Mutant libraries reveal negative design shielding proteins from supramolecular self-assembly and relocalization in cells

Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic data. While mutations are known to disrupt protein structure and function, their potential to create new structures and localization phenotypes...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 5
Main Authors: Garcia Seisdedos, Hector, Levin, Tal, Shapira, Gal, Freud, Saskia, Levy, Emmanuel D
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 01-02-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic data. While mutations are known to disrupt protein structure and function, their potential to create new structures and localization phenotypes has not yet been mapped to a sequence space. To map this relationship, we employed two homo-oligomeric protein complexes in which the internal symmetry exacerbates the impact of mutations. We mutagenized three surface residues of each complex and monitored the mutations' effect on localization and assembly phenotypes in yeast cells. While surface mutations are classically viewed as benign, our analysis of several hundred mutants revealed they often trigger three main phenotypes in these proteins: nuclear localization, the formation of puncta, and fibers. Strikingly, more than 50% of random mutants induced one of these phenotypes in both complexes. Analyzing the mutant's sequences showed that surface stickiness and net charge are two key physicochemical properties associated with these changes. In one complex, more than 60% of mutants self-assembled into fibers. Such a high frequency is explained by negative design: charged residues shield the complex from self-interacting with copies of itself, and the sole removal of the charges induces its supramolecular self-assembly. A subsequent analysis of several other complexes targeted with alanine mutations suggested that such negative design is common. These results highlight that minimal perturbations in protein surfaces' physicochemical properties can frequently drive assembly and localization changes in a cellular context.
AbstractList Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic data. While mutations are known to disrupt protein structure and function, their potential to create new structures and localization phenotypes has not yet been mapped to a sequence space. To map this relationship, we employed two homo-oligomeric protein complexes in which the internal symmetry exacerbates the impact of mutations. We mutagenized three surface residues of each complex and monitored the mutations' effect on localization and assembly phenotypes in yeast cells. While surface mutations are classically viewed as benign, our analysis of several hundred mutants revealed they often trigger three main phenotypes in these proteins: nuclear localization, the formation of puncta, and fibers. Strikingly, more than 50% of random mutants induced one of these phenotypes in both complexes. Analyzing the mutant's sequences showed that surface stickiness and net charge are two key physicochemical properties associated with these changes. In one complex, more than 60% of mutants self-assembled into fibers. Such a high frequency is explained by negative design: charged residues shield the complex from self-interacting with copies of itself, and the sole removal of the charges induces its supramolecular self-assembly. A subsequent analysis of several other complexes targeted with alanine mutations suggested that such negative design is common. These results highlight that minimal perturbations in protein surfaces' physicochemical properties can frequently drive assembly and localization changes in a cellular context.
Genetic mutations fuel organismal evolution but can also cause disease. As proteins are the cell’s workhorses, the ways in which mutations can disrupt their structure, stability, function, and interactions have been studied extensively. However, proteins evolve and function in a cellular context, and our ability to relate changes in protein sequence to cell-level phenotypes remains limited. In particular, the molecular mechanism underlying most disease-associated mutations is unknown. Here, we show that mutations changing a protein’s surface chemistry can dramatically impact its supramolecular self-assembly and localization in the cell. These results highlight the complex nature of genotype–phenotype relationships with a simple system. Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic data. While mutations are known to disrupt protein structure and function, their potential to create new structures and localization phenotypes has not yet been mapped to a sequence space. To map this relationship, we employed two homo-oligomeric protein complexes in which the internal symmetry exacerbates the impact of mutations. We mutagenized three surface residues of each complex and monitored the mutations’ effect on localization and assembly phenotypes in yeast cells. While surface mutations are classically viewed as benign, our analysis of several hundred mutants revealed they often trigger three main phenotypes in these proteins: nuclear localization, the formation of puncta, and fibers. Strikingly, more than 50% of random mutants induced one of these phenotypes in both complexes. Analyzing the mutant’s sequences showed that surface stickiness and net charge are two key physicochemical properties associated with these changes. In one complex, more than 60% of mutants self-assembled into fibers. Such a high frequency is explained by negative design: charged residues shield the complex from self-interacting with copies of itself, and the sole removal of the charges induces its supramolecular self-assembly. A subsequent analysis of several other complexes targeted with alanine mutations suggested that such negative design is common. These results highlight that minimal perturbations in protein surfaces’ physicochemical properties can frequently drive assembly and localization changes in a cellular context.
