Ultrahigh strengthening effect induced by element addition in nanostructural (TiVCr)100−xWx medium entropy alloy
•DC magnetron co-sputtering technology was performed to synthesize (TiVCr)100−xWx alloy films.•Doping W into TiVCr alloys film induces a phase transition from amorphous to quasicrystal and nanocrystal.•An ultrahigh strengthening effect where the strength is enhanced by two times was observed. In thi...
Saved in:
Published in: | Journal of alloys and compounds Vol. 899; p. 163329 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Lausanne
Elsevier B.V
05-04-2022
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •DC magnetron co-sputtering technology was performed to synthesize (TiVCr)100−xWx alloy films.•Doping W into TiVCr alloys film induces a phase transition from amorphous to quasicrystal and nanocrystal.•An ultrahigh strengthening effect where the strength is enhanced by two times was observed.
In this work, we have investigated the effect of W addition on microstructure and mechanical properties of equiatomic TiVCr medium entropy alloy films. It is found that a transition from amorphous phase to quasicrystal and nanocrystal occurs with increasing content of W, showing an improved crystallinity of the films. Hardness drastically increases with increasing W addition and reaches the maximum value of 7.2 GPa at 16.0 at% W content, which is two times higher than that of the initial sample. Amorphous phase strengthening, solid solution and precipitation strengthening become the dominant mechanism, responsible for the ultrahigh strengthening effect. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2021.163329 |