How Exceptional is the Extremal Kendall and Kendall-Type Convolution
This paper deals with the generalized convolutions connected with the Williamson transform and the maximum operation. We focus on such convolutions which can define transition probabilities of renewal processes. They should be monotonic since the described time or destruction does not go back, it sh...
Saved in:
Published in: | Resultate der Mathematik Vol. 78; no. 6 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-12-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper deals with the generalized convolutions connected with the Williamson transform and the maximum operation. We focus on such convolutions which can define transition probabilities of renewal processes. They should be monotonic since the described time or destruction does not go back, it should admit existence of a distribution with a lack of memory property because the analog of the Poisson process shall exist. Another valuable property is the simplicity of calculating and inverting the corresponding generalized characteristic function (in particular Williamson transform) so that the technique of generalized characteristic function can be used in description of our processes. The convex linear combination property (the generalized convolution of two point measures is the convex combination of several fixed measures), or representability (which means that the generalized convolution can be easily written in the language of independent random variables)—they also facilitate the modeling of real processes in that language. We describe examples of generalized convolutions having the required properties ranging from the maximum convolution and its simplest generalization—the Kendall convolution (associated with the Williamson transform), up to the most complicated here—Kingman convolution. It is novel approach to apply in the extreme value theory. Stochastic representation of the Kucharczak-Urbanik in the order statistics terms is proved, which open new paths to investigate Archimedean copulas. This paper open the door to solve an old open problem of the relationship between copulas and generalized convolutions mentioned by B. Schweizer and A. Sklar in 1983. This indicates the path of further research towards extremes and dependency modelling. |
---|---|
AbstractList | This paper deals with the generalized convolutions connected with the Williamson transform and the maximum operation. We focus on such convolutions which can define transition probabilities of renewal processes. They should be monotonic since the described time or destruction does not go back, it should admit existence of a distribution with a lack of memory property because the analog of the Poisson process shall exist. Another valuable property is the simplicity of calculating and inverting the corresponding generalized characteristic function (in particular Williamson transform) so that the technique of generalized characteristic function can be used in description of our processes. The convex linear combination property (the generalized convolution of two point measures is the convex combination of several fixed measures), or representability (which means that the generalized convolution can be easily written in the language of independent random variables)—they also facilitate the modeling of real processes in that language. We describe examples of generalized convolutions having the required properties ranging from the maximum convolution and its simplest generalization—the Kendall convolution (associated with the Williamson transform), up to the most complicated here—Kingman convolution. It is novel approach to apply in the extreme value theory. Stochastic representation of the Kucharczak-Urbanik in the order statistics terms is proved, which open new paths to investigate Archimedean copulas. This paper open the door to solve an old open problem of the relationship between copulas and generalized convolutions mentioned by B. Schweizer and A. Sklar in 1983. This indicates the path of further research towards extremes and dependency modelling. |
ArticleNumber | 224 |
Author | Wesołowski, Jacek Misiewicz, Jolanta K. Jasiulis-Gołdyn, Barbara H. Omey, Edward |
Author_xml | – sequence: 1 givenname: Barbara H. orcidid: 0000-0003-2358-4494 surname: Jasiulis-Gołdyn fullname: Jasiulis-Gołdyn, Barbara H. email: barbara.jasiulis@math.uni.wroc.pl, basiaja@liverpool.ac.uk organization: Institute of Mathematics, University of Wrocław, Institute for Financial and Actuarial MathematicsDepartment of Mathematical Sciences, University of Liverpool – sequence: 2 givenname: Jolanta K. surname: Misiewicz fullname: Misiewicz, Jolanta K. organization: Faculty of Mathematics and Information Science, Warsaw University of Technology – sequence: 3 givenname: Edward surname: Omey fullname: Omey, Edward organization: Faculty of Economics and Business-Campus Brussels, KU Leuven – sequence: 4 givenname: Jacek surname: Wesołowski fullname: Wesołowski, Jacek organization: Faculty of Mathematics and Information Science, Warsaw University of Technology |
BookMark | eNp9kMFOwzAMhiM0JLbBC3DqCwSchLbpEY3BEJO4jHOUpC506pIq6YC9PdkKVw6Wf1v-LfubkYnzDgm5ZnDDAMrbCAA8p8BFCgBGizMyZXccaAWMT06a00JIcUFmMW4Bcs4Zn5KHlf_Klt8W-6H1TndZG7PhA1NrCLhL9Qu6Wnddpl39p-nm0GO28O7Td_uj7ZKcN7qLePWb5-TtcblZrOj69el5cb-mVoh8oDUwI3PWSFGI2jCTm9qCtMZWpuLaIJa6bJgoZJVOyyvQWujKSixNKTjaRswJH_fa4GMM2Kg-tDsdDoqBOnJQIweVOKgTB1UkkxhNMQ27dwxq6_chvRr_c_0AYvJiag |
CitedBy_id | crossref_primary_10_1007_s10959_023_01285_2 |
Cites_doi | 10.3150/17-BEJ977 10.4064/sm-45-1-57-70 10.1016/j.jmaa.2019.123575 10.1007/978-94-009-3859-5_11 10.1016/j.jmva.2010.03.015 10.1016/j.jmva.2019.01.007 10.1002/9781119157052.ch2 10.4064/cm-48-1-117-125 10.1007/s10959-005-7528-0 10.1215/S0012-7094-56-02317-1 10.4064/cm-25-2-281-289 10.4064/sm-23-3-217-245 10.3150/14-BEJ653 10.1007/s10986-015-9296-6 10.1007/s10959-008-0195-1 10.1016/j.spa.2019.09.013 10.1007/1-4020-4415-1 10.1002/0471722162 10.1007/s00025-023-01946-y 10.4064/sm167-3-1 10.1007/978-94-017-1758-8 10.1287/moor.2018.0950 10.1007/978-3-642-33483-2 10.1137/S0040585X97T987491 10.1007/s10986-017-9375-y 10.1007/s00010-018-0578-z 10.1007/s10959-010-0279-6 10.1111/j.1467-842X.2004.00330.x 10.1007/BF02391808 10.1007/s10463-022-00858-y 10.1214/07-AOS556 10.4064/sm-80-2-167-189 10.1016/j.insmatheco.2011.08.006 10.1007/BF00535637 10.1239/aap/1300198519 10.1007/s11009-017-9564-5 10.1112/plms/s3-23.1.16 10.1007/s12044-012-0085-4 10.1142/2779 10.1007/s10959-023-01285-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00025-023-02001-6 |
DatabaseName | SpringerOpen CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1420-9012 |
ExternalDocumentID | 10_1007_s00025_023_02001_6 |
GrantInformation_xml | – fundername: Fundacja na rzecz Nauki Polskiej grantid: POIR.04.04.00-00-1D5E/16 funderid: http://dx.doi.org/10.13039/501100001870 – fundername: Narodowe Centrum Nauki grantid: 2016/21/B/ST1/00005; 2022/6/X/HS4/01698 funderid: http://dx.doi.org/10.13039/501100004281 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA C6C CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I RHV RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YNT Z45 ZMTXR ZWQNP ~A9 AACDK AAEOY AAEWM AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c335t-d01b851f8363db1b5bdc08cbc9b92abee7a7f13689212590aa3a9c8e7b732ecf3 |
IEDL.DBID | AEJHL |
ISSN | 1422-6383 |
IngestDate | Fri Nov 22 00:33:26 EST 2024 Sat Dec 16 12:03:56 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | order statistics Extreme value theory generalized convolution Kendall type convolution Secondary 44A35 62G30 60G70 weak stability with respect to generalized convolution Williamson transform Primary 60E10 60E05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c335t-d01b851f8363db1b5bdc08cbc9b92abee7a7f13689212590aa3a9c8e7b732ecf3 |
ORCID | 0000-0003-2358-4494 |
OpenAccessLink | http://link.springer.com/10.1007/s00025-023-02001-6 |
ParticipantIDs | crossref_primary_10_1007_s00025_023_02001_6 springer_journals_10_1007_s00025_023_02001_6 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationSubtitle | Resultate der Mathematik |
PublicationTitle | Resultate der Mathematik |
PublicationTitleAbbrev | Results Math |
PublicationYear | 2023 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | UrbanikKRemarks on B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal{B} }}$$\end{document}-stable probability distributionsBull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.19762497837874234720365.60016 MisiewiczJKGeneralized convolutions and Levi-Civita functional equationAequ. Math.20189291193338567821418.60008 Sousa, R., Guerra, M., Yakubovich, S.: Lévy processes with respect to the index Whittaker convolution, (2018) arXiv: 1805.03051v1 Jasiulis-GołdynBHMisiewiczJKOn the uniqueness of the Kendall generalized convolutionJ. Theor. Probab.201124374675528224801227.60017 UrbanikKAnti-irreducible probability measuresProbab. Math. Stat.19931418911312675210802.60004 Arendarczyk, M., Jasiulis-Gołdyn, B., Omey, E.: Asymptotic properties of extremal Markov processes driven by Kendall convolution, to appear in Journal of Theoretical Probability, (2023) SchweizerBSklarAProbabilistic Metric Spaces1983AmsterdamNorth Holland0546.60010 UrbanikKGeneralized convolutions. IIIStud. Math.19848021671897813330561.60019 Urbanik, K.: Analytical Methods in Probability Theory, in Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes held at 1986, Academia Publishing House of the Czechoslovak Acad. Sci., pp. 151–163 (1988) Williamson, R.E.: Multiply monotone functions and their Laplace transforms. Duke Math. J. 23, 189–207 (1956) UrbanikKGeneralized convolutionsStud. Math.19642332172451602670171.39504 Jasiulis-Gołdyn, B.H., Omey, E.: Renewal theory for sequences of Kendall type, preprint (2022) ArendarczykMKozubowskiTJPanorskaAKSlash distributions, generalized convolutions, and extremesAnn. Inst. Stat. Math.202210.1007/s10463-022-00858-y07712154 WesołowskiJAhsanullahMSwitching order statistics through random power contractionsAust. N. Z. J. Stat.200446229730320763971061.62019 BinghamNHFactorization theory and domains of attraction for generalized convolution algebraProc. Lond. Math. Sci.197123416303003160234.60005 ConstantinescuCHashorvaEJiLArchimedean copulas in finite and infinite dimensions-with application to ruin problemsInsur. Math. Econ.201149348749528447351284.62339 KucharczakJUrbanikKTransformations preserving weak stabilityBull. Pol. Acad. Sci. Math1986344754868748940609.60013 KaniowskiKOn some connections between random partitions of the unit segment and the Poisson processProbab. Math. Stat.200020237338118256491019.60023 Levitan, B.M.: Generalized translation operators and some of their applications Israel Program for Scientific Translations, Jerusalem (1964) ChenBBlanchetJRheeCHZwartAPEfficient rare-event simulation for multiple jump events in regularly varying random walks and compound Poisson processesMath. Oper. Res.2019443919942399665207195280 MisiewiczJKVolkovichVEvery symmetric weakly stable random vector is pseudo-isotropicJ. Math. Anal. Appl.2020483140211811471.60069 OleszkiewiczK MilmanVD SchechtmanGOn p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-pseudo-stable random variables, Rosenthal Spaces and ℓpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p^n$$\end{document} ball slicingLecture Notes in Math. 1807 Geometric Aspects of Functional Analysis2003Berlin HeidelbergSpringer-Verlag188210 Jasiulis-GołdynBHMisiewiczJKClassical definitions of the Poisson process do not coincide in the case of weak generalized convolutionLith. Math. J.201555451854234247121358.60063 Toulemonde, G., Ribereau, P., Naveau, P.: Applications of extreme value theory to environmental data analysis. Extreme Events Observ. Model. Econ. 9–22 (2016) McNeilAJNešlehováJMultivariate Archimedean copulas, d-monotone functions and ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm symmetric distributionsAnn. Stat.2009375B305930971173.62044 LarssonMNešlehováJExtremal behavior of Archimedean copulasAdv. Appl. Probab.20114319521627611541213.62084 Jasiulis-GołdynBHMisiewiczJKWeak Lévy-Khintchine representation for weak infinite divisibilityTheor. Probab. Appl.201660145611331.60032 Sousa, R., Guerra, M., Yakubovich, S.: On the product formula and convolution associated with the index Whittaker transform, arXiv: 1802.06657v2 (2019) UrbanikKGeneralized convolutions IIStud. Math.197345157703289910283.60017 SamorodnitskyGTaqquMStable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance1993LondonChapman & Hall0925.60027 GilewskiJGeneralized convolutions and delphic semigroupsColl. Math.1972252812893343010252.22006 Jasiulis-GołdynBHMisiewiczJKKendall random walk, Williamson transform and the corresponding Wiener-Hopf factorizationLith. Math. J.201757447948937361961387.60076 BinghamNHOn a theorem of Kłosowska about generalized convolutionsColl. Math.19874811171250546.60020 Jarczyk, W., Járai, A., Matkowski, J., Misiewicz, J.K.: On weak generalized stability of random variables via functional equations, to appear in Results in Mathematics (2023) KingmanJFCRandom Walks with Spherical SymmetryActa Math.1963109111531495670121.12803 BerezanskyYMKalyuzhnyiAAHarmonic Analysis in Hypercomplex Systems1998DordrechtKluwer Academic Publishers0894.43007 GenestCNešlehováJRivestL-PThe class of multivariate max-id copulas with l1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1-$$\end{document} norm symmetric exponent measureBernoulli2018244B3751379037881881415.62030 Jasiulis-GołdynBHMisiewiczJKNaskrȩtKOmeyEAMRenewal theory for extremal Markov sequences of the Kendall typeStoch. Proc. Appl.202013063277329440924051437.60057 Borowiecka-OlszewskaMJasiulis-GołdynBHMisiewiczJKRosińskiJLévy processes and stochastic integral in the sense of generalized convolutionBernoulli20152142513255133784761333.60091 Jasiulis-GołdynBHKendall random walksProbab. Math. Stat.201636116518535293471343.60052 DelsarteJSur une extension de la formule de TaylorJ. Math. Pures Appl.193817921323164.0405.03 ConnettWCMarkettCSchwartzALConvolution and hypergroup structure associated with a class of Sturm-Liouville systemsTrans. Am. Math. Soc.1992332136539010531120765.43006 MisiewiczJK OleszkiewiczKUrbanikKClasses of measures closed under mixing and convolution. Weak stabilityStud. Math.2005167319521321314181063.60017 AsmussenSRuin Probabilities2000SingaporeWorld Scientific0960.60003 McNeilAJNešlehováJFrom Archimedean to Liouville CopulasJ. Multivar. Anal.201010181771179026519541190.62102 JarczykWMisiewiczJKOn weak generalized stability and (c,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(c, d)$$\end{document}-pseudostable random variables via functional equationsJ. Theor. Probab.20092248250525013311166.60303 UrbanikKGeneralized convolutions. IVStud. Math.198683157958298990625.60013 MisiewiczJKMazurkiewiczGOn (c,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(c, p)$$\end{document}-pseudostable random variablesJ. Theoret. Probab.200518483785222899341082.60010 Salvadori, G., De Michele, C., Kottegoda, N.T., Rosso, R.: Extremes in Nature An Approach Using Copulas (2007) Jasiulis-GołdynBHKulaAThe Urbanik generalized convolutions in the non-commutative probability and a forgotten method of constructing generalized convolutionProc. Math. Sci.2012122343745829726641266.60005 KendallDGDelphic semi-groups, infinitely divisible regenerative phenomena, and the arithmetic of p-functionsZ. Wahrscheinlichkeitstheorie und Verw. Gebiete1968931631952297460159.46902 Titchmarsh, E.: Introduction To The Theory Of Fourier Integrals, 2nd Edn., Oxford (1948) CastanerALefévreCLoiselSClaramuntMPartially Schur-constant vectorsJ. Multivar. Anal.201917247581415.60034 LefévreCLoiselSUtevSMarkov property in discrete Schur-constant modelsMethodol. Comput. Appl. Probab.20182031003101238416311402.60092 DavidHANagarajaHNOrder Statistics2003New YorkWiley1053.62060 EmbrechtsPKlüppelbergCMikoschTModelling Extremal Events for Insurance and Finance1997BerlinSpringer0873.62116 K Urbanik (2001_CR49) 1973; 45 C Genest (2001_CR15) 2018; 24 B Schweizer (2001_CR43) 1983 AJ McNeil (2001_CR35) 2009; 37 2001_CR46 2001_CR45 J Wesołowski (2001_CR55) 2004; 46 2001_CR47 WC Connett (2001_CR10) 1992; 332 BH Jasiulis-Gołdyn (2001_CR24) 2020; 130 J Gilewski (2001_CR16) 1972; 25 JK Misiewicz (2001_CR36) 2005; 167 2001_CR41 2001_CR44 NH Bingham (2001_CR5) 1971; 23 AJ McNeil (2001_CR34) 2010; 101 K Urbanik (2001_CR52) 1986; 83 BH Jasiulis-Gołdyn (2001_CR23) 2017; 57 M Arendarczyk (2001_CR2) 2022 B Chen (2001_CR9) 2019; 44 G Samorodnitsky (2001_CR42) 1993 J Delsarte (2001_CR13) 1938; 17 JK Misiewicz (2001_CR39) 2020; 483 K Oleszkiewicz (2001_CR40) 2003 A Castaner (2001_CR8) 2019; 172 K Urbanik (2001_CR48) 1964; 23 BH Jasiulis-Gołdyn (2001_CR19) 2012; 122 K Kaniowski (2001_CR27) 2000; 20 JK Misiewicz (2001_CR38) 2005; 18 2001_CR33 NH Bingham (2001_CR6) 1987; 48 JFC Kingman (2001_CR29) 1963; 109 P Embrechts (2001_CR14) 1997 W Jarczyk (2001_CR17) 2009; 22 YM Berezansky (2001_CR4) 1998 2001_CR26 BH Jasiulis-Gołdyn (2001_CR21) 2016; 36 2001_CR1 M Borowiecka-Olszewska (2001_CR7) 2015; 21 M Larsson (2001_CR31) 2011; 43 HA David (2001_CR12) 2003 K Urbanik (2001_CR51) 1984; 80 BH Jasiulis-Gołdyn (2001_CR22) 2015; 55 2001_CR56 2001_CR18 S Asmussen (2001_CR3) 2000 J Kucharczak (2001_CR30) 1986; 34 C Lefévre (2001_CR32) 2018; 20 DG Kendall (2001_CR28) 1968; 9 JK Misiewicz (2001_CR37) 2018; 92 2001_CR53 K Urbanik (2001_CR50) 1976; 24 BH Jasiulis-Gołdyn (2001_CR20) 2011; 24 K Urbanik (2001_CR54) 1993; 14 BH Jasiulis-Gołdyn (2001_CR25) 2016; 60 C Constantinescu (2001_CR11) 2011; 49 |
References_xml | – volume: 17 start-page: 213 issue: 9 year: 1938 ident: 2001_CR13 publication-title: J. Math. Pures Appl. contributor: fullname: J Delsarte – volume: 24 start-page: 3751 issue: 4B year: 2018 ident: 2001_CR15 publication-title: Bernoulli doi: 10.3150/17-BEJ977 contributor: fullname: C Genest – volume: 83 start-page: 57 issue: 1 year: 1986 ident: 2001_CR52 publication-title: Stud. Math. doi: 10.4064/sm-45-1-57-70 contributor: fullname: K Urbanik – volume: 483 issue: 1 year: 2020 ident: 2001_CR39 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2019.123575 contributor: fullname: JK Misiewicz – ident: 2001_CR53 doi: 10.1007/978-94-009-3859-5_11 – volume: 101 start-page: 1771 issue: 8 year: 2010 ident: 2001_CR34 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2010.03.015 contributor: fullname: AJ McNeil – volume: 34 start-page: 475 year: 1986 ident: 2001_CR30 publication-title: Bull. Pol. Acad. Sci. Math contributor: fullname: J Kucharczak – volume: 172 start-page: 47 year: 2019 ident: 2001_CR8 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2019.01.007 contributor: fullname: A Castaner – ident: 2001_CR46 – ident: 2001_CR47 doi: 10.1002/9781119157052.ch2 – volume: 48 start-page: 117 issue: 1 year: 1987 ident: 2001_CR6 publication-title: Coll. Math. doi: 10.4064/cm-48-1-117-125 contributor: fullname: NH Bingham – volume: 18 start-page: 837 issue: 4 year: 2005 ident: 2001_CR38 publication-title: J. Theoret. Probab. doi: 10.1007/s10959-005-7528-0 contributor: fullname: JK Misiewicz – ident: 2001_CR56 doi: 10.1215/S0012-7094-56-02317-1 – ident: 2001_CR33 – volume: 25 start-page: 281 year: 1972 ident: 2001_CR16 publication-title: Coll. Math. doi: 10.4064/cm-25-2-281-289 contributor: fullname: J Gilewski – volume: 23 start-page: 217 issue: 3 year: 1964 ident: 2001_CR48 publication-title: Stud. Math. doi: 10.4064/sm-23-3-217-245 contributor: fullname: K Urbanik – volume-title: Probabilistic Metric Spaces year: 1983 ident: 2001_CR43 contributor: fullname: B Schweizer – volume: 21 start-page: 2513 issue: 4 year: 2015 ident: 2001_CR7 publication-title: Bernoulli doi: 10.3150/14-BEJ653 contributor: fullname: M Borowiecka-Olszewska – volume: 24 start-page: 783 issue: 9 year: 1976 ident: 2001_CR50 publication-title: Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. contributor: fullname: K Urbanik – volume: 55 start-page: 518 issue: 4 year: 2015 ident: 2001_CR22 publication-title: Lith. Math. J. doi: 10.1007/s10986-015-9296-6 contributor: fullname: BH Jasiulis-Gołdyn – volume: 22 start-page: 482 year: 2009 ident: 2001_CR17 publication-title: J. Theor. Probab. doi: 10.1007/s10959-008-0195-1 contributor: fullname: W Jarczyk – volume: 130 start-page: 3277 issue: 6 year: 2020 ident: 2001_CR24 publication-title: Stoch. Proc. Appl. doi: 10.1016/j.spa.2019.09.013 contributor: fullname: BH Jasiulis-Gołdyn – ident: 2001_CR26 – volume: 14 start-page: 89 issue: 1 year: 1993 ident: 2001_CR54 publication-title: Probab. Math. Stat. contributor: fullname: K Urbanik – ident: 2001_CR41 doi: 10.1007/1-4020-4415-1 – volume-title: Order Statistics year: 2003 ident: 2001_CR12 doi: 10.1002/0471722162 contributor: fullname: HA David – ident: 2001_CR18 doi: 10.1007/s00025-023-01946-y – volume: 167 start-page: 195 issue: 3 year: 2005 ident: 2001_CR36 publication-title: Stud. Math. doi: 10.4064/sm167-3-1 contributor: fullname: JK Misiewicz – volume-title: Harmonic Analysis in Hypercomplex Systems year: 1998 ident: 2001_CR4 doi: 10.1007/978-94-017-1758-8 contributor: fullname: YM Berezansky – volume: 44 start-page: 919 issue: 3 year: 2019 ident: 2001_CR9 publication-title: Math. Oper. Res. doi: 10.1287/moor.2018.0950 contributor: fullname: B Chen – volume-title: Modelling Extremal Events for Insurance and Finance year: 1997 ident: 2001_CR14 doi: 10.1007/978-3-642-33483-2 contributor: fullname: P Embrechts – volume: 60 start-page: 45 issue: 1 year: 2016 ident: 2001_CR25 publication-title: Theor. Probab. Appl. doi: 10.1137/S0040585X97T987491 contributor: fullname: BH Jasiulis-Gołdyn – volume: 332 start-page: 365 issue: 1 year: 1992 ident: 2001_CR10 publication-title: Trans. Am. Math. Soc. contributor: fullname: WC Connett – ident: 2001_CR44 – start-page: 188 volume-title: Lecture Notes in Math. 1807 Geometric Aspects of Functional Analysis year: 2003 ident: 2001_CR40 contributor: fullname: K Oleszkiewicz – volume: 57 start-page: 479 issue: 4 year: 2017 ident: 2001_CR23 publication-title: Lith. Math. J. doi: 10.1007/s10986-017-9375-y contributor: fullname: BH Jasiulis-Gołdyn – volume: 92 start-page: 911 year: 2018 ident: 2001_CR37 publication-title: Aequ. Math. doi: 10.1007/s00010-018-0578-z contributor: fullname: JK Misiewicz – volume: 24 start-page: 746 issue: 3 year: 2011 ident: 2001_CR20 publication-title: J. Theor. Probab. doi: 10.1007/s10959-010-0279-6 contributor: fullname: BH Jasiulis-Gołdyn – volume: 46 start-page: 297 issue: 2 year: 2004 ident: 2001_CR55 publication-title: Aust. N. Z. J. Stat. doi: 10.1111/j.1467-842X.2004.00330.x contributor: fullname: J Wesołowski – volume: 109 start-page: 11 issue: 1 year: 1963 ident: 2001_CR29 publication-title: Acta Math. doi: 10.1007/BF02391808 contributor: fullname: JFC Kingman – year: 2022 ident: 2001_CR2 publication-title: Ann. Inst. Stat. Math. doi: 10.1007/s10463-022-00858-y contributor: fullname: M Arendarczyk – volume: 36 start-page: 165 issue: 1 year: 2016 ident: 2001_CR21 publication-title: Probab. Math. Stat. contributor: fullname: BH Jasiulis-Gołdyn – volume: 37 start-page: 3059 issue: 5B year: 2009 ident: 2001_CR35 publication-title: Ann. Stat. doi: 10.1214/07-AOS556 contributor: fullname: AJ McNeil – volume: 80 start-page: 167 issue: 2 year: 1984 ident: 2001_CR51 publication-title: Stud. Math. doi: 10.4064/sm-80-2-167-189 contributor: fullname: K Urbanik – volume: 49 start-page: 487 issue: 3 year: 2011 ident: 2001_CR11 publication-title: Insur. Math. Econ. doi: 10.1016/j.insmatheco.2011.08.006 contributor: fullname: C Constantinescu – volume: 9 start-page: 163 issue: 3 year: 1968 ident: 2001_CR28 publication-title: Z. Wahrscheinlichkeitstheorie und Verw. Gebiete doi: 10.1007/BF00535637 contributor: fullname: DG Kendall – volume: 43 start-page: 195 year: 2011 ident: 2001_CR31 publication-title: Adv. Appl. Probab. doi: 10.1239/aap/1300198519 contributor: fullname: M Larsson – volume: 20 start-page: 1003 issue: 3 year: 2018 ident: 2001_CR32 publication-title: Methodol. Comput. Appl. Probab. doi: 10.1007/s11009-017-9564-5 contributor: fullname: C Lefévre – ident: 2001_CR45 – volume-title: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance year: 1993 ident: 2001_CR42 contributor: fullname: G Samorodnitsky – volume: 45 start-page: 57 issue: 1 year: 1973 ident: 2001_CR49 publication-title: Stud. Math. doi: 10.4064/sm-45-1-57-70 contributor: fullname: K Urbanik – volume: 23 start-page: 16 issue: 4 year: 1971 ident: 2001_CR5 publication-title: Proc. Lond. Math. Sci. doi: 10.1112/plms/s3-23.1.16 contributor: fullname: NH Bingham – volume: 122 start-page: 437 issue: 3 year: 2012 ident: 2001_CR19 publication-title: Proc. Math. Sci. doi: 10.1007/s12044-012-0085-4 contributor: fullname: BH Jasiulis-Gołdyn – volume-title: Ruin Probabilities year: 2000 ident: 2001_CR3 doi: 10.1142/2779 contributor: fullname: S Asmussen – volume: 20 start-page: 373 issue: 2 year: 2000 ident: 2001_CR27 publication-title: Probab. Math. Stat. contributor: fullname: K Kaniowski – ident: 2001_CR1 doi: 10.1007/s10959-023-01285-2 |
SSID | ssj0052212 |
Score | 2.3349264 |
Snippet | This paper deals with the generalized convolutions connected with the Williamson transform and the maximum operation. We focus on such convolutions which can... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
SubjectTerms | Mathematics Mathematics and Statistics |
Title | How Exceptional is the Extremal Kendall and Kendall-Type Convolution |
URI | https://link.springer.com/article/10.1007/s00025-023-02001-6 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5se9GDb7G-2IM3jSTuJtkcS5saRb1YwVvYJ4gllaZVf76TJxRE0EOSTTKE5ctkZjbzAjj3pOVGaetQ7VuHKc4cbgKNO9RvmkluTJE7nDyFjy98FBdlcmj76yJ7u2o8kqWgbnPd3LLzKqoY3Io4oKADPdQ9PjJ3bxDfJfeNAEaLonJyMlxnIXvROlfm56es6qNVZ2ipY8Zb_5rdNmzWJiUZVDywA2sm24WNh7Yea74Ho2T2SeKvOoQFiV9zgrfx0mKORFOC8laL6ZSITDdjp1iikuEs-6i5cx-ex_FkmDh1_wRHUeovHO16Eg0qy2lAtfSkL7VyuZIqktG1kMaEIrQeDXiEgPmRKwQVkeImlCG9NsrSA-hms8wcAtGeawKUDsp6lvnMSolvFc9YJIWmUvThokExfa_KZKRtQeQSmxSxSUts0qAPlw2Kaf3J5L-QH_2N_BjWi57wVczJCXQX86U5hU6ul2c1pxTH28nN-BsNv7lm |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NQEB5se1AP7mJdc_CmgSTvJXk5li5EbHuxQnsKbwWhpNK06s93shUKIughIcsQwpfJzDxm5huAe1cYpqUyNlG-salk1GY6ULhD_6aoYFrnvcPxSziesl4_p8mhdS9MUe1epyQLS71pdnOK0avoY3DLC4GCBrRytnOvCa3OdDbr1RYYQ4oyy0lxoYX6RapmmZ-fsu2QtrOhhZMZHP7v9Y7goAoqrU6pBcewo9MT2B9tGFmzU-jFi0-r_1UVsaDwW2bhbby0WqLQ3EKLq_h8bvFU1cd2vki1uov0o9LPM3gd9Cfd2K4mKNiSEH9lK8cVGFIZRgKihCt8oaTDpJCRiDwutA55aFwSsAgR8yOHc8IjyXQoQuJpacg5NNNFqi_AUq6jA7QP0riG-tQIgd8Vz2gkuCKCt-GhhjF5L4kykg0lcoFNgtgkBTZJ0IbHGsWk-mmyX8Qv_yZ-B7vxZDRMhk_j5yvYyyfElxUo19BcLdf6BhqZWt9WavMNtNG8Cg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BdGDb7E-c_CmoUl3k2yOpW1sUYtgBW9hnyCUtDSp-vOdvAoFEcRDQjYZlvDtZGY28wK4cYVhWipjE-UZm0pGbaZ9hSfUb4oKpnWeOzx8CcZvrD_Iy-SssviLaPfaJVnmNORVmpKsPVemvUp8c4o2rKhv8MiDgvxNaOa_xWgDmt3R5D6qpTGaF6XHk-KmC3mNVIkzP8-yrpzWPaOFwon2_v-q-7BbGZtWt-SOA9jQySHsPK0qtaZH0B_OPq3BVxXcgsTvqYWP8Va2QKKphZJY8enU4omqr-1882r1ZslHxbfH8BoNJr2hXXVWsCUhXmYrxxVoahlGfKKEKzyhpMOkkKEIO1xoHfDAuMRnIaLnhQ7nhIeS6UAEpKOlISfQSGaJPgVLuY72UW5I4xrqUSMErjeOaCi4IoK34LaGNJ6XBTTiVankApsYsYkLbGK_BXc1onH1MaW_kJ_9jfwatp77Ufw4Gj-cw3beOL4MTLmARrZY6kvYTNXyquKgbwIyxKE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Exceptional+is+the+Extremal+Kendall+and+Kendall-Type+Convolution&rft.jtitle=Resultate+der+Mathematik&rft.au=Jasiulis-Go%C5%82dyn%2C+Barbara+H.&rft.au=Misiewicz%2C+Jolanta+K.&rft.au=Omey%2C+Edward&rft.au=Weso%C5%82owski%2C+Jacek&rft.date=2023-12-01&rft.pub=Springer+International+Publishing&rft.issn=1422-6383&rft.eissn=1420-9012&rft.volume=78&rft.issue=6&rft_id=info:doi/10.1007%2Fs00025-023-02001-6&rft.externalDocID=10_1007_s00025_023_02001_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon |