Joint Optimization for One and Two-Way MIMO AF Multiple-Relay Systems

This paper considers both one-way and two-way relaying systems with multiple relays between two terminal nodes where all nodes have multiple-input multiple-output (MIMO) antennas. We propose a unified algorithm which computes the optimal linear transceivers jointly at the source node and the relay n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 9; no. 12; pp. 3671 - 3681
Main Authors: Lee, Kyoung-Jae, Sung, Hakjea, Park, Eunsung, Lee, Inkyu
Format: Journal Article
Language:English
Published: New York IEEE 01-12-2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers both one-way and two-way relaying systems with multiple relays between two terminal nodes where all nodes have multiple-input multiple-output (MIMO) antennas. We propose a unified algorithm which computes the optimal linear transceivers jointly at the source node and the relay nodes for amplify-and-forward (AF) protocols. First, optimization designs based on the sum-rate and the mean-square error (MSE) criteria are formulated for the two-way AF relaying channel. Due to non-convexity of the given problems, the proposed schemes iteratively identify local-optimal source and relay filters by deriving the gradients of the cost functions for a gradient descent algorithm. Then, the proposed algorithm can optimize a one-way multiple relay system as a special case of the two-way channel. Finally, we prove the global optimality of the maximum sum-rate scheme under an asymptotically large antenna assumption. From simulation results, it is confirmed that the proposed methods yield the near optimum result for the MIMO multiple relay channel even with a moderate number of antennas. Consequently, we show that the proposed algorithm outperforms conventional schemes in terms of the sum-rate and the error performance for both one-way and two-way protocols.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2010.102210.091021