Patient Tracking in a Multi-Building, Tunnel-Connected Hospital Complex

Patients admitted to Intensive Care Units (ICU) are transported from and to other units. Knowing their location is strategic for a sound planning of intra-hospital transports as well as resources management. This is even more crucial in big hospital complexes, comprised of several buildings often co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 20; no. 23; pp. 14453 - 14464
Main Authors: Trigo, Jesus Daniel, Klaina, Hicham, Guembe, Imanol Picallo, Lopez-Iturri, Peio, Astrain, Jose Javier, Alejos, Ana Vazquez, Falcone, Francisco, Serrano-Arriezu, Luis
Format: Journal Article
Language:English
Published: New York IEEE 01-12-2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Patients admitted to Intensive Care Units (ICU) are transported from and to other units. Knowing their location is strategic for a sound planning of intra-hospital transports as well as resources management. This is even more crucial in big hospital complexes, comprised of several buildings often connected through tunnels. In this work, a patient tracking application in a multi-building, tunnel-connected hospital complex (the Hospital Complex of Navarre) is presented. The system leverages Internet of Medical Things (IoMT) communication technologies, such as Long Range Wide-Area Network (LoRaWAN) and Near Field Communication (NFC). The locations of the LoRaWAN nodes were selected based on several factors, including the situation of the tunnels, buildings services and medical equipment and a literature review on intra-hospital ICU patients' trips. The possible locations of the LoRaWAN gateways were selected based on 3D Ray Launching Simulations, in order to obtain accurate characterization. Once the locations were set, a LoRaWAN radio coverage studio was performed. The main conclusion drawn is that just one LoRaWAN gateway would be enough to cover all overground LoRaWAN nodes deployed. A second one would be required for underground coverage. In addition, a remote, private cloud infrastructure together with a mobile application was created to manage the information generated. On-field tests were performed to assess the technical feasibility of the system. The application provides with on-demand ICU patients' movement flow around the complex. Although designed for the ICU-admitted patients' context, the system could be easily extrapolated to other use cases.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2020.3007593