The Effect of Insulating Layers on the Performance of Implanted Antennas
This work presents the analysis of the influence of insulation on implanted antennas for biotelemetry applications in the Medical Device Radiocommunications Service band. Our goal is finding the insulation properties that facilitate power transmission, thus enhancing the communication between the im...
Saved in:
Published in: | IEEE transactions on antennas and propagation Vol. 59; no. 1; pp. 21 - 31 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-01-2011
Institute of Electrical and Electronics Engineers |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents the analysis of the influence of insulation on implanted antennas for biotelemetry applications in the Medical Device Radiocommunications Service band. Our goal is finding the insulation properties that facilitate power transmission, thus enhancing the communication between the implanted antenna and an external receiver. For this purpose, it has been found that a simplified model of human tissues based on spherical geometries excited by ideal sources (electric dipole, magnetic dipole and Huygens source) provides reasonable accuracy while remaining very tractable due to its analytical formulation. Our results show that a proper choice of the biocompatible internal insulation material can improve the radiation efficiency of the implanted antenna (up to six times for the investigated cases). External insulation facilitates the electromagnetic transition from the biological tissue to the outer free space, reducing the power absorbed by the human body. Summarizing, this work gives insights on the enhancement of power transmission, obtained with the use of both internal, biocompatible and external, flexible insulations. Therefore, it provides useful information for the design of implanted antennas. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2010.2090465 |