Author Levy, Emmanuel D
Freud, Saskia
Garcia Seisdedos, Hector
Shapira, Gal
Levin, Tal
Author_xml – sequence: 1
  givenname: Hector
  orcidid: 0000-0001-7722-2793
  surname: Garcia Seisdedos
  fullname: Garcia Seisdedos, Hector
  email: eque1982@gmail.com
  organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel eque1982@gmail.com
– sequence: 2
  givenname: Tal
  orcidid: 0000-0002-2301-3168
  surname: Levin
  fullname: Levin, Tal
  organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
– sequence: 3
  givenname: Gal
  orcidid: 0000-0002-0881-2367
  surname: Shapira
  fullname: Shapira, Gal
  organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
– sequence: 4
  givenname: Saskia
  surname: Freud
  fullname: Freud, Saskia
  organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
– sequence: 5
  givenname: Emmanuel D
  orcidid: 0000-0001-8959-7365
  surname: Levy
  fullname: Levy, Emmanuel D
  organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35078932$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1v1TAQRS1URF8La3bIEhs2af2RxPYGCVVAkYrYwNqaOJNXV44d7OSp5deTqKUFVrOY46O5vifkKKaIhLzm7IwzJc-nCOVMcMY5V5ybZ2THmeFVWxt2RHaMCVXpWtTH5KSUG8aYaTR7QY5lw5Q2UuzI7ddlhjjT4LsM2WOhGQ8IgUbcw-wPSHssfh9pufYYeh_3dMppRh8LHXIaaVmmDGMK6JYAmRYMQwWl4NiFOwqxX30hOQj-16pLkfpIHYZQXpLnA4SCrx7mKfnx6eP3i8vq6tvnLxcfrionZWuqfuB9rXtwTNQSJeudbgx0fNBDy_vWcDboWnKFnQPlGgXOMO4EIpjW6c7IU_L-3jst3Yi9wzhnCHbKfoR8ZxN4--8m-mu7TwerNRet1qvg3YMgp58LltmOvmwRIGJaihWtEOu31g1f0bf_oTdpyXGNt1FKN6rW20Xn95TLqZSMw-MxnNmtVbu1ap9aXV-8-TvDI_-nRvkbHhSkCA
CitedBy_id crossref_primary_10_1126_sciadv_adc9440
crossref_primary_10_1021_acsami_3c16534
crossref_primary_10_1007_s12551_023_01172_4
crossref_primary_10_1016_j_sbi_2023_102530
crossref_primary_10_3389_fnmol_2023_1246842
crossref_primary_10_1088_1367_2630_ad1846
crossref_primary_10_3389_fmolb_2022_909567
crossref_primary_10_1038_s41467_024_46864_x
crossref_primary_10_1093_molbev_msad070
crossref_primary_10_1016_j_gde_2022_101966
crossref_primary_10_1073_pnas_2221163120
Cites_doi 10.1073/pnas.1613122113
10.1016/j.str.2015.11.006
10.1074/mcp.O113.031708
10.1016/j.sbi.2007.08.007
10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W
10.1073/pnas.160252097
10.1126/science.aan6398
10.1146/annurev-biochem-060614-034142
10.1146/annurev.genom.7.080505.115630
10.1038/s41467-020-15796-7
10.1038/nature23320
10.1038/s41586-020-2925-1
10.1016/j.str.2004.03.008
10.1038/s41586-020-03120-8
10.1126/science.1150421
10.1016/j.cell.2018.06.006
10.1016/j.nbd.2009.07.020
10.1371/journal.pcbi.0030052
10.1038/s41467-019-12101-z
10.1074/jbc.TM118.001192
10.1038/nature03679
10.1038/nbt0102-87
10.1038/nmeth.3696
10.1088/1478-3967/1/1/P02
10.1093/molbev/msu081
10.1002/anie.201806092
10.1038/nbt.2214
10.1038/emboj.2009.225
10.1091/mbc.E19-04-0224
10.1371/journal.pcbi.1000592
10.1038/nmeth.1492
10.1126/science.1166066
10.1016/j.cell.2009.02.044
10.1002/prot.21786
10.1039/c0mb00061b
10.1126/science.aay5359
10.1091/mbc.e17-04-0263
10.1146/annurev-biochem-062917-011901
10.1006/jmbi.1996.0479
10.1242/jcs.223289
10.1038/s41597-019-0058-x
10.1146/annurev.biochem.68.1.779
10.1073/pnas.0812771106
10.1016/j.jmb.2010.09.028
10.1016/j.cell.2018.05.045
https://doi.org/10.1101/2021.08.16.456554
10.1038/nature17633
10.1016/0378-1119(95)00037-7
10.1126/science.aan0693
10.1371/journal.pcbi.1004421
10.1073/pnas.0812414106
10.1038/nmeth.2019
10.1126/science.2471267
https://doi.org/10.1101/260695
10.7554/eLife.02409
10.1038/256705a0
10.7554/eLife.09347
10.1073/pnas.1310414110
10.1523/JNEUROSCI.4988-09.2010
10.1038/s41589-020-0576-z
10.1073/pnas.0403255101
10.7554/eLife.03638
10.1073/pnas.1910444117
10.1073/pnas.1209312109
10.1073/pnas.052706099
10.1073/pnas.1001292107
10.1016/j.celrep.2018.11.076
10.1146/annurev-cellbio-100913-013325
10.1242/jcs.089110
10.7554/eLife.31486
10.1073/pnas.0506124102
10.1126/science.1219364
10.1126/science.2392678
10.1002/yea.1018
10.1073/pnas.041614998
10.1073/pnas.1202107109
10.7554/eLife.32472
10.1126/science.aad9195
10.1038/nature02026
10.1038/s41467-018-05725-0
10.1006/jmbi.1996.0279
10.1016/S0065-3233(08)60287-9
10.1038/ncomms15137
10.1038/nsmb.3407
ContentType Journal Article
Copyright Copyright © 2022 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Feb 1, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Feb 1, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2101117119
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 10_1073_pnas_2101117119
35078932
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: 819318
– fundername: Israel Science Foundation (ISF)
  grantid: 1452/18
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HH5
HYE
JLS
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
.GJ
2AX
3O-
692
6TJ
79B
AAYJJ
AAYXX
ABBHK
ABXSQ
ACKIV
ADACV
ADULT
AEUPB
AEXZC
AQVQM
AS~
CITATION
DCCCD
DOOOF
EJD
HGD
HQ3
HTVGU
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
JSODD
MVM
NEJ
NHB
P-O
SA0
VOH
WHG
ZCG
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c3369-df1d48dac0243e30dc859ab1f8f61d6910f84317ebca7c57ac901c2eea96c8b93
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:07:24 EDT 2024
Fri Aug 16 22:45:28 EDT 2024
Wed Nov 13 11:32:02 EST 2024
Thu Nov 21 22:00:40 EST 2024
Sat Sep 28 08:21:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords protein interactions
protein evolution
genotype–phenotype map
Language English
License Copyright © 2022 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3369-df1d48dac0243e30dc859ab1f8f61d6910f84317ebca7c57ac901c2eea96c8b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1H.G.S. and T.L. contributed equally to this work.
Edited by David Baker, Institute for Protein Design, University of Washington, Seattle, WA; received January 22, 2021; accepted November 16, 2021
Author contributions: H.G.S. and E.D.L. designed research; H.G.S., T.L., G.S., and S.F. performed research; H.G.S., T.L., and E.D.L. analyzed data; and H.G.S. and E.D.L. wrote the paper.
ORCID 0000-0001-8959-7365
0000-0001-7722-2793
0000-0002-2301-3168
0000-0002-0881-2367
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812688/
PMID 35078932
PQID 2627857489
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8812688
proquest_miscellaneous_2622958451
proquest_journals_2627857489
crossref_primary_10_1073_pnas_2101117119
pubmed_primary_35078932
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_20_2
  doi: 10.1073/pnas.1613122113
– ident: e_1_3_4_67_2
  doi: 10.1016/j.str.2015.11.006
– ident: e_1_3_4_9_2
  doi: 10.1074/mcp.O113.031708
– ident: e_1_3_4_17_2
  doi: 10.1016/j.sbi.2007.08.007
– ident: e_1_3_4_79_2
  doi: 10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W
– ident: e_1_3_4_4_2
  doi: 10.1073/pnas.160252097
– ident: e_1_3_4_27_2
  doi: 10.1126/science.aan6398
– ident: e_1_3_4_43_2
  doi: 10.1146/annurev-biochem-060614-034142
– ident: e_1_3_4_1_2
  doi: 10.1146/annurev.genom.7.080505.115630
– ident: e_1_3_4_14_2
  doi: 10.1038/s41467-020-15796-7
– ident: e_1_3_4_44_2
  doi: 10.1038/nature23320
– ident: e_1_3_4_65_2
  doi: 10.1038/s41586-020-2925-1
– ident: e_1_3_4_62_2
  doi: 10.1016/j.str.2004.03.008
– ident: e_1_3_4_50_2
  doi: 10.1038/s41586-020-03120-8
– ident: e_1_3_4_48_2
  doi: 10.1126/science.1150421
– ident: e_1_3_4_26_2
  doi: 10.1016/j.cell.2018.06.006
– ident: e_1_3_4_42_2
  doi: 10.1016/j.nbd.2009.07.020
– ident: e_1_3_4_57_2
  doi: 10.1371/journal.pcbi.0030052
– ident: e_1_3_4_10_2
  doi: 10.1038/s41467-019-12101-z
– ident: e_1_3_4_29_2
  doi: 10.1074/jbc.TM118.001192
– ident: e_1_3_4_70_2
  doi: 10.1038/nature03679
– ident: e_1_3_4_77_2
  doi: 10.1038/nbt0102-87
– ident: e_1_3_4_16_2
  doi: 10.1038/nmeth.3696
– ident: e_1_3_4_54_2
  doi: 10.1088/1478-3967/1/1/P02
– ident: e_1_3_4_12_2
  doi: 10.1093/molbev/msu081
– ident: e_1_3_4_37_2
  doi: 10.1002/anie.201806092
– ident: e_1_3_4_18_2
  doi: 10.1038/nbt.2214
– ident: e_1_3_4_72_2
  doi: 10.1038/emboj.2009.225
– ident: e_1_3_4_36_2
  doi: 10.1091/mbc.E19-04-0224
– ident: e_1_3_4_58_2
  doi: 10.1371/journal.pcbi.1000592
– ident: e_1_3_4_2_2
  doi: 10.1038/nmeth.1492
– ident: e_1_3_4_41_2
  doi: 10.1126/science.1166066
– ident: e_1_3_4_23_2
  doi: 10.1016/j.cell.2009.02.044
– ident: e_1_3_4_76_2
  doi: 10.1002/prot.21786
– ident: e_1_3_4_85_2
– ident: e_1_3_4_15_2
  doi: 10.1039/c0mb00061b
– ident: e_1_3_4_30_2
  doi: 10.1126/science.aay5359
– ident: e_1_3_4_63_2
  doi: 10.1091/mbc.e17-04-0263
– ident: e_1_3_4_71_2
  doi: 10.1146/annurev-biochem-062917-011901
– ident: e_1_3_4_6_2
  doi: 10.1006/jmbi.1996.0479
– ident: e_1_3_4_32_2
  doi: 10.1242/jcs.223289
– ident: e_1_3_4_49_2
  doi: 10.1038/s41597-019-0058-x
– ident: e_1_3_4_60_2
  doi: 10.1146/annurev.biochem.68.1.779
– ident: e_1_3_4_35_2
  doi: 10.1073/pnas.0812771106
– ident: e_1_3_4_83_2
  doi: 10.1016/j.jmb.2010.09.028
