Endotoxin-binding and -neutralizing properties of recombinant bactericidal/permeability-increasing protein and monoclonal antibodies HA-1A and E5

To compare the endotoxin-binding and -neutralizing properties of bactericidal/permeability-increasing protein, the human monoclonal antiendotoxin antibody HA-1A, and the murine antiendotoxin antibody E5. Prospective, randomized, placebo-controlled laboratory study. Biotechnology company research lab...

Full description

Saved in:
Bibliographic Details
Published in:Critical care medicine Vol. 22; no. 4; p. 559
Main Authors: Marra, M N, Thornton, M B, Snable, J L, Wilde, C G, Scott, R W
Format: Journal Article
Language:English
Published: United States 01-04-1994
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To compare the endotoxin-binding and -neutralizing properties of bactericidal/permeability-increasing protein, the human monoclonal antiendotoxin antibody HA-1A, and the murine antiendotoxin antibody E5. Prospective, randomized, placebo-controlled laboratory study. Biotechnology company research laboratory. Female CD-1 mice. Recombinant bactericidal/permeability-increasing protein, HA-1A, a human immunoglobulin M monoclonal antibody raised against Escherichia coli J5 (Rc) endotoxin, and E5, a murine immunoglobulin M monoclonal antibody raised against E. coli J5 endotoxin, were compared in the following assays: a) binding to rough lipopolysaccharide immobilized onto microtiter plates; b) inhibition of lipopolysaccharide activity in the limulus amebocyte lysate assay; c) inhibition of lipopolysaccharide-induced cytokine release in whole blood; and d) protection against lethal endotoxin challenge in CD-1 mice. The binding affinity of bactericidal/permeability-increasing protein for immobilized lipopolysaccharide is apparently greater than the binding affinity of HA-1A or E5. Bactericidal/permeability-increasing protein neutralized lipopolysaccharide activity in the chromogenic limulus amebocyte lysate assay, while neither monoclonal antibody inhibited lipopolysaccharide activity. Similarly, bactericidal/permeability-increasing protein reduced lipopolysaccharide-mediated tumor necrosis factor production in human whole blood in vitro, whereas monoclonal antibodies had slight (HA-1A) or no (E5) effect on lipopolysaccharide activity in this system. Administration of bactericidal/permeability-increasing protein gave > 90% protection against an LD60 dose of endotoxin in CD-1 mice, while treatment with HA-1A or E5 did not improve survival rate. Neither monoclonal antibody was as effective as bactericidal/permeability-increasing protein at binding or neutralizing endotoxin in vitro or in vivo. The potent endotoxin-binding and -neutralizing properties of bactericidal/permeability-increasing protein indicate that it might be useful in the treatment of endotoxin-related disorders in humans.
ISSN:0090-3493
DOI:10.1097/00003246-199404000-00009