Roundoff errors in block-floating-point systems

Block-floating-point representation is a special case of floating-point representation, where several numbers have a joint exponent term. In this paper, roundoff errors in signal processing systems utilizing block-floating-point representation are studied. Special emphasis is on analysis of quantiza...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 44; no. 4; pp. 783 - 790
Main Authors: Kalliojarvi, K., Astola, J.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-04-1996
Institute of Electrical and Electronics Engineers
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Block-floating-point representation is a special case of floating-point representation, where several numbers have a joint exponent term. In this paper, roundoff errors in signal processing systems utilizing block-floating-point representation are studied. Special emphasis is on analysis of quantization errors when data is quantized to a block-floating-point format and on analysis of roundoff errors in digital filters utilizing block-floating-point arithmetic, block-floating-point roundoff errors are found to depend on the signal level in the same way as floating-point roundoff errors, resulting in approximately constant signal-to-noise-ratios (SNRs) over relatively large dynamic range. Both the analysis and simulation results show that block-floating-point is an efficient number representation format. In data representation, a superior performance to fixed- or floating-point representations can be achieved with block-floating-point representation with same total number of bits per sample. In digital filters, block-floating-point arithmetic can provide comparable performance to floating-point arithmetic with reduced complexity.
AbstractList Block-floating-point representation is a special case of floating-point representation, where several numbers have a joint exponent term. In this paper, roundoff errors in signal processing systems utilizing block-floating-point representation are studied. Special emphasis is on analysis of quantization errors when data is quantized to a block-floating-point format and on analysis of roundoff errors in digital filters utilizing block-floating-point arithmetic, block-floating-point roundoff errors are found to depend on the signal level in the same way as floating-point roundoff errors, resulting in approximately constant signal-to-noise-ratios (SNRs) over relatively large dynamic range. Both the analysis and simulation results show that block-floating-point is an efficient number representation format. In data representation, a superior performance to fixed- or floating-point representations can be achieved with block-floating-point representation with same total number of bits per sample. In digital filters, block-floating-point arithmetic can provide comparable performance to floating-point arithmetic with reduced complexity
Block-floating-point representation is a special case of floating-point representation, where several numbers have a joint exponent term. In this paper, roundoff errors in signal processing systems utilizing block-floating-point representation are studied. Special emphasis is on analysis of quantization errors when data is quantized to a block-floating-point format and on analysis of roundoff errors in digital filters utilizing block-floating-point arithmetic. Block-floating-point roundoff errors are found to depend on the signal level in the same way as floating-point roundoff errors, resulting in approximately constant signal-to-noise-ratios (SNRs) over relatively large dynamic range. Both the analysis and simulation results show that block-floating-point is an efficient number representation format. In data representation, a superior performance to fixed- or floating-point representations can be achieved with block-floating-point representation with same total number of bits per sample. In digital filters, block-floating-point arithmetic can provide comparable performance to floating-point arithmetic with reduced complexity.
Author Kalliojarvi, K.
Astola, J.
Author_xml – sequence: 1
  givenname: K.
  surname: Kalliojarvi
  fullname: Kalliojarvi, K.
  organization: Signal Process. Lab., Tampere Univ. of Technol., Finland
– sequence: 2
  givenname: J.
  surname: Astola
  fullname: Astola, J.
  organization: Signal Process. Lab., Tampere Univ. of Technol., Finland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3079507$$DView record in Pascal Francis
BookMark eNqFkMtLAzEQh4NUsK0evHragwge0uaxeR2l1AcUBFHwFtI8ZHWb1GR76H_vli29epqB-eab4TcBo5iiB-AaoxnGSM2FnNWKMIrPwBirGkNUCz7qe8QoZFJ8XoBJKd8I4bpWfAzmb2kXXQqh8jmnXKomVus22R8Y2mS6Jn7BbWpiV5V96fymXILzYNrir451Cj4el--LZ7h6fXpZPKygpVR0kHrsnJOEOm6J4WvCpBTIOCS9sLVyyrjaYkotCoQGqziWXloWOEE9TgSdgrvBu83pd-dLpzdNsb5tTfRpVzSRTCgm6f8gJ5xLKnvwfgBtTqVkH_Q2NxuT9xojfchOC6mH7Hr29ig1xZo2ZBNtU04LFPW30eHJmwFrvPen6dHxB9Drdr4
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TCSI_2012_2185329
crossref_primary_10_1109_TCSII_2006_880333
crossref_primary_10_1007_s00170_004_2293_2
crossref_primary_10_1109_LSP_2005_843781
crossref_primary_10_1080_03772063_2006_11416439
crossref_primary_10_1587_transinf_2015EDP7488
crossref_primary_10_1016_S0920_5489_01_00058_7
crossref_primary_10_1080_0020717042000208296
crossref_primary_10_1109_TNNLS_2014_2323218
crossref_primary_10_1007_BF01206546
crossref_primary_10_1109_78_752605
crossref_primary_10_1049_ip_smt_19990001
crossref_primary_10_1109_TVLSI_2006_886407
crossref_primary_10_1155_2007_57086
crossref_primary_10_1049_el_20063397
crossref_primary_10_1109_LSP_2003_822891
crossref_primary_10_1109_TSP_2010_2050478
crossref_primary_10_1016_j_sysarc_2024_103236
crossref_primary_10_1016_S0165_1684_98_00098_X
crossref_primary_10_1109_TSP_2005_859342
crossref_primary_10_1587_transinf_2015EDP7432
crossref_primary_10_1109_TVLSI_2019_2913958
crossref_primary_10_1109_TIM_2002_808036
crossref_primary_10_1109_82_625021
crossref_primary_10_14801_jkiit_2020_18_2_117
crossref_primary_10_1016_S0263_2241_99_00068_8
crossref_primary_10_1109_TVLSI_2016_2580142
crossref_primary_10_1109_TC_2023_3253050
crossref_primary_10_1016_j_sigpro_2012_11_024
crossref_primary_10_4028_www_scientific_net_AMR_941_944_2224
Cites_doi 10.1016/0141-9331(88)90186-X
10.1109/TAU.1970.1162085
10.1109/TASSP.1975.1162724
10.1109/TBC.1987.266648
10.1109/TCS.1985.1085765
10.1109/78.139240
10.1109/TASSP.1975.1162680
10.1109/ISCAS.1992.230408
10.1109/ICASSP.1994.389953
10.1109/78.403360
10.1109/TCE.1987.290271
10.1109/ICASSP.1987.1169832
10.1109/PROC.1972.8820
10.1109/30.44310
10.1109/TCS.1986.1086002
ContentType Journal Article
Copyright 1996 INIST-CNRS
Copyright_xml – notice: 1996 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/78.492531
DatabaseName Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 790
ExternalDocumentID 10_1109_78_492531
3079507
492531
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAYOK
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AJQPL
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
XFK
ABPTK
IQODW
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-3e1ddd823d6c2a6b258870ad08e7c49d9ad4c133c0f23fc9618e8c5f6202a6273
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Sat Aug 17 02:37:54 EDT 2024
Fri Aug 16 07:56:35 EDT 2024
Fri Aug 23 04:07:51 EDT 2024
Sun Oct 29 17:10:19 EDT 2023
Wed Jun 26 19:31:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Digital filter
Quantization error
Computer arithmetic
Quantization
Signal processing
Digital processing
Floating point
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-3e1ddd823d6c2a6b258870ad08e7c49d9ad4c133c0f23fc9618e8c5f6202a6273
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 26266838
PQPubID 23500
PageCount 8
ParticipantIDs pascalfrancis_primary_3079507
proquest_miscellaneous_28579583
ieee_primary_492531
crossref_primary_10_1109_78_492531
proquest_miscellaneous_26266838
PublicationCentury 1900
PublicationDate 1996-04-01
PublicationDateYYYYMMDD 1996-04-01
PublicationDate_xml – month: 04
  year: 1996
  text: 1996-04-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 1996
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref14
ref11
ref10
kallioja¨rvi (ref12) 1993
ref2
ref1
ref16
ref18
ref8
ref7
oppenheim (ref15) 1989
ref9
ref4
ref3
ref6
ref5
bendat (ref17) 1986
References_xml – year: 1989
  ident: ref15
  publication-title: Discrete-Time Signal Processing
  contributor:
    fullname: oppenheim
– ident: ref6
  doi: 10.1016/0141-9331(88)90186-X
– ident: ref2
  doi: 10.1109/TAU.1970.1162085
– ident: ref18
  doi: 10.1109/TASSP.1975.1162724
– ident: ref10
  doi: 10.1109/TBC.1987.266648
– ident: ref3
  doi: 10.1109/TCS.1985.1085765
– ident: ref8
  doi: 10.1109/78.139240
– ident: ref16
  doi: 10.1109/TASSP.1975.1162680
– start-page: 791
  year: 1993
  ident: ref12
  article-title: analysis of block-floating-point quantization error
  publication-title: Circuit Theory and Design 93 Proceedings of the 11th European Conference on Circuit Theory and Design Davos Switzerland Aug 30 -Sept 3 1993
  contributor:
    fullname: kallioja¨rvi
– ident: ref1
  doi: 10.1109/ISCAS.1992.230408
– ident: ref13
  doi: 10.1109/ICASSP.1994.389953
– ident: ref14
  doi: 10.1109/78.403360
– ident: ref9
  doi: 10.1109/TCE.1987.290271
– ident: ref5
  doi: 10.1109/ICASSP.1987.1169832
– ident: ref7
  doi: 10.1109/PROC.1972.8820
– ident: ref11
  doi: 10.1109/30.44310
– year: 1986
  ident: ref17
  publication-title: Random Data Analysis and Measurement Procedures
  contributor:
    fullname: bendat
– ident: ref4
  doi: 10.1109/TCS.1986.1086002
SSID ssj0014496
Score 1.764773
Snippet Block-floating-point representation is a special case of floating-point representation, where several numbers have a joint exponent term. In this paper,...
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 783
SubjectTerms Analytical models
Applied sciences
Digital arithmetic
Digital filters
Dynamic range
Error analysis
Exact sciences and technology
Floating-point arithmetic
Information, signal and communications theory
Quantization
Roundoff errors
Sampling, quantization
Signal analysis
Signal and communications theory
Signal processing
Telecommunications and information theory
Title Roundoff errors in block-floating-point systems
URI https://ieeexplore.ieee.org/document/492531
https://search.proquest.com/docview/26266838
https://search.proquest.com/docview/28579583
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxh4FBAFChFidevYTmyPCFp1YuAhdYsc25EqUFIlzf_Hj6aiAiGxRckldi7n813u8QFwnyhszWSTwJgyZh2UPLdLCudQpS6oxKhkHnlu_sqeF_xpSrs-274Wxhjjk8_M2B36WL6uVOt-lU1cIz1XM91jgodSrW3AgFIPxWWtBQITzhabJkIxEhPGx-HGna3HY6m4TEjZWGYUAcXih0L2u8zs6F_zOwaHG2Myeghf_wTsmXIADr61GDwFkxeHm1QVRWTquqqbaFlGud3APmDxWUmX8wxX1bJcR6Glc3MG3mfTt8c53IAkQEUIW0NiYq01x0SnCss0x4lVG0hqxA1TVGghNVXWEVWowKRQDuDFcJUUKUaW3Bov56BfVqW5ABHRhBWGixwpTmWccmt5Y7dmc044EnoI7jr-ZavQCyPzPgQSGeNZePshGDjGbAm6s6MdRm8vWxUjrEk6BLcd4zMr3y5oIUtTtU3mRCm14_9BwRP7DE4ufx35CuyHRGuXbHMN-uu6NSPQa3R74yXoC52Mw3w
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFG90HtSDH1Pj1DlivOKgLbQcjW6Zce6gM9mNlLYkiwYWGP-_r2UsLhoTbwRKC4_X98H7-CF0G0gMZrIOXJ8yBg5KksCWwokrQxNUYlQwizw3emOTGX8c0KbPtq2F0Vrb5DN9Zw5tLF_lsjK_yvqmkZ6pmd6BWUJWF2utQwaUWjAusBeIG3A2W7UR8r2oz_hdfeuG8rFoKiYXUpRAjrTGsfghkq2eGR7-6wmP0MHKnHTu6-9_jLZ01kb735oMnqD-q0FOytPU0UWRF6Uzz5wEVNiHm37mwmQ9u4t8ni2duqlzeYreh4Ppw8hdwSS4khC2dIn2lVIcExVKLMIEByA4PKE8rpmkkYqEohJcUemlmKTSQLxoLoM0xB4MB_PlDLWyPNPnyCGKsFTzKPEkp8IPOdje2OzahBPuRaqDbhr6xYu6G0ZsvQgvihmP67fvoLYhzHpAc7a7Qej1ZRAyERilHdRrCB8Dh5uwhch0XpWxYaYQ1v9jBA9gDk4ufl25h3ZH05dxPH6aPF-ivTrt2qTeXKHWsqh0F22Xqrq23PQFDy3GzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roundoff+errors+in+block-floating-point+systems&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Kalliojarvi%2C+K.&rft.au=Astola%2C+J.&rft.date=1996-04-01&rft.pub=IEEE&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=44&rft.issue=4&rft.spage=783&rft.epage=790&rft_id=info:doi/10.1109%2F78.492531&rft.externalDocID=492531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon