Mutant libraries reveal negative design shielding proteins from supramolecular self-assembly and relocalization in cells
Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic data. While mutations are known to disrupt protein structure and function, their potential to create new structures and localization phenotypes...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 5 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
01-02-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic data. While mutations are known to disrupt protein structure and function, their potential to create new structures and localization phenotypes has not yet been mapped to a sequence space. To map this relationship, we employed two homo-oligomeric protein complexes in which the internal symmetry exacerbates the impact of mutations. We mutagenized three surface residues of each complex and monitored the mutations' effect on localization and assembly phenotypes in yeast cells. While surface mutations are classically viewed as benign, our analysis of several hundred mutants revealed they often trigger three main phenotypes in these proteins: nuclear localization, the formation of puncta, and fibers. Strikingly, more than 50% of random mutants induced one of these phenotypes in both complexes. Analyzing the mutant's sequences showed that surface stickiness and net charge are two key physicochemical properties associated with these changes. In one complex, more than 60% of mutants self-assembled into fibers. Such a high frequency is explained by negative design: charged residues shield the complex from self-interacting with copies of itself, and the sole removal of the charges induces its supramolecular self-assembly. A subsequent analysis of several other complexes targeted with alanine mutations suggested that such negative design is common. These results highlight that minimal perturbations in protein surfaces' physicochemical properties can frequently drive assembly and localization changes in a cellular context. |
---|---|
AbstractList | Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic data. While mutations are known to disrupt protein structure and function, their potential to create new structures and localization phenotypes has not yet been mapped to a sequence space. To map this relationship, we employed two homo-oligomeric protein complexes in which the internal symmetry exacerbates the impact of mutations. We mutagenized three surface residues of each complex and monitored the mutations' effect on localization and assembly phenotypes in yeast cells. While surface mutations are classically viewed as benign, our analysis of several hundred mutants revealed they often trigger three main phenotypes in these proteins: nuclear localization, the formation of puncta, and fibers. Strikingly, more than 50% of random mutants induced one of these phenotypes in both complexes. Analyzing the mutant's sequences showed that surface stickiness and net charge are two key physicochemical properties associated with these changes. In one complex, more than 60% of mutants self-assembled into fibers. Such a high frequency is explained by negative design: charged residues shield the complex from self-interacting with copies of itself, and the sole removal of the charges induces its supramolecular self-assembly. A subsequent analysis of several other complexes targeted