Artificial Intelligence-Based Digital Image Steganalysis
Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter tuning issues. Therefore, in this paper, an efficient θ-nondominated sorting genetic algorithm- (θ NSGA-) III based densely connected convolu...
Saved in:
Published in: | Security and communication networks Vol. 2021; pp. 1 - 9 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Hindawi
2021
Hindawi Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter tuning issues. Therefore, in this paper, an efficient θ-nondominated sorting genetic algorithm- (θ NSGA-) III based densely connected convolutional neural network (DCNN) model is proposed for image steganalysis. θ NSGA-III is utilized to tune the initial parameters of DCNN model. It can control the accuracy and f-measure of the DCNN model by utilizing them as the multiobjective fitness function. Extensive experiments are drawn on STEGRT1 dataset. Comparison of the proposed model is also drawn with the competitive steganalysis model. Performance analyses reveal that the proposed model outperforms the existing steganalysis models in terms of various performance metrics. |
---|---|
AbstractList | Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter tuning issues. Therefore, in this paper, an efficient θ-nondominated sorting genetic algorithm- (θ NSGA-) III based densely connected convolutional neural network (DCNN) model is proposed for image steganalysis. θ NSGA-III is utilized to tune the initial parameters of DCNN model. It can control the accuracy and f-measure of the DCNN model by utilizing them as the multiobjective fitness function. Extensive experiments are drawn on STEGRT1 dataset. Comparison of the proposed model is also drawn with the competitive steganalysis model. Performance analyses reveal that the proposed model outperforms the existing steganalysis models in terms of various performance metrics. Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter tuning issues. Therefore, in this paper, an efficient θ -nondominated sorting genetic algorithm- ( θ NSGA-) III based densely connected convolutional neural network (DCNN) model is proposed for image steganalysis. θ NSGA-III is utilized to tune the initial parameters of DCNN model. It can control the accuracy and f-measure of the DCNN model by utilizing them as the multiobjective fitness function. Extensive experiments are drawn on STEGRT1 dataset. Comparison of the proposed model is also drawn with the competitive steganalysis model. Performance analyses reveal that the proposed model outperforms the existing steganalysis models in terms of various performance metrics. |
Author | Mehedi, Ibrahim M. Shorfuzzaman, Mohammad Akther, Farzana Latif, Shaikh Abdul Aljohani, Abdulah Jeza Palaniswamy, Thangam Latif, Abdul Iskanderani, Ahmed I. |
Author_xml | – sequence: 1 givenname: Ahmed I. orcidid: 0000-0001-6615-9258 surname: Iskanderani fullname: Iskanderani, Ahmed I. organization: Department of Electrical and Computer Engineering (ECE)King Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa – sequence: 2 givenname: Ibrahim M. orcidid: 0000-0001-8073-9750 surname: Mehedi fullname: Mehedi, Ibrahim M. organization: Department of Electrical and Computer Engineering (ECE)King Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa – sequence: 3 givenname: Abdulah Jeza orcidid: 0000-0002-9992-7177 surname: Aljohani fullname: Aljohani, Abdulah Jeza organization: Department of Electrical and Computer Engineering (ECE)King Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa – sequence: 4 givenname: Mohammad orcidid: 0000-0002-8050-8431 surname: Shorfuzzaman fullname: Shorfuzzaman, Mohammad organization: Department of Computer ScienceCollege of Computers and Information TechnologyTaif UniversityTaif 21944Saudi Arabiatu.edu.sa – sequence: 5 givenname: Farzana surname: Akther fullname: Akther, Farzana organization: Aarhus BSSAarhus UniversityAarhusDenmarkau.dk – sequence: 6 givenname: Thangam orcidid: 0000-0003-1354-5811 surname: Palaniswamy fullname: Palaniswamy, Thangam organization: Department of Electrical and Computer Engineering (ECE)King Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa – sequence: 7 givenname: Shaikh Abdul orcidid: 0000-0002-3224-2608 surname: Latif fullname: Latif, Shaikh Abdul organization: Department of Nuclear EngineeringKing Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa – sequence: 8 givenname: Abdul orcidid: 0000-0002-8973-1381 surname: Latif fullname: Latif, Abdul organization: Department of MathematicsKing Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa |
BookMark | eNp90E1LAzEQBuAgFWyrN39AwaOuzeSjSY619aNQ8KCeQ9ydrCnb3Zpskf57d2nx6GlmmIdheEdkUDc1EnIN9B5AyimjDKbGMM61OSNDMNxkFBgb_PUgLsgopQ2lMxBKDImexzb4kAdXTVZ1i1UVSqxzzB5cwmKyDGVo-9XWlTh5a7F0tasOKaRLcu5dlfDqVMfk4-nxffGSrV-fV4v5Oss5V23mtCxyySSywknhXDeg9MLnGriWHIF6LjRQozpQzJj2WiFqowz_BMoVH5Ob491dbL73mFq7afaxeyJZJhmdKcm16NTdUeWxSSmit7sYti4eLFDbZ2P7bOwpm47fHvlXqAv3E_7Xv3PhY5I |
CitedBy_id | crossref_primary_10_1186_s13634_021_00797_5 crossref_primary_10_1155_2022_4090351 crossref_primary_10_1016_j_neucom_2024_127528 crossref_primary_10_1088_1742_6596_2146_1_012021 |
Cites_doi | 10.1007/s12652-019-01493-x 10.1016/j.image.2020.116052 10.1016/j.neunet.2020.07.022 10.2352/issn.2470-1173.2017.7.mwsf-324 10.1109/tifs.2017.2710946 10.2352/issn.2470-1173.2018.07.mwsf-317 10.1016/j.ins.2020.02.048 10.1109/tifs.2020.3005304 10.1007/s00340-020-07480-x 10.1109/lsp.2018.2816569 10.1016/j.neucom.2020.02.105 10.1007/978-3-319-64185-0_20 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Ahmed I. Iskanderani et al. Copyright © 2021 Ahmed I. Iskanderani et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Ahmed I. Iskanderani et al. – notice: Copyright © 2021 Ahmed I. Iskanderani et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.1155/2021/9923389 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Open Access: Hindawi Publishing CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-0122 |
Editor | Kaur, Manjit |
Editor_xml | – sequence: 1 givenname: Manjit surname: Kaur fullname: Kaur, Manjit – fullname: Manjit Kaur |
EndPage | 9 |
ExternalDocumentID | 10_1155_2021_9923389 |
GrantInformation_xml | – fundername: Ministry of Education – Kingdom of Saudi Arabi – fundername: Institutional Fund Projects grantid: IFPRC-027-135–2020 – fundername: King Abdulaziz University |
GroupedDBID | .4S .DC 05W 0R~ 123 1OC 3SF 4.4 52U 5DZ 66C 8-1 8UM AAESR AAFWJ AAJEY AAONW ACGFO ADBBV ADIZJ AENEX AFBPY AFKRA AJXKR ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ATUGU AZVAB BCNDV BENPR BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU CS3 DR2 DU5 EBS EIS F1Z G-S GROUPED_DOAJ HCIFZ HZ~ IAO ICD ITC IX1 K7- LITHE MY. MY~ NNB O9- OIG OK1 P2P PIMPY RHU RHW RHX TH9 TUS W99 WBKPD XV2 24P AAYXX CITATION H13 7SC 7SP 8FD 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c337t-a85dc525e2da54aadc5e5f4fc813853e10f34810972dad628f87ee89793b10373 |
ISSN | 1939-0114 |
IngestDate | Sat Nov 02 16:31:10 EDT 2024 Thu Sep 26 17:36:43 EDT 2024 Sun Jun 02 19:15:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-a85dc525e2da54aadc5e5f4fc813853e10f34810972dad628f87ee89793b10373 |
ORCID | 0000-0002-3224-2608 0000-0002-9992-7177 0000-0002-8050-8431 0000-0001-8073-9750 0000-0002-8973-1381 0000-0003-1354-5811 0000-0001-6615-9258 |
OpenAccessLink | https://www.proquest.com/docview/2520675384 |
PQID | 2520675384 |
PQPubID | 1046363 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2520675384 crossref_primary_10_1155_2021_9923389 hindawi_primary_10_1155_2021_9923389 |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Security and communication networks |
PublicationYear | 2021 |
Publisher | Hindawi Hindawi Limited |
Publisher_xml | – name: Hindawi – name: Hindawi Limited |
References | 22 23 24 26 S. Ozcan (2) M. Boroumand (6) 2018; 14 Y. Yuan (21) 2015; 20 A. Sharma (13) Z. Zhou (3) 2020; 14 R. Zhang (4) 2018 W. Ren (18) 2020; 401 11 15 16 K. Liu (14) 17 19 R. Zhang (12) 2019; 15 G. Huang (20) 1 J. Yang (10) 2017 M. Rezaei (25) 8 S. Wu (9) M. Yedroudj (7) S. N Gowda (5) 2020 |
References_xml | – ident: 22 doi: 10.1007/s12652-019-01493-x – ident: 17 doi: 10.1016/j.image.2020.116052 – ident: 19 doi: 10.1016/j.neunet.2020.07.022 – ident: 15 doi: 10.2352/issn.2470-1173.2017.7.mwsf-324 – start-page: 1 ident: 14 article-title: Ensemble of cnn and rich model for steganalysis contributor: fullname: K. Liu – volume: 14 start-page: 4557 issue: 11 year: 2020 ident: 3 article-title: Ensemble deep learning features for real-world image steganalysis publication-title: KSII Transactions on Internet and Information Systems (TIIS) contributor: fullname: Z. Zhou – volume: 14 start-page: 1181 issue: 5 year: 2018 ident: 6 article-title: Deep residual network for steganalysis of digital images publication-title: Institute of Electrical and Electronics Engineers Transactions on Information Forensics and Security contributor: fullname: M. Boroumand – ident: 8 doi: 10.1109/tifs.2017.2710946 – ident: 26 doi: 10.2352/issn.2470-1173.2018.07.mwsf-317 – ident: 24 doi: 10.1016/j.ins.2020.02.048 – ident: 1 doi: 10.1109/tifs.2020.3005304 – year: 2017 ident: 10 article-title: Jpeg steganalysis based on densenet contributor: fullname: J. Yang – start-page: 1 ident: 25 article-title: Stegrt1: a dataset for evaluating steganalysis systems in real-world scenarios contributor: fullname: M. Rezaei – ident: 23 doi: 10.1007/s00340-020-07480-x – ident: 11 doi: 10.1109/lsp.2018.2816569 – start-page: 4700 ident: 20 article-title: Densely connected convolutional networks contributor: fullname: G. Huang – start-page: 1213 ident: 13 article-title: Spatial image steganalysis based on resnext contributor: fullname: A. Sharma – start-page: 1233 ident: 9 article-title: Steganalysis via deep residual network contributor: fullname: S. Wu – year: 2018 ident: 4 article-title: Efficient feature learning and multi-size image steganalysis based on cnn contributor: fullname: R. Zhang – volume: 401 start-page: 78 year: 2020 ident: 18 article-title: Learning selection channels for image steganalysis in spatial domain publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.105 contributor: fullname: W. Ren – volume-title: Stegcolnet: steganalysis based on an ensemble colorspace approach year: 2020 ident: 5 contributor: fullname: S. N Gowda – start-page: 2092 ident: 7 article-title: Yedroudj-net: an efficient cnn for spatial steganalysis contributor: fullname: M. Yedroudj – volume: 15 start-page: 1138 year: 2019 ident: 12 article-title: Depth-wise separable convolutions and multi-level pooling for an efficient spatial cnn-based steganalysis publication-title: Institute of Electrical and Electronics Engineers Transactions on Information Forensics and Security contributor: fullname: R. Zhang – start-page: 2280 ident: 2 article-title: Transfer learning effects on image steganalysis with pre-trained deep residual neural network model contributor: fullname: S. Ozcan – volume: 20 start-page: 16 issue: 1 year: 2015 ident: 21 article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization publication-title: Institute of Electrical and Electronics Engineers Transactions on Evolutionary Computation contributor: fullname: Y. Yuan – ident: 16 doi: 10.1007/978-3-319-64185-0_20 |
SSID | ssj0061474 |
Score | 2.2593365 |
Snippet | Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial intelligence Artificial neural networks Deep learning Digital imaging Genetic algorithms Machine learning Model accuracy Neural networks Performance measurement Sorting algorithms |
Title | Artificial Intelligence-Based Digital Image Steganalysis |
URI | https://dx.doi.org/10.1155/2021/9923389 https://www.proquest.com/docview/2520675384 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj5RAEO64a0z0YHzG1dVwWE8E5VXQHNEdM5qsl1kT44U03YWs7syYecRkfr1V0GyzmcTHwQuBbmhIfdBVXdRXJcRJg5nMNWQBIIRBqiUGRcwJLzXotI60Cbs_ptNZ_vGzPJ2kE1e_07X9V6SpjbBm5uw_oH01KDXQPmFOW0Kdtn-Fe7nqon_6HBou3WbwhtSV4f9JXCXEfz_nWJ3ZBr8qm5VkbKXObFG7gfTmKCT-og8bX7tX6nvHj-lLQ_llS9rVeWLPsCXl2M1DtCpvL-bO-VrWZnupWv8D7pRfXn5btjTElb-nXa6a7W6nrH_2jHrnc2XGPorYeSem7Fj4ebHP1iK7keO0egLpKxy3xddm52G4_akeOCsGd3OQB9mpZHodiJsxTThcQwFOvwwamSyQ3EYX9PccCBAA7PuJXturr5kmt9r-0fd0dGd4nN8Td-2KwSt7qO-LG7h4IO6M8kg-FNKB7u2D7lnQvQ50bwz6I_Hp3eT87TSwJTECnST5JlASjIYYMDYKUqXoAKFJGy2jhAwvjMKGmdWck8kok8WykTmiLEgoNTNCk8ficLFc4BPhYZ4qXmxCqIs0MbIuALNI1lmDdF4RHomXgzSqH33mk6pbMQJULLXKSu1InFhR_eG040GOlf1c1lUMXD2AdG769Pfdz8RtHqz3fR2Lw81qi8_FwdpsX3RQ_wIoz16V |
link.rule.ids | 315,782,786,4030,27934,27935,27936 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Based+Digital+Image+Steganalysis&rft.jtitle=Security+and+communication+networks&rft.au=Iskanderani%2C+Ahmed+I&rft.au=Mehedi%2C+Ibrahim+M&rft.au=Abdulah+Jeza+Aljohani&rft.au=Shorfuzzaman%2C+Mohammad&rft.date=2021&rft.pub=Hindawi+Limited&rft.issn=1939-0114&rft.eissn=1939-0122&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9923389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-0114&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-0114&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-0114&client=summon |