Artificial Intelligence-Based Digital Image Steganalysis

Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter tuning issues. Therefore, in this paper, an efficient θ-nondominated sorting genetic algorithm- (θ NSGA-) III based densely connected convolu...

Full description

Saved in:
Bibliographic Details
Published in:Security and communication networks Vol. 2021; pp. 1 - 9
Main Authors: Iskanderani, Ahmed I., Mehedi, Ibrahim M., Aljohani, Abdulah Jeza, Shorfuzzaman, Mohammad, Akther, Farzana, Palaniswamy, Thangam, Latif, Shaikh Abdul, Latif, Abdul
Format: Journal Article
Language:English
Published: London Hindawi 2021
Hindawi Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter tuning issues. Therefore, in this paper, an efficient θ-nondominated sorting genetic algorithm- (θ NSGA-) III based densely connected convolutional neural network (DCNN) model is proposed for image steganalysis. θ NSGA-III is utilized to tune the initial parameters of DCNN model. It can control the accuracy and f-measure of the DCNN model by utilizing them as the multiobjective fitness function. Extensive experiments are drawn on STEGRT1 dataset. Comparison of the proposed model is also drawn with the competitive steganalysis model. Performance analyses reveal that the proposed model outperforms the existing steganalysis models in terms of various performance metrics.
AbstractList Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter tuning issues. Therefore, in this paper, an efficient θ-nondominated sorting genetic algorithm- (θ NSGA-) III based densely connected convolutional neural network (DCNN) model is proposed for image steganalysis. θ NSGA-III is utilized to tune the initial parameters of DCNN model. It can control the accuracy and f-measure of the DCNN model by utilizing them as the multiobjective fitness function. Extensive experiments are drawn on STEGRT1 dataset. Comparison of the proposed model is also drawn with the competitive steganalysis model. Performance analyses reveal that the proposed model outperforms the existing steganalysis models in terms of various performance metrics.
Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter tuning issues. Therefore, in this paper, an efficient θ -nondominated sorting genetic algorithm- ( θ NSGA-) III based densely connected convolutional neural network (DCNN) model is proposed for image steganalysis. θ NSGA-III is utilized to tune the initial parameters of DCNN model. It can control the accuracy and f-measure of the DCNN model by utilizing them as the multiobjective fitness function. Extensive experiments are drawn on STEGRT1 dataset. Comparison of the proposed model is also drawn with the competitive steganalysis model. Performance analyses reveal that the proposed model outperforms the existing steganalysis models in terms of various performance metrics.
Author Mehedi, Ibrahim M.
Shorfuzzaman, Mohammad
Akther, Farzana
Latif, Shaikh Abdul
Aljohani, Abdulah Jeza
Palaniswamy, Thangam
Latif, Abdul
Iskanderani, Ahmed I.
Author_xml – sequence: 1
  givenname: Ahmed I.
  orcidid: 0000-0001-6615-9258
  surname: Iskanderani
  fullname: Iskanderani, Ahmed I.
  organization: Department of Electrical and Computer Engineering (ECE)King Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa
– sequence: 2
  givenname: Ibrahim M.
  orcidid: 0000-0001-8073-9750
  surname: Mehedi
  fullname: Mehedi, Ibrahim M.
  organization: Department of Electrical and Computer Engineering (ECE)King Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa
– sequence: 3
  givenname: Abdulah Jeza
  orcidid: 0000-0002-9992-7177
  surname: Aljohani
  fullname: Aljohani, Abdulah Jeza
  organization: Department of Electrical and Computer Engineering (ECE)King Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa
– sequence: 4
  givenname: Mohammad
  orcidid: 0000-0002-8050-8431
  surname: Shorfuzzaman
  fullname: Shorfuzzaman, Mohammad
  organization: Department of Computer ScienceCollege of Computers and Information TechnologyTaif UniversityTaif 21944Saudi Arabiatu.edu.sa
– sequence: 5
  givenname: Farzana
  surname: Akther
  fullname: Akther, Farzana
  organization: Aarhus BSSAarhus UniversityAarhusDenmarkau.dk
– sequence: 6
  givenname: Thangam
  orcidid: 0000-0003-1354-5811
  surname: Palaniswamy
  fullname: Palaniswamy, Thangam
  organization: Department of Electrical and Computer Engineering (ECE)King Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa
– sequence: 7
  givenname: Shaikh Abdul
  orcidid: 0000-0002-3224-2608
  surname: Latif
  fullname: Latif, Shaikh Abdul
  organization: Department of Nuclear EngineeringKing Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa
– sequence: 8
  givenname: Abdul
  orcidid: 0000-0002-8973-1381
  surname: Latif
  fullname: Latif, Abdul
  organization: Department of MathematicsKing Abdulaziz UniversityJeddah 21589Saudi Arabiakau.edu.sa
BookMark eNp90E1LAzEQBuAgFWyrN39AwaOuzeSjSY619aNQ8KCeQ9ydrCnb3Zpskf57d2nx6GlmmIdheEdkUDc1EnIN9B5AyimjDKbGMM61OSNDMNxkFBgb_PUgLsgopQ2lMxBKDImexzb4kAdXTVZ1i1UVSqxzzB5cwmKyDGVo-9XWlTh5a7F0tasOKaRLcu5dlfDqVMfk4-nxffGSrV-fV4v5Oss5V23mtCxyySSywknhXDeg9MLnGriWHIF6LjRQozpQzJj2WiFqowz_BMoVH5Ob491dbL73mFq7afaxeyJZJhmdKcm16NTdUeWxSSmit7sYti4eLFDbZ2P7bOwpm47fHvlXqAv3E_7Xv3PhY5I
CitedBy_id crossref_primary_10_1186_s13634_021_00797_5
crossref_primary_10_1155_2022_4090351
crossref_primary_10_1016_j_neucom_2024_127528
crossref_primary_10_1088_1742_6596_2146_1_012021
Cites_doi 10.1007/s12652-019-01493-x
10.1016/j.image.2020.116052
10.1016/j.neunet.2020.07.022
10.2352/issn.2470-1173.2017.7.mwsf-324
10.1109/tifs.2017.2710946
10.2352/issn.2470-1173.2018.07.mwsf-317
10.1016/j.ins.2020.02.048
10.1109/tifs.2020.3005304
10.1007/s00340-020-07480-x
10.1109/lsp.2018.2816569
10.1016/j.neucom.2020.02.105
10.1007/978-3-319-64185-0_20
ContentType Journal Article
Copyright Copyright © 2021 Ahmed I. Iskanderani et al.
Copyright © 2021 Ahmed I. Iskanderani et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Ahmed I. Iskanderani et al.
– notice: Copyright © 2021 Ahmed I. Iskanderani et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1155/2021/9923389
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Open Access: Hindawi Publishing
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-0122
Editor Kaur, Manjit
Editor_xml – sequence: 1
  givenname: Manjit
  surname: Kaur
  fullname: Kaur, Manjit
– fullname: Manjit Kaur
EndPage 9
ExternalDocumentID 10_1155_2021_9923389
GrantInformation_xml – fundername: Ministry of Education – Kingdom of Saudi Arabi
– fundername: Institutional Fund Projects
  grantid: IFPRC-027-135–2020
– fundername: King Abdulaziz University
GroupedDBID .4S
.DC
05W
0R~
123
1OC
3SF
4.4
52U
5DZ
66C
8-1
8UM
AAESR
AAFWJ
AAJEY
AAONW
ACGFO
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
ATUGU
AZVAB
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BOGZA
BRXPI
CCPQU
CS3
DR2
DU5
EBS
EIS
F1Z
G-S
GROUPED_DOAJ
HCIFZ
HZ~
IAO
ICD
ITC
IX1
K7-
LITHE
MY.
MY~
NNB
O9-
OIG
OK1
P2P
PIMPY
RHU
RHW
RHX
TH9
TUS
W99
WBKPD
XV2
24P
AAYXX
CITATION
H13
7SC
7SP
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c337t-a85dc525e2da54aadc5e5f4fc813853e10f34810972dad628f87ee89793b10373
ISSN 1939-0114
IngestDate Sat Nov 02 16:31:10 EDT 2024
Thu Sep 26 17:36:43 EDT 2024
Sun Jun 02 19:15:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-a85dc525e2da54aadc5e5f4fc813853e10f34810972dad628f87ee89793b10373
ORCID 0000-0002-3224-2608
0000-0002-9992-7177
0000-0002-8050-8431
0000-0001-8073-9750
0000-0002-8973-1381
0000-0003-1354-5811
0000-0001-6615-9258
OpenAccessLink https://www.proquest.com/docview/2520675384
PQID 2520675384
PQPubID 1046363
PageCount 9
ParticipantIDs proquest_journals_2520675384
crossref_primary_10_1155_2021_9923389
hindawi_primary_10_1155_2021_9923389
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Security and communication networks
PublicationYear 2021
Publisher Hindawi
Hindawi Limited
Publisher_xml – name: Hindawi
– name: Hindawi Limited
References 22
23
24
26
S. Ozcan (2)
M. Boroumand (6) 2018; 14
Y. Yuan (21) 2015; 20
A. Sharma (13)
Z. Zhou (3) 2020; 14
R. Zhang (4) 2018
W. Ren (18) 2020; 401
11
15
16
K. Liu (14)
17
19
R. Zhang (12) 2019; 15
G. Huang (20)
1
J. Yang (10) 2017
M. Rezaei (25)
8
S. Wu (9)
M. Yedroudj (7)
S. N Gowda (5) 2020
References_xml – ident: 22
  doi: 10.1007/s12652-019-01493-x
– ident: 17
  doi: 10.1016/j.image.2020.116052
– ident: 19
  doi: 10.1016/j.neunet.2020.07.022
– ident: 15
  doi: 10.2352/issn.2470-1173.2017.7.mwsf-324
– start-page: 1
  ident: 14
  article-title: Ensemble of cnn and rich model for steganalysis
  contributor:
    fullname: K. Liu
– volume: 14
  start-page: 4557
  issue: 11
  year: 2020
  ident: 3
  article-title: Ensemble deep learning features for real-world image steganalysis
  publication-title: KSII Transactions on Internet and Information Systems (TIIS)
  contributor:
    fullname: Z. Zhou
– volume: 14
  start-page: 1181
  issue: 5
  year: 2018
  ident: 6
  article-title: Deep residual network for steganalysis of digital images
  publication-title: Institute of Electrical and Electronics Engineers Transactions on Information Forensics and Security
  contributor:
    fullname: M. Boroumand
– ident: 8
  doi: 10.1109/tifs.2017.2710946
– ident: 26
  doi: 10.2352/issn.2470-1173.2018.07.mwsf-317
– ident: 24
  doi: 10.1016/j.ins.2020.02.048
– ident: 1
  doi: 10.1109/tifs.2020.3005304
– year: 2017
  ident: 10
  article-title: Jpeg steganalysis based on densenet
  contributor:
    fullname: J. Yang
– start-page: 1
  ident: 25
  article-title: Stegrt1: a dataset for evaluating steganalysis systems in real-world scenarios
  contributor:
    fullname: M. Rezaei
– ident: 23
  doi: 10.1007/s00340-020-07480-x
– ident: 11
  doi: 10.1109/lsp.2018.2816569
– start-page: 4700
  ident: 20
  article-title: Densely connected convolutional networks
  contributor:
    fullname: G. Huang
– start-page: 1213
  ident: 13
  article-title: Spatial image steganalysis based on resnext
  contributor:
    fullname: A. Sharma
– start-page: 1233
  ident: 9
  article-title: Steganalysis via deep residual network
  contributor:
    fullname: S. Wu
– year: 2018
  ident: 4
  article-title: Efficient feature learning and multi-size image steganalysis based on cnn
  contributor:
    fullname: R. Zhang
– volume: 401
  start-page: 78
  year: 2020
  ident: 18
  article-title: Learning selection channels for image steganalysis in spatial domain
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.105
  contributor:
    fullname: W. Ren
– volume-title: Stegcolnet: steganalysis based on an ensemble colorspace approach
  year: 2020
  ident: 5
  contributor:
    fullname: S. N Gowda
– start-page: 2092
  ident: 7
  article-title: Yedroudj-net: an efficient cnn for spatial steganalysis
  contributor:
    fullname: M. Yedroudj
– volume: 15
  start-page: 1138
  year: 2019
  ident: 12
  article-title: Depth-wise separable convolutions and multi-level pooling for an efficient spatial cnn-based steganalysis
  publication-title: Institute of Electrical and Electronics Engineers Transactions on Information Forensics and Security
  contributor:
    fullname: R. Zhang
– start-page: 2280
  ident: 2
  article-title: Transfer learning effects on image steganalysis with pre-trained deep residual neural network model
  contributor:
    fullname: S. Ozcan
– volume: 20
  start-page: 16
  issue: 1
  year: 2015
  ident: 21
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: Institute of Electrical and Electronics Engineers Transactions on Evolutionary Computation
  contributor:
    fullname: Y. Yuan
– ident: 16
  doi: 10.1007/978-3-319-64185-0_20
SSID ssj0061474
Score 2.2593365
Snippet Recently, deep learning-based models are being extensively utilized for steganalysis. However, deep learning models suffer from overfitting and hyperparameter...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Artificial neural networks
Deep learning
Digital imaging
Genetic algorithms
Machine learning
Model accuracy
Neural networks
Performance measurement
Sorting algorithms
Title Artificial Intelligence-Based Digital Image Steganalysis
URI https://dx.doi.org/10.1155/2021/9923389
https://www.proquest.com/docview/2520675384
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj5RAEO64a0z0YHzG1dVwWE8E5VXQHNEdM5qsl1kT44U03YWs7syYecRkfr1V0GyzmcTHwQuBbmhIfdBVXdRXJcRJg5nMNWQBIIRBqiUGRcwJLzXotI60Cbs_ptNZ_vGzPJ2kE1e_07X9V6SpjbBm5uw_oH01KDXQPmFOW0Kdtn-Fe7nqon_6HBou3WbwhtSV4f9JXCXEfz_nWJ3ZBr8qm5VkbKXObFG7gfTmKCT-og8bX7tX6nvHj-lLQ_llS9rVeWLPsCXl2M1DtCpvL-bO-VrWZnupWv8D7pRfXn5btjTElb-nXa6a7W6nrH_2jHrnc2XGPorYeSem7Fj4ebHP1iK7keO0egLpKxy3xddm52G4_akeOCsGd3OQB9mpZHodiJsxTThcQwFOvwwamSyQ3EYX9PccCBAA7PuJXturr5kmt9r-0fd0dGd4nN8Td-2KwSt7qO-LG7h4IO6M8kg-FNKB7u2D7lnQvQ50bwz6I_Hp3eT87TSwJTECnST5JlASjIYYMDYKUqXoAKFJGy2jhAwvjMKGmdWck8kok8WykTmiLEgoNTNCk8ficLFc4BPhYZ4qXmxCqIs0MbIuALNI1lmDdF4RHomXgzSqH33mk6pbMQJULLXKSu1InFhR_eG040GOlf1c1lUMXD2AdG769Pfdz8RtHqz3fR2Lw81qi8_FwdpsX3RQ_wIoz16V
link.rule.ids 315,782,786,4030,27934,27935,27936
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Based+Digital+Image+Steganalysis&rft.jtitle=Security+and+communication+networks&rft.au=Iskanderani%2C+Ahmed+I&rft.au=Mehedi%2C+Ibrahim+M&rft.au=Abdulah+Jeza+Aljohani&rft.au=Shorfuzzaman%2C+Mohammad&rft.date=2021&rft.pub=Hindawi+Limited&rft.issn=1939-0114&rft.eissn=1939-0122&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F9923389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-0114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-0114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-0114&client=summon