B12
  doi: 10.1021/acs.jctc.5b00864
– ident: B11
  doi: 10.1002/minf.201700111
– volume: 9
  start-page: 3084
  year: 2013
  ident: B26
  publication-title: PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput
  contributor:
    fullname: Roe DR.
– ident: B28
  doi: 10.1002/wcms.1121
– ident: B39
  doi: 10.1016/j.sbi.2021.10.001
– ident: B16
  doi: 10.1038/s41586-020-2223-y
– ident: B19
  doi: 10.1007/s10822-013-9644-8
– start-page: 11
  year: 2020
  ident: B24
  publication-title: Front Pharmacol
  contributor:
    fullname: Polykovskiy D
– ident: B9
  doi: 10.1021/jp980230o
– start-page: 1
  year: 2022
  ident: B17
  publication-title: J Exp Theor Artif Intell
  contributor:
    fullname: Karade D
– ident: B6
  doi: 10.1080/0952813X.2022.2067247
– ident: B43
  doi: 10.1021/acs.jcim.6b00754
– ident: B10
  doi: 10.1016/s0022-2836(03)00610-7
– ident: B40
  doi: 10.1002/jcc.20035
– ident: B1
  doi: 10.1002/wcms.1608
– ident: B18
  doi: 10.1016/S0169-409X(00)00129-0
– ident: B30
  doi: 10.1021/acscentsci.7b00512
– ident: B21
  doi: 10.1186/s13321-017-0235-x
– ident: B27
  doi: 10.1016/0021-9991(77)90098-5
– ident: B38
  doi: 10.1021/acs.chemrev.9b00055
– ident: B41
  doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
– ident: B33
  doi: 10.1021/acs.jcim.5b00559
– ident: B14
  doi: 10.1021/ct900275y
– ident: B44
  doi: 10.1126/science.abb3405
SSID ssj0013607
Score 2.4461446
Snippet The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a serious threat to public health and prompted researchers to find anti-coronavirus...
SourceID proquest
crossref
pubmed
maryannliebert
SourceType Aggregation Database
Index Database
Publisher
StartPage 83
SubjectTerms COVID-19
Humans
Memory, Short-Term
Molecular Docking Simulation
Molecular Dynamics Simulation
Neural Networks, Computer
Protease Inhibitors - chemistry
Protease Inhibitors - pharmacology
Protease Inhibitors - therapeutic use
SARS-CoV-2
Title A Molecular Generative Model of COVID-19 Main Protease Inhibitors Using Long Short-Term Memory-Based Recurrent Neural Network
URI https://www.liebertpub.com/doi/abs/10.1089/cmb.2023.0064
https://www.ncbi.nlm.nih.gov/pubmed/38054946
https://www.proquest.com/docview/2898954692
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6ISQmgWDcyk1GQryMjDZx4vixbJ020XUS7dDES2Q7DtnGUtTLQyfx3znHzqUVmhgPvESVlfqh39fjc-zP5yPkncxioRTXXsZ95THOmIfuDl6sjMiiQEOGjxeFD0d8eBbv91m_1aq8G5ux_4o0jAHWeHP2H9CuJ4UB-AyYwxNQh-etcO_B37R0vC17SltxEHqe2bRz7-Tr0b7XFaiuKPCewBwPaCBO5Ofq3FrvOBXBAE2IRjlk594YovfOMUpyl94neBlvNOqyrxM29wCUh05NfkOqq611RLXtWPZ9qqE2-fRaplZV0JvKWb0__cVcSycT6v_I5VWtFMIW099z50W1M5IXFzKtWSgvc6cY_2aWhVSrexo-W9nTMGUcDmHxjJwhSxWoy-VilZAu6jornHL9dqbWf6wMnRgbq-ortYuG8SjnY80SWB37D0-Sg9PBIBn3z8Yb5I4PwcuW6Uefm5OpqMPLXq0w5ce1Cddym_t49VAWBZQSKJG_uYKxmcz4IXlQ4kJ7jjuPSMsU2-SuMyVdbpOt47qT7-wx-dWjNZ9owydq-UQnGa34RJFPtOITbfhELZ8o8ok2fKKrfKI1n6jjEy359IScHvTHe4deadnh6SDgc0-q0DCplRBSd4MUqhGdpcooqEMzLrqcc8WMCAOdqjiIIPs1xs94xKJIhVyLTvCUbBaTwjwntMO6QnVhujjIWKo5GgGEsc6EL9Ms89M2eV_92MlP15klsYqKWCSASoKoJIhKm3xYh-Jvr7-tgEog1OL5mSzMZDFLfLRaDVkk_DZ55hCspwpiqH0Ei17c4tsvyb2G9K_I5ny6MK_JxixdvLFc-w0N9qo5
link.rule.ids 315,782,786,27933,27934
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Molecular+Generative+Model+of+COVID-19+Main+Protease+Inhibitors+Using+Long+Short-Term+Memory-Based+Recurrent+Neural+Network&rft.jtitle=Journal+of+computational+biology&rft.au=Mehrzadi%2C+Arash&rft.au=Rezaee%2C+Elham&rft.au=Gharaghani%2C+Sajjad&rft.au=Fakhar%2C+Zeynab&rft.date=2024-01-01&rft.eissn=1557-8666&rft.volume=31&rft.issue=1&rft.spage=83&rft.epage=98&rft_id=info:doi/10.1089%2Fcmb.2023.0064&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-8666&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-8666&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-8666&client=summon