with alanine mutations suggested that such negative design is common. These results highlight that minimal perturbations in protein surfaces' physicochemical properties can frequently drive assembly and localization changes in a cellular context. Genetic mutations fuel organismal evolution but can also cause disease. As proteins are the cell’s workhorses, the ways in which mutations can disrupt their structure, stability, function, and interactions have been studied extensively. However, proteins evolve and function in a cellular context, and our ability to relate changes in protein sequence to cell-level phenotypes remains limited. In particular, the molecular mechanism underlying most disease-associated mutations is unknown. Here, we show that mutations changing a protein’s surface chemistry can dramatically impact its supramolecular self-assembly and localization in the cell. These results highlight the complex nature of genotype–phenotype relationships with a simple system. Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic data. While mutations are known to disrupt protein structure and function, their potential to create new structures and localization phenotypes has not yet been mapped to a sequence space. To map this relationship, we employed two homo-oligomeric protein complexes in which the internal symmetry exacerbates the impact of mutations. We mutagenized three surface residues of each complex and monitored the mutations’ effect on localization and assembly phenotypes in yeast cells. While surface mutations are classically viewed as benign, our analysis of several hundred mutants revealed they often trigger three main phenotypes in these proteins: nuclear localization, the formation of puncta, and fibers. Strikingly, more than 50% of random mutants induced one of these phenotypes in both complexes. Analyzing the mutant’s sequences showed that surface stickiness and net charge are two key physicochemical properties associated with these changes. In one complex, more than 60% of mutants self-assembled into fibers. Such a high frequency is explained by negative design: charged residues shield the complex from self-interacting with copies of itself, and the sole removal of the charges induces its supramolecular self-assembly. A subsequent analysis of several other complexes targeted with alanine mutations suggested that such negative design is common. These results highlight that minimal perturbations in protein surfaces’ physicochemical properties can frequently drive assembly and localization changes in a cellular context. |
Author | Levy, Emmanuel D Freud, Saskia Garcia Seisdedos, Hector Shapira, Gal Levin, Tal |
Author_xml | – sequence: 1 givenname: Hector orcidid: 0000-0001-7722-2793 surname: Garcia Seisdedos fullname: Garcia Seisdedos, Hector email: eque1982@gmail.com organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel eque1982@gmail.com – sequence: 2 givenname: Tal orcidid: 0000-0002-2301-3168 surname: Levin fullname: Levin, Tal organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel – sequence: 3 givenname: Gal orcidid: 0000-0002-0881-2367 surname: Shapira fullname: Shapira, Gal organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel – sequence: 4 givenname: Saskia surname: Freud fullname: Freud, Saskia organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel – sequence: 5 givenname: Emmanuel D orcidid: 0000-0001-8959-7365 surname: Levy fullname: Levy, Emmanuel D organization: Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35078932$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1v1TAQRS1URF8La3bIEhs2af2RxPYGCVVAkYrYwNqaOJNXV44d7OSp5deTqKUFVrOY46O5vifkKKaIhLzm7IwzJc-nCOVMcMY5V5ybZ2THmeFVWxt2RHaMCVXpWtTH5KSUG8aYaTR7QY5lw5Q2UuzI7ddlhjjT4LsM2WOhGQ8IgUbcw-wPSHssfh9pufYYeh_3dMppRh8LHXIaaVmmDGMK6JYAmRYMQwWl4NiFOwqxX30hOQj-16pLkfpIHYZQXpLnA4SCrx7mKfnx6eP3i8vq6tvnLxcfrionZWuqfuB9rXtwTNQSJeudbgx0fNBDy_vWcDboWnKFnQPlGgXOMO4EIpjW6c7IU_L-3jst3Yi9wzhnCHbKfoR8ZxN4--8m-mu7TwerNRet1qvg3YMgp58LltmOvmwRIGJaihWtEOu31g1f0bf_oTdpyXGNt1FKN6rW20Xn95TLqZSMw-MxnNmtVbu1ap9aXV-8-TvDI_-nRvkbHhSkCA |
CitedBy_id | crossref_primary_10_1126_sciadv_adc9440 crossref_primary_10_1021_acsami_3c16534 crossref_primary_10_1007_s12551_023_01172_4 crossref_primary_10_1016_j_sbi_2023_102530 crossref_primary_10_3389_fnmol_2023_1246842 crossref_primary_10_1088_1367_2630_ad1846 crossref_primary_10_3389_fmolb_2022_909567 crossref_primary_10_1038_s41467_024_46864_x crossref_primary_10_1093_molbev_msad070 crossref_primary_10_1016_j_gde_2022_101966 crossref_primary_10_1073_pnas_2221163120 |
Cites_doi | 10.1073/pnas.1613122113 10.1016/j.str.2015.11.006 10.1074/mcp.O113.031708 10.1016/j.sbi.2007.08.007 10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W 10.1073/pnas.160252097 10.1126/science.aan6398 10.1146/annurev-biochem-060614-034142 10.1146/annurev.genom.7.080505.115630 10.1038/s41467-020-15796-7 10.1038/nature23320 10.1038/s41586-020-2925-1 10.1016/j.str.2004.03.008 10.1038/s41586-020-03120-8 10.1126/science.1150421 10.1016/j.cell.2018.06.006 10.1016/j.nbd.2009.07.020 10.1371/journal.pcbi.0030052 10.1038/s41467-019-12101-z 10.1074/jbc.TM118.001192 10.1038/nature03679 10.1038/nbt0102-87 10.1038/nmeth.3696 10.1088/1478-3967/1/1/P02 10.1093/molbev/msu081 10.1002/anie.201806092 10.1038/nbt.2214 10.1038/emboj.2009.225 10.1091/mbc.E19-04-0224 10.1371/journal.pcbi.1000592 10.1038/nmeth.1492 10.1126/science.1166066 10.1016/j.cell.2009.02.044 10.1002/prot.21786 10.1039/c0mb00061b 10.1126/science.aay5359 10.1091/mbc.e17-04-0263 10.1146/annurev-biochem-062917-011901 10.1006/jmbi.1996.0479 10.1242/jcs.223289 10.1038/s41597-019-0058-x 10.1146/annurev.biochem.68.1.779 10.1073/pnas.0812771106 10.1016/j.jmb.2010.09.028 10.1016/j.cell.2018.05.045 https://doi.org/10.1101/2021.08.16.456554 10.1038/nature17633 10.1016/0378-1119(95)00037-7 10.1126/science.aan0693 10.1371/journal.pcbi.1004421 10.1073/pnas.0812414106 10.1038/nmeth.2019 10.1126/science.2471267 https://doi.org/10.1101/260695 10.7554/eLife.02409 10.1038/256705a0 10.7554/eLife.09347 10.1073/pnas.1310414110 10.1523/JNEUROSCI.4988-09.2010 10.1038/s41589-020-0576-z 10.1073/pnas.0403255101 10.7554/eLife.03638 10.1073/pnas.1910444117 10.1073/pnas.1209312109 10.1073/pnas.052706099 10.1073/pnas.1001292107 10.1016/j.celrep.2018.11.076 10.1146/annurev-cellbio-100913-013325 10.1242/jcs.089110 10.7554/eLife.31486 10.1073/pnas.0506124102 10.1126/science.1219364 10.1126/science.2392678 10.1002/yea.1018 10.1073/pnas.041614998 10.1073/pnas.1202107109 10.7554/eLife.32472 10.1126/science.aad9195 10.1038/nature02026 10.1038/s41467-018-05725-0 10.1006/jmbi.1996.0279 10.1016/S0065-3233(08)60287-9 10.1038/ncomms15137 10.1038/nsmb.3407 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s). Published by PNAS. Copyright National Academy of Sciences Feb 1, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Feb 1, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2101117119 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | 10_1073_pnas_2101117119 35078932 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: 819318 – fundername: Israel Science Foundation (ISF) grantid: 1452/18 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CGR CS3 CUY CVF D0L DIK DU5 E3Z EBS ECM EIF F5P FRP GX1 H13 HH5 HYE JLS JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM .GJ 2AX 3O- 692 6TJ 79B AAYJJ AAYXX ABBHK ABXSQ ACKIV ADACV ADULT AEUPB AEXZC AQVQM AS~ CITATION DCCCD DOOOF EJD HGD HQ3 HTVGU IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM JSODD MVM NEJ NHB P-O SA0 VOH WHG ZCG 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c3369-df1d48dac0243e30dc859ab1f8f61d6910f84317ebca7c57ac901c2eea96c8b93 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:07:24 EDT 2024 Fri Aug 16 22:45:28 EDT 2024 Wed Nov 13 11:32:02 EST 2024 Thu Nov 21 22:00:40 EST 2024 Sat Sep 28 08:21:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | protein interactions protein evolution genotype–phenotype map |
Language | English |
License | Copyright © 2022 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3369-df1d48dac0243e30dc859ab1f8f61d6910f84317ebca7c57ac901c2eea96c8b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 1H.G.S. and T.L. contributed equally to this work. Edited by David Baker, Institute for Protein Design, University of Washington, Seattle, WA; received January 22, 2021; accepted November 16, 2021 Author contributions: H.G.S. and E.D.L. designed research; H.G.S., T.L., G.S., and S.F. performed research; H.G.S., T.L., and E.D.L. analyzed data; and H.G.S. and E.D.L. wrote the paper. |
ORCID | 0000-0001-8959-7365 0000-0001-7722-2793 0000-0002-2301-3168 0000-0002-0881-2367 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812688/ |
PMID | 35078932 |
PQID | 2627857489 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8812688 proquest_miscellaneous_2622958451 proquest_journals_2627857489 crossref_primary_10_1073_pnas_2101117119 pubmed_primary_35078932 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_20_2 doi: 10.1073/pnas.1613122113 – ident: e_1_3_4_67_2 doi: 10.1016/j.str.2015.11.006 – ident: e_1_3_4_9_2 doi: 10.1074/mcp.O113.031708 – ident: e_1_3_4_17_2 doi: 10.1016/j.sbi.2007.08.007 – ident: e_1_3_4_79_2 doi: 10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W – ident: e_1_3_4_4_2 doi: 10.1073/pnas.160252097 – ident: e_1_3_4_27_2 doi: 10.1126/science.aan6398 – ident: e_1_3_4_43_2 doi: 10.1146/annurev-biochem-060614-034142 – ident: e_1_3_4_1_2 doi: 10.1146/annurev.genom.7.080505.115630 – ident: e_1_3_4_14_2 doi: 10.1038/s41467-020-15796-7 – ident: e_1_3_4_44_2 doi: 10.1038/nature23320 – ident: e_1_3_4_65_2 doi: 10.1038/s41586-020-2925-1 – ident: e_1_3_4_62_2 doi: 10.1016/j.str.2004.03.008 – ident: e_1_3_4_50_2 doi: 10.1038/s41586-020-03120-8 – ident: e_1_3_4_48_2 doi: 10.1126/science.1150421 – ident: e_1_3_4_26_2 doi: 10.1016/j.cell.2018.06.006 – ident: e_1_3_4_42_2 doi: 10.1016/j.nbd.2009.07.020 – ident: e_1_3_4_57_2 doi: 10.1371/journal.pcbi.0030052 – ident: e_1_3_4_10_2 doi: 10.1038/s41467-019-12101-z – ident: e_1_3_4_29_2 doi: 10.1074/jbc.TM118.001192 – ident: e_1_3_4_70_2 doi: 10.1038/nature03679 – ident: e_1_3_4_77_2 doi: 10.1038/nbt0102-87 – ident: e_1_3_4_16_2 doi: 10.1038/nmeth.3696 – ident: e_1_3_4_54_2 doi: 10.1088/1478-3967/1/1/P02 – ident: e_1_3_4_12_2 doi: 10.1093/molbev/msu081 – ident: e_1_3_4_37_2 doi: 10.1002/anie.201806092 – ident: e_1_3_4_18_2 doi: 10.1038/nbt.2214 – ident: e_1_3_4_72_2 doi: 10.1038/emboj.2009.225 – ident: e_1_3_4_36_2 doi: 10.1091/mbc.E19-04-0224 – ident: e_1_3_4_58_2 doi: 10.1371/journal.pcbi.1000592 – ident: e_1_3_4_2_2 doi: 10.1038/nmeth.1492 – ident: e_1_3_4_41_2 doi: 10.1126/science.1166066 – ident: e_1_3_4_23_2 doi: 10.1016/j.cell.2009.02.044 – ident: e_1_3_4_76_2 doi: 10.1002/prot.21786 – ident: e_1_3_4_85_2 – ident: e_1_3_4_15_2 doi: 10.1039/c0mb00061b – ident: e_1_3_4_30_2 doi: 10.1126/science.aay5359 – ident: e_1_3_4_63_2 doi: 10.1091/mbc.e17-04-0263 – ident: e_1_3_4_71_2 doi: 10.1146/annurev-biochem-062917-011901 – ident: e_1_3_4_6_2 doi: 10.1006/jmbi.1996.0479 – ident: e_1_3_4_32_2 doi: 10.1242/jcs.223289 – ident: e_1_3_4_49_2 doi: 10.1038/s41597-019-0058-x – ident: e_1_3_4_60_2 doi: 10.1146/annurev.biochem.68.1.779 – ident: e_1_3_4_35_2 doi: 10.1073/pnas.0812771106 – ident: e_1_3_4_83_2 doi: 10.1016/j.jmb.2010.09.028 – ident: e_1_3_4_52_2 doi: 10.1016/j.cell.2018.05.045 – ident: e_1_3_4_84_2 doi: https://doi.org/10.1101/2021.08.16.456554 – ident: e_1_3_4_47_2 doi: 10.1038/nature17633 – ident: e_1_3_4_78_2 doi: 10.1016/0378-1119(95)00037-7 – ident: e_1_3_4_7_2 doi: 10.1126/science.aan0693 – ident: e_1_3_4_13_2 doi: 10.1371/journal.pcbi.1004421 – ident: e_1_3_4_55_2 doi: 10.1073/pnas.0812414106 – ident: e_1_3_4_82_2 doi: 10.1038/nmeth.2019 – ident: e_1_3_4_3_2 doi: 10.1126/science.2471267 – ident: e_1_3_4_80_2 doi: https://doi.org/10.1101/260695 – ident: e_1_3_4_34_2 doi: 10.7554/eLife.02409 – ident: e_1_3_4_53_2 doi: 10.1038/256705a0 – ident: e_1_3_4_66_2 doi: 10.7554/eLife.09347 – ident: e_1_3_4_68_2 doi: 10.1073/pnas.1310414110 – ident: e_1_3_4_40_2 doi: 10.1523/JNEUROSCI.4988-09.2010 – ident: e_1_3_4_81_2 doi: 10.1038/s41589-020-0576-z – ident: e_1_3_4_11_2 doi: 10.1073/pnas.0403255101 – ident: e_1_3_4_31_2 doi: 10.7554/eLife.03638 – ident: e_1_3_4_74_2 doi: 10.1073/pnas.1910444117 – ident: e_1_3_4_51_2 doi: 10.1073/pnas.1209312109 – ident: e_1_3_4_59_2 doi: 10.1073/pnas.052706099 – ident: e_1_3_4_33_2 doi: 10.1073/pnas.1001292107 – ident: e_1_3_4_24_2 doi: 10.1016/j.celrep.2018.11.076 – ident: e_1_3_4_28_2 doi: 10.1146/annurev-cellbio-100913-013325 – ident: e_1_3_4_73_2 doi: 10.1242/jcs.089110 – ident: e_1_3_4_25_2 doi: 10.7554/eLife.31486 – ident: e_1_3_4_56_2 doi: 10.1073/pnas.0506124102 – ident: e_1_3_4_46_2 doi: 10.1126/science.1219364 – ident: e_1_3_4_61_2 doi: 10.1126/science.2392678 – ident: e_1_3_4_75_2 doi: 10.1002/yea.1018 – ident: e_1_3_4_45_2 doi: 10.1073/pnas.041614998 – ident: e_1_3_4_8_2 doi: 10.1073/pnas.1202107109 – ident: e_1_3_4_21_2 doi: 10.7554/eLife.32472 – ident: e_1_3_4_19_2 doi: 10.1126/science.aad9195 – ident: e_1_3_4_22_2 doi: 10.1038/nature02026 – ident: e_1_3_4_69_2 doi: 10.1038/s41467-018-05725-0 – ident: e_1_3_4_5_2 doi: 10.1006/jmbi.1996.0279 – ident: e_1_3_4_38_2 doi: 10.1016/S0065-3233(08)60287-9 – ident: e_1_3_4_39_2 doi: 10.1038/ncomms15137 – ident: e_1_3_4_64_2 doi: 10.1038/nsmb.3407 |
SSID | ssj0009580 |
Score | 2.4800134 |
Snippet | Understanding the molecular consequences of mutations in proteins is essential to map genotypes to phenotypes and interpret the increasing wealth of genomic... Genetic mutations fuel organismal evolution but can also cause disease. As proteins are the cell’s workhorses, the ways in which mutations can disrupt their... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Alanine Biological Sciences Design Fibers Genotype Genotypes Localization Mutants Mutation Mutation - genetics Perturbation Phenotype Phenotypes Physicochemical properties Protein structure Proteins Proteins - genetics Residues Self-assembly Shielding Structure-function relationships Surface charge Yeasts |
Title | Mutant libraries reveal negative design shielding proteins from supramolecular self-assembly and relocalization in cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35078932 https://www.proquest.com/docview/2627857489 https://search.proquest.com/docview/2622958451 https://pubmed.ncbi.nlm.nih.gov/PMC8812688 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xnLhUbEtpKCAjcdgeshvnw3aOCBaBEKhSW4lb5NgOrLTrXW2IVP49Y2-Ssu2tZzufM-N5I795BjivhDRU8TyUPGVhSmUZytJz3PMokkyyzB8Gc_ODPzyKq6mTycm6XhhP2lflbGzni7GdPXtu5WqhJh1PbPL9_lJgVmJYuQ1ggNiwK9F7pV2x6TuJcflN47TT8-HJZGVlPcYaB-ObU-oEQ5PMya0n8XZW-gdq_s2YfJeCrvfhQ4sdycXmHYewY-xHGLbRWZNRKyH97RP8vm_c6cCkL4aJU2rCa6158krfRHvmBqmfHYMN0xfxgg0zWxPXcELqZrWWi-7oXFKbeRUizDaLcv5KpNV4P58F2y5OMrPEbQHUB_Drevrz8iZsz1gIVZKwPNQV1anQUjllQpNEWokslyWtRMWoZggmKuEwhuNMcZVxqRBAqNgYmTMlyjz5DLt2ac0XIJjm8kqassoMll1c40qgdCSpiAQXpTEBjLp_XKw2UhqF3wLnSeEsU_yxTADHnQ2KNqZwmMVcZE4tJ4CzfhijwX2ftGbZ-DkxOkCa0QAONybrn9XZOgC-Zcx-glPa3h5BB_SK263DHf33lV9hL3Z9E57ufQy7L-vGnMCg1s0p4vjbu1Pvw28r6_iy |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VeoBLW6DQ8GhdiQM9ZDfOw3aOiIe2gkWVChK3yLEdWGnXrAiR4N937E3SLr1xHjsPzYxnRv7mG4DDSkhDFc9DyVMWplSWoSw9xj2PIskky_wwmNFvfnUrTs8cTU7W9cJ40L4qJwM7nQ3s5N5jK-czNexwYsNf4xOBUYlh5bYC79Ffo6gr0nuuXbHoPInxAE7jtGP04clwbmU9wCoHPZxT6ihDk8wRrifxclz6L9l8jZn8Jwidf3zj53-CD23WSY4X4g14Z-wmbLR-XZOjlnz6xxY8jxs3V5j0ZTRxHE-415o7zxFOtMd8kPreYd8w8BFP9TCxNXGtKqRu5o9y1g3dJbWZViEm6GZWTl-ItBqf5-Nn2_9JJpa4y4P6M9ycn12fjMJ2OkOokoTloa6oToWWynEamiTSSmS5LGklKkY1wzSkEi47cWgrrjIuFaYeKjZG5kyJMk-2YdU-WPMFCAbIvJKmrDKDBRvXeIYoHUkqIsFFaUwAR51uivmChKPwl-c8KZxGi78aDWC_013ReiOKWcxF5nh2Avjei9GP3P9Jax4avyZGw0kzGsDOQtX9uzobCYAvGUG_wHF0L0tQ956ru9X17pt3foO10fX4srj8eXWxB-ux677woPF9WH16bMwBrNS6-eo94A_8Jw1Z |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IaFegEILgVKMxKE9ZDfOw3aOqO2qFbSqBEjcIscPutKuGzWNVP49Y28SWLjB2XYi6_N4ZuRvvgF4b4U0VPEyljxncU5lHcs6cNzLJJFMsiI0gzn_zK--idMzL5MztvoKpH1VzydusZy4-U3gVjZLNR14YtPryxOBXolh5tZoO92EbbTZJB0S9VFvV6yqT1K8hPM0H1R9eDZtnGwnmOmglXNKvWxoVnjR9Sxd901_BZx_8iZ_c0SzJ_-xhafwuI8-yYfVlF3YMO4Z7Pb23ZKjXoT6-Dk8XHa-vzAZ02nitZ5wrTPfg1Y40YH7Qdobz4FDB0iC5MPctcSXrJC2a-7kcmi-S1qzsDEG6mZZL34Q6TR-L_jRvg6UzB3xjwjtHnydnX05OY_7Lg2xyjJWxtpSnQstldc2NFmilShKWVMrLKOaYThihY9SPOuKq4JLhSGISo2RJVOiLrN92HK3zrwEgo6ytNLUtjCYuHGNd4nSiaQiEVzUxkRwNOBTNSsxjio8ovOs8qhWv1CN4GDAr-qtEodZykXh9XYieDcOoz35_UlnbrswJ8XDkxc0ghcruMd_DeckAr52EMYJXqt7fQTxD5rdPd6v_nnlW3h0fTqrPl1cfXwNO6kvwgjc8QPYur_rzBvYbHV3GIzgJ1rfD9k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutant+libraries+reveal+negative+design+shielding+proteins+from+supramolecular+self-assembly+and+relocalization+in+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Garcia+Seisdedos%2C+Hector&rft.au=Levin%2C+Tal&rft.au=Shapira%2C+Gal&rft.au=Freud%2C+Saskia&rft.date=2022-02-01&rft.eissn=1091-6490&rft.volume=119&rft.issue=5&rft_id=info:doi/10.1073%2Fpnas.2101117119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |