Augmentation of blood circulation to the fingers by warming distant body areas

Future activities in space will require greater periods of time in extreme environments in which the body periphery will be vulnerable to chilling. Maintaining the hands and fingers in comfortable conditions enhances finger flexibility and dexterity, and thus effects better work performance. We have...

Full description

Saved in:
Bibliographic Details
Published in:European journal of applied physiology Vol. 82; no. 1-2; pp. 103 - 111
Main Authors: Koscheyev, V. S., Leon, G. R., Paul, S., Tranchida, D., Linder, I. V.
Format: Journal Article
Language:English
Published: Legacy CDMS Springer Nature B.V 01-05-2000
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Future activities in space will require greater periods of time in extreme environments in which the body periphery will be vulnerable to chilling. Maintaining the hands and fingers in comfortable conditions enhances finger flexibility and dexterity, and thus effects better work performance. We have evaluated the efficacy of promoting heat transfer and release by the extremities by increasing the blood flow to the periphery from more distant parts of the body. The experimental garment paradigm developed by the investigators was used to manipulate the temperature of different body areas. Six subjects, two females and four males, were evaluated in a stage-1 baseline condition, with the inlet temperature of the circulating water in the liquid cooling/warming garment (LCWG) at 33 degrees C. At stage 2 the total LCWG water inlet temperature was cooled to 8 degrees C, and at stage 3 the inlet water temperature in specific segments of the LCWG was warmed (according to protocol) to 45 degrees C, while the inlet temperature in the rest of the LCWG was maintained at 8 degrees C. The following four body-area-warming conditions were studied in separate sessions: (1) head, (2) upper torso/arm, (3) upper torso/arm/head, and (4) legs/feet. Skin temperature, heat flux and blood perfusion of the fingers, and subjective perception of thermal sensations and overall physical comfort were assessed. Finger temperature (T(fing)) analyses showed a statistically significant condition x stage interaction. Post-hoc comparisons (T(fing)) indicated that at stage 3, the upper torso/arm/head warming condition was significantly different from the head, upper torso/arm and legs/feet conditions, showing an increase in T(fing). There was a significant increase in blood perfusion in the fingers at stage 3 in all conditions. Subjective perception of hand warmth, and overall physical comfort level significantly increased in the stage 3 upper torso/arm/head condition. The findings indicate that physiological methods to enhance heat transfer by the blood to the periphery within protective clothing provide an additional tool for increasing total and local human comfort in extreme environments.
Bibliography:CDMS
Legacy CDMS
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1439-6319
1439-6327
DOI:10.1007/s004210050658