– ident: e_1_3_4_52_2
  doi: 10.1016/j.cell.2018.05.045
– ident: e_1_3_4_84_2
  doi: https://doi.org/10.1101/2021.08.16.456554
– ident: e_1_3_4_47_2
  doi: 10.1038/nature17633
– ident: e_1_3_4_78_2
  doi: 10.1016/0378-1119(95)00037-7
– ident: e_1_3_4_7_2
  doi: 10.1126/science.aan0693
– ident: e_1_3_4_13_2
  doi: 10.1371/journal.pcbi.1004421
– ident: e_1_3_4_55_2
  doi: 10.1073/pnas.0812414106
– ident: e_1_3_4_82_2
  doi: 10.1038/nmeth.2019
– ident: e_1_3_4_3_2
  doi: 10.1126/science.2471267
– ident: e_1_3_4_80_2
  doi: https://doi.org/10.1101/260695
– ident: e_1_3_4_34_2
  doi: 10.7554/eLife.02409
– ident: e_1_3_4_53_2
  doi: 10.1038/256705a0
– ident: e_1_3_4_66_2
  doi: 10.7554/eLife.09347
– ident: e_1_3_4_68_2
  doi: 10.1073/pnas.1310414110
– ident: e_1_3_4_40_2
  doi: 10.1523/JNEUROSCI.4988-09.2010
– ident: e_1_3_4_81_2
  doi: 10.1038/s41589-020-0576-z
– ident: e_1_3_4_11_2
  doi: 10.1073/pnas.0403255101
– ident: e_1_3_4_31_2
  doi: 10.7554/eLife.03638
– ident: e_1_3_4_74_2
  doi: 10.1073/pnas.1910444117
– ident: e_1_3_4_51_2
  doi: 10.1073/pnas.1209312109
– ident: e_1_3_4_59_2
  doi: 10.1073/pnas.052706099
– ident: e_1_3_4_33_2
  doi: 10.1073/pnas.1001292107
– ident: e_1_3_4_24_2
  doi: 10.1016/j.celrep.2018.11.076
– ident: e_1_3_4_28_2
  doi: 10.1146/annurev-cellbio-100913-013325
– ident: e_1_3_4_73_2
  doi: 10.1242/jcs.089110
– ident: e_1_3_4_25_2
  doi: 10.7554/eLife.31486
– ident: e_1_3_4_56_2
  doi: 10.1073/pnas.0506124102
– ident: e_1_3_4_46_2
  doi: 10.1126/science.1219364
– ident: e_1_3_4_61_2
  doi: 10.1126/science.2392678
– ident: e_1_3_4_75_2
  doi: 10.1002/yea.1018
– ident: e_1_3_4_45_2
  doi: 10.1073/pnas.041614998
– ident: e_1_3_4_8_2
  doi: 10.1073/pnas.1202107109
– ident: e_1_3_4_21_2
  doi: 10.7554/eLife.32472
– ident: e_1_3_4_19_2
  doi: 10.1126/science.aad9195
– ident: e_1_3_4_22_2
  doi: 10.1038/nature02026
– ident: e_1_3_4_69_2
  doi: 10.1038/s41467-018-05725-0
– ident: e_1_3_4_5_2
  doi: 10.1006/jmbi.1996.0279
– ident: e_1_3_4_38_2
  doi: 10.1016/S0065-3233(08)60287-9
– ident: e_1_3_4_39_2
  doi: 10.1038/ncomms15137
– ident: e_1_3_4_64_2
  doi: 10.1038/nsmb.3407
SSID ssj0009580
Score 2.4800134
Snippet Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic...
Genetic mutations fuel organismal evolution but can also cause disease. As proteins are the cell’s workhorses, the ways in which mutations can disrupt their...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Alanine
Biological Sciences
Design
Fibers
Genotype
Genotypes
Localization
Mutants
Mutation
Mutation - genetics
Perturbation
Phenotype
Phenotypes
Physicochemical properties
Protein structure
Proteins
Proteins - genetics
Residues
Self-assembly
Shielding
Structure-function relationships
Surface charge
Yeasts
Title Mutant libraries reveal negative design shielding proteins from supramolecular self-assembly and relocalization in cells
URI https://www.ncbi.nlm.nih.gov/pubmed/35078932
https://www.proquest.com/docview/2627857489
https://search.proquest.com/docview/2622958451
https://pubmed.ncbi.nlm.nih.gov/PMC8812688
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xnLhUbEtpKCAjcdgeshvnw3aOCBaBEKhSW4lb5NgOrLTrXW2IVP49Y2-Ssu2tZzufM-N5I795BjivhDRU8TyUPGVhSmUZytJz3PMokkyyzB8Gc_ODPzyKq6mTycm6XhhP2lflbGzni7GdPXtu5WqhJh1PbPL9_lJgVmJYuQ1ggNiwK9F7pV2x6TuJcflN47TT8-HJZGVlPcYaB-ObU-oEQ5PMya0n8XZW-gdq_s2YfJeCrvfhQ4sdycXmHYewY-xHGLbRWZNRKyH97RP8vm_c6cCkL4aJU2rCa6158krfRHvmBqmfHYMN0xfxgg0zWxPXcELqZrWWi-7oXFKbeRUizDaLcv5KpNV4P58F2y5OMrPEbQHUB_Drevrz8iZsz1gIVZKwPNQV1anQUjllQpNEWokslyWtRMWoZggmKuEwhuNMcZVxqRBAqNgYmTMlyjz5DLt2ac0XIJjm8kqassoMll1c40qgdCSpiAQXpTEBjLp_XKw2UhqF3wLnSeEsU_yxTADHnQ2KNqZwmMVcZE4tJ4CzfhijwX2ftGbZ-DkxOkCa0QAONybrn9XZOgC-Zcx-glPa3h5BB_SK263DHf33lV9hL3Z9E57ufQy7L-vGnMCg1s0p4vjbu1Pvw28r6_iy
link.rule.ids 230,315,729,782,786,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VeoBLW6DQ8GhdiQM9ZDfOw3aOiIe2gkWVChK3yLEdWGnXrAiR4N937E3SLr1xHjsPzYxnRv7mG4DDSkhDFc9DyVMWplSWoSw9xj2PIskky_wwmNFvfnUrTs8cTU7W9cJ40L4qJwM7nQ3s5N5jK-czNexwYsNf4xOBUYlh5bYC79Ffo6gr0nuuXbHoPInxAE7jtGP04clwbmU9wCoHPZxT6ihDk8wRrifxclz6L9l8jZn8Jwidf3zj53-CD23WSY4X4g14Z-wmbLR-XZOjlnz6xxY8jxs3V5j0ZTRxHE-415o7zxFOtMd8kPreYd8w8BFP9TCxNXGtKqRu5o9y1g3dJbWZViEm6GZWTl-ItBqf5-Nn2_9JJpa4y4P6M9ycn12fjMJ2OkOokoTloa6oToWWynEamiTSSmS5LGklKkY1wzSkEi47cWgrrjIuFaYeKjZG5kyJMk-2YdU-WPMFCAbIvJKmrDKDBRvXeIYoHUkqIsFFaUwAR51uivmChKPwl-c8KZxGi78aDWC_013ReiOKWcxF5nh2Avjei9GP3P9Jax4avyZGw0kzGsDOQtX9uzobCYAvGUG_wHF0L0tQ956ru9X17pt3foO10fX4srj8eXWxB-ux677woPF9WH16bMwBrNS6-eo94A_8Jw1Z
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IaFegEILgVKMxKE9ZDfOw3aOqO2qFbSqBEjcIscPutKuGzWNVP49Y28SWLjB2XYi6_N4ZuRvvgF4b4U0VPEyljxncU5lHcs6cNzLJJFMsiI0gzn_zK--idMzL5MztvoKpH1VzydusZy4-U3gVjZLNR14YtPryxOBXolh5tZoO92EbbTZJB0S9VFvV6yqT1K8hPM0H1R9eDZtnGwnmOmglXNKvWxoVnjR9Sxd901_BZx_8iZ_c0SzJ_-xhafwuI8-yYfVlF3YMO4Z7Pb23ZKjXoT6-Dk8XHa-vzAZ02nitZ5wrTPfg1Y40YH7Qdobz4FDB0iC5MPctcSXrJC2a-7kcmi-S1qzsDEG6mZZL34Q6TR-L_jRvg6UzB3xjwjtHnydnX05OY_7Lg2xyjJWxtpSnQstldc2NFmilShKWVMrLKOaYThihY9SPOuKq4JLhSGISo2RJVOiLrN92HK3zrwEgo6ytNLUtjCYuHGNd4nSiaQiEVzUxkRwNOBTNSsxjio8ovOs8qhWv1CN4GDAr-qtEodZykXh9XYieDcOoz35_UlnbrswJ8XDkxc0ghcruMd_DeckAr52EMYJXqt7fQTxD5rdPd6v_nnlW3h0fTqrPl1cfXwNO6kvwgjc8QPYur_rzBvYbHV3GIzgJ1rfD9k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutant+libraries+reveal+negative+design+shielding+proteins+from+supramolecular+self-assembly+and+relocalization+in+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Garcia+Seisdedos%2C+Hector&rft.au=Levin%2C+Tal&rft.au=Shapira%2C+Gal&rft.au=Freud%2C+Saskia&rft.date=2022-02-01&rft.eissn=1091-6490&rft.volume=119&rft.issue=5&rft_id=info:doi/10.1073%2Fpnas.2101117119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon