How Exceptional is the Extremal Kendall and Kendall-Type Convolution

This paper deals with the generalized convolutions connected with the Williamson transform and the maximum operation. We focus on such convolutions which can define transition probabilities of renewal processes. They should be monotonic since the described time or destruction does not go back, it sh...

Full description

Saved in:
Bibliographic Details
Published in:Resultate der Mathematik Vol. 78; no. 6
Main Authors: Jasiulis-Gołdyn, Barbara H., Misiewicz, Jolanta K., Omey, Edward, Wesołowski, Jacek
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper deals with the generalized convolutions connected with the Williamson transform and the maximum operation. We focus on such convolutions which can define transition probabilities of renewal processes. They should be monotonic since the described time or destruction does not go back, it should admit existence of a distribution with a lack of memory property because the analog of the Poisson process shall exist. Another valuable property is the simplicity of calculating and inverting the corresponding generalized characteristic function (in particular Williamson transform) so that the technique of generalized characteristic function can be used in description of our processes. The convex linear combination property (the generalized convolution of two point measures is the convex combination of several fixed measures), or representability (which means that the generalized convolution can be easily written in the language of independent random variables)—they also facilitate the modeling of real processes in that language. We describe examples of generalized convolutions having the required properties ranging from the maximum convolution and its simplest generalization—the Kendall convolution (associated with the Williamson transform), up to the most complicated here—Kingman convolution. It is novel approach to apply in the extreme value theory. Stochastic representation of the Kucharczak-Urbanik in the order statistics terms is proved, which open new paths to investigate Archimedean copulas. This paper open the door to solve an old open problem of the relationship between copulas and generalized convolutions mentioned by B. Schweizer and A. Sklar in 1983. This indicates the path of further research towards extremes and dependency modelling.
AbstractList This paper deals with the generalized convolutions connected with the Williamson transform and the maximum operation. We focus on such convolutions which can define transition probabilities of renewal processes. They should be monotonic since the described time or destruction does not go back, it should admit existence of a distribution with a lack of memory property because the analog of the Poisson process shall exist. Another valuable property is the simplicity of calculating and inverting the corresponding generalized characteristic function (in particular Williamson transform) so that the technique of generalized characteristic function can be used in description of our processes. The convex linear combination property (the generalized convolution of two point measures is the convex combination of several fixed measures), or representability (which means that the generalized convolution can be easily written in the language of independent random variables)—they also facilitate the modeling of real processes in that language. We describe examples of generalized convolutions having the required properties ranging from the maximum convolution and its simplest generalization—the Kendall convolution (associated with the Williamson transform), up to the most complicated here—Kingman convolution. It is novel approach to apply in the extreme value theory. Stochastic representation of the Kucharczak-Urbanik in the order statistics terms is proved, which open new paths to investigate Archimedean copulas. This paper open the door to solve an old open problem of the relationship between copulas and generalized convolutions mentioned by B. Schweizer and A. Sklar in 1983. This indicates the path of further research towards extremes and dependency modelling.
ArticleNumber 224
Author Wesołowski, Jacek
Misiewicz, Jolanta K.
Jasiulis-Gołdyn, Barbara H.
Omey, Edward
Author_xml – sequence: 1
  givenname: Barbara H.
  orcidid: 0000-0003-2358-4494
  surname: Jasiulis-Gołdyn
  fullname: Jasiulis-Gołdyn, Barbara H.
  email: barbara.jasiulis@math.uni.wroc.pl, basiaja@liverpool.ac.uk
  organization: Institute of Mathematics, University of Wrocław, Institute for Financial and Actuarial MathematicsDepartment of Mathematical Sciences, University of Liverpool
– sequence: 2
  givenname: Jolanta K.
  surname: Misiewicz
  fullname: Misiewicz, Jolanta K.
  organization: Faculty of Mathematics and Information Science, Warsaw University of Technology
– sequence: 3
  givenname: Edward
  surname: Omey
  fullname: Omey, Edward
  organization: Faculty of Economics and Business-Campus Brussels, KU Leuven
– sequence: 4
  givenname: Jacek
  surname: Wesołowski
  fullname: Wesołowski, Jacek
  organization: Faculty of Mathematics and Information Science, Warsaw University of Technology
BookMark eNp9kMFOwzAMhiM0JLbBC3DqCwSchLbpEY3BEJO4jHOUpC506pIq6YC9PdkKVw6Wf1v-LfubkYnzDgm5ZnDDAMrbCAA8p8BFCgBGizMyZXccaAWMT06a00JIcUFmMW4Bcs4Zn5KHlf_Klt8W-6H1TndZG7PhA1NrCLhL9Qu6Wnddpl39p-nm0GO28O7Td_uj7ZKcN7qLePWb5-TtcblZrOj69el5cb-mVoh8oDUwI3PWSFGI2jCTm9qCtMZWpuLaIJa6bJgoZJVOyyvQWujKSixNKTjaRswJH_fa4GMM2Kg-tDsdDoqBOnJQIweVOKgTB1UkkxhNMQ27dwxq6_chvRr_c_0AYvJiag
CitedBy_id crossref_primary_10_1007_s10959_023_01285_2
Cites_doi 10.3150/17-BEJ977
10.4064/sm-45-1-57-70
10.1016/j.jmaa.2019.123575
10.1007/978-94-009-3859-5_11
10.1016/j.jmva.2010.03.015
10.1016/j.jmva.2019.01.007
10.1002/9781119157052.ch2
10.4064/cm-48-1-117-125
10.1007/s10959-005-7528-0
10.1215/S0012-7094-56-02317-1
10.4064/cm-25-2-281-289
10.4064/sm-23-3-217-245
10.3150/14-BEJ653
10.1007/s10986-015-9296-6
10.1007/s10959-008-0195-1
10.1016/j.spa.2019.09.013
10.1007/1-4020-4415-1
10.1002/0471722162
10.1007/s00025-023-01946-y
10.4064/sm167-3-1
10.1007/978-94-017-1758-8
10.1287/moor.2018.0950
10.1007/978-3-642-33483-2
10.1137/S0040585X97T987491
10.1007/s10986-017-9375-y
10.1007/s00010-018-0578-z
10.1007/s10959-010-0279-6
10.1111/j.1467-842X.2004.00330.x
10.1007/BF02391808
10.1007/s10463-022-00858-y
10.1214/07-AOS556
10.4064/sm-80-2-167-189
10.1016/j.insmatheco.2011.08.006
10.1007/BF00535637
10.1239/aap/1300198519
10.1007/s11009-017-9564-5
10.1112/plms/s3-23.1.16
10.1007/s12044-012-0085-4
10.1142/2779
10.1007/s10959-023-01285-2
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00025-023-02001-6
DatabaseName SpringerOpen
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-9012
ExternalDocumentID 10_1007_s00025_023_02001_6
GrantInformation_xml – fundername: Fundacja na rzecz Nauki Polskiej
  grantid: POIR.04.04.00-00-1D5E/16
  funderid: http://dx.doi.org/10.13039/501100001870
– fundername: Narodowe Centrum Nauki
  grantid: 2016/21/B/ST1/00005; 2022/6/X/HS4/01698
  funderid: http://dx.doi.org/10.13039/501100004281
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
~A9
AACDK
AAEOY
AAEWM
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c335t-d01b851f8363db1b5bdc08cbc9b92abee7a7f13689212590aa3a9c8e7b732ecf3
IEDL.DBID AEJHL
ISSN 1422-6383
IngestDate Fri Nov 22 00:33:26 EST 2024
Sat Dec 16 12:03:56 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords order statistics
Extreme value theory
generalized convolution
Kendall type convolution
Secondary 44A35
62G30
60G70
weak stability with respect to generalized convolution
Williamson transform
Primary 60E10
60E05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-d01b851f8363db1b5bdc08cbc9b92abee7a7f13689212590aa3a9c8e7b732ecf3
ORCID 0000-0003-2358-4494
OpenAccessLink http://link.springer.com/10.1007/s00025-023-02001-6
ParticipantIDs crossref_primary_10_1007_s00025_023_02001_6
springer_journals_10_1007_s00025_023_02001_6
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Resultate der Mathematik
PublicationTitle Resultate der Mathematik
PublicationTitleAbbrev Results Math
PublicationYear 2023
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References UrbanikKRemarks on B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal{B} }}$$\end{document}-stable probability distributionsBull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.19762497837874234720365.60016
MisiewiczJKGeneralized convolutions and Levi-Civita functional equationAequ. Math.20189291193338567821418.60008
Sousa, R., Guerra, M., Yakubovich, S.: Lévy processes with respect to the index Whittaker convolution, (2018) arXiv: 1805.03051v1
Jasiulis-GołdynBHMisiewiczJKOn the uniqueness of the Kendall generalized convolutionJ. Theor. Probab.201124374675528224801227.60017
UrbanikKAnti-irreducible probability measuresProbab. Math. Stat.19931418911312675210802.60004
Arendarczyk, M., Jasiulis-Gołdyn, B., Omey, E.: Asymptotic properties of extremal Markov processes driven by Kendall convolution, to appear in Journal of Theoretical Probability, (2023)
SchweizerBSklarAProbabilistic Metric Spaces1983AmsterdamNorth Holland0546.60010
UrbanikKGeneralized convolutions. IIIStud. Math.19848021671897813330561.60019
Urbanik, K.: Analytical Methods in Probability Theory, in Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes held at 1986, Academia Publishing House of the Czechoslovak Acad. Sci., pp. 151–163 (1988)
Williamson, R.E.: Multiply monotone functions and their Laplace transforms. Duke Math. J. 23, 189–207 (1956)
UrbanikKGeneralized convolutionsStud. Math.19642332172451602670171.39504
Jasiulis-Gołdyn, B.H., Omey, E.: Renewal theory for sequences of Kendall type, preprint (2022)
ArendarczykMKozubowskiTJPanorskaAKSlash distributions, generalized convolutions, and extremesAnn. Inst. Stat. Math.202210.1007/s10463-022-00858-y07712154
WesołowskiJAhsanullahMSwitching order statistics through random power contractionsAust. N. Z. J. Stat.200446229730320763971061.62019
BinghamNHFactorization theory and domains of attraction for generalized convolution algebraProc. Lond. Math. Sci.197123416303003160234.60005
ConstantinescuCHashorvaEJiLArchimedean copulas in finite and infinite dimensions-with application to ruin problemsInsur. Math. Econ.201149348749528447351284.62339
KucharczakJUrbanikKTransformations preserving weak stabilityBull. Pol. Acad. Sci. Math1986344754868748940609.60013
KaniowskiKOn some connections between random partitions of the unit segment and the Poisson processProbab. Math. Stat.200020237338118256491019.60023
Levitan, B.M.: Generalized translation operators and some of their applications Israel Program for Scientific Translations, Jerusalem (1964)
ChenBBlanchetJRheeCHZwartAPEfficient rare-event simulation for multiple jump events in regularly varying random walks and compound Poisson processesMath. Oper. Res.2019443919942399665207195280
MisiewiczJKVolkovichVEvery symmetric weakly stable random vector is pseudo-isotropicJ. Math. Anal. Appl.2020483140211811471.60069
OleszkiewiczK MilmanVD SchechtmanGOn p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-pseudo-stable random variables, Rosenthal Spaces and ℓpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p^n$$\end{document} ball slicingLecture Notes in Math. 1807 Geometric Aspects of Functional Analysis2003Berlin HeidelbergSpringer-Verlag188210
Jasiulis-GołdynBHMisiewiczJKClassical definitions of the Poisson process do not coincide in the case of weak generalized convolutionLith. Math. J.201555451854234247121358.60063
Toulemonde, G., Ribereau, P., Naveau, P.: Applications of extreme value theory to environmental data analysis. Extreme Events Observ. Model. Econ. 9–22 (2016)
McNeilAJNešlehováJMultivariate Archimedean copulas, d-monotone functions and ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-norm symmetric distributionsAnn. Stat.2009375B305930971173.62044
LarssonMNešlehováJExtremal behavior of Archimedean copulasAdv. Appl. Probab.20114319521627611541213.62084
Jasiulis-GołdynBHMisiewiczJKWeak Lévy-Khintchine representation for weak infinite divisibilityTheor. Probab. Appl.201660145611331.60032
Sousa, R., Guerra, M., Yakubovich, S.: On the product formula and convolution associated with the index Whittaker transform, arXiv: 1802.06657v2 (2019)
UrbanikKGeneralized convolutions IIStud. Math.197345157703289910283.60017
SamorodnitskyGTaqquMStable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance1993LondonChapman & Hall0925.60027
GilewskiJGeneralized convolutions and delphic semigroupsColl. Math.1972252812893343010252.22006
Jasiulis-GołdynBHMisiewiczJKKendall random walk, Williamson transform and the corresponding Wiener-Hopf factorizationLith. Math. J.201757447948937361961387.60076
BinghamNHOn a theorem of Kłosowska about generalized convolutionsColl. Math.19874811171250546.60020
Jarczyk, W., Járai, A., Matkowski, J., Misiewicz, J.K.: On weak generalized stability of random variables via functional equations, to appear in Results in Mathematics (2023)
KingmanJFCRandom Walks with Spherical SymmetryActa Math.1963109111531495670121.12803
BerezanskyYMKalyuzhnyiAAHarmonic Analysis in Hypercomplex Systems1998DordrechtKluwer Academic Publishers0894.43007
GenestCNešlehováJRivestL-PThe class of multivariate max-id copulas with l1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1-$$\end{document} norm symmetric exponent measureBernoulli2018244B3751379037881881415.62030
Jasiulis-GołdynBHMisiewiczJKNaskrȩtKOmeyEAMRenewal theory for extremal Markov sequences of the Kendall typeStoch. Proc. Appl.202013063277329440924051437.60057
Borowiecka-OlszewskaMJasiulis-GołdynBHMisiewiczJKRosińskiJLévy processes and stochastic integral in the sense of generalized convolutionBernoulli20152142513255133784761333.60091
Jasiulis-GołdynBHKendall random walksProbab. Math. Stat.201636116518535293471343.60052
DelsarteJSur une extension de la formule de TaylorJ. Math. Pures Appl.193817921323164.0405.03
ConnettWCMarkettCSchwartzALConvolution and hypergroup structure associated with a class of Sturm-Liouville systemsTrans. Am. Math. Soc.1992332136539010531120765.43006
MisiewiczJK OleszkiewiczKUrbanikKClasses of measures closed under mixing and convolution. Weak stabilityStud. Math.2005167319521321314181063.60017
AsmussenSRuin Probabilities2000SingaporeWorld Scientific0960.60003
McNeilAJNešlehováJFrom Archimedean to Liouville CopulasJ. Multivar. Anal.201010181771179026519541190.62102
JarczykWMisiewiczJKOn weak generalized stability and (c,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(c, d)$$\end{document}-pseudostable random variables via functional equationsJ. Theor. Probab.20092248250525013311166.60303
UrbanikKGeneralized convolutions. IVStud. Math.198683157958298990625.60013
MisiewiczJKMazurkiewiczGOn (c,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(c, p)$$\end{document}-pseudostable random variablesJ. Theoret. Probab.200518483785222899341082.60010
Salvadori, G., De Michele, C., Kottegoda, N.T., Rosso, R.: Extremes in Nature An Approach Using Copulas (2007)
Jasiulis-GołdynBHKulaAThe Urbanik generalized convolutions in the non-commutative probability and a forgotten method of constructing generalized convolutionProc. Math. Sci.2012122343745829726641266.60005
KendallDGDelphic semi-groups, infinitely divisible regenerative phenomena, and the arithmetic of p-functionsZ. Wahrscheinlichkeitstheorie und Verw. Gebiete1968931631952297460159.46902
Titchmarsh, E.: Introduction To The Theory Of Fourier Integrals, 2nd Edn., Oxford (1948)
CastanerALefévreCLoiselSClaramuntMPartially Schur-constant vectorsJ. Multivar. Anal.201917247581415.60034
LefévreCLoiselSUtevSMarkov property in discrete Schur-constant modelsMethodol. Comput. Appl. Probab.20182031003101238416311402.60092
DavidHANagarajaHNOrder Statistics2003New YorkWiley1053.62060
EmbrechtsPKlüppelbergCMikoschTModelling Extremal Events for Insurance and Finance1997BerlinSpringer0873.62116
K Urbanik (2001_CR49) 1973; 45
C Genest (2001_CR15) 2018; 24
B Schweizer (2001_CR43) 1983
AJ McNeil (2001_CR35) 2009; 37
2001_CR46
2001_CR45
J Wesołowski (2001_CR55) 2004; 46
2001_CR47
WC Connett (2001_CR10) 1992; 332
BH Jasiulis-Gołdyn (2001_CR24) 2020; 130
J Gilewski (2001_CR16) 1972; 25
JK Misiewicz (2001_CR36) 2005; 167
2001_CR41
2001_CR44
NH Bingham (2001_CR5) 1971; 23
AJ McNeil (2001_CR34) 2010; 101
K Urbanik (2001_CR52) 1986; 83
BH Jasiulis-Gołdyn (2001_CR23) 2017; 57
M Arendarczyk (2001_CR2) 2022
B Chen (2001_CR9) 2019; 44
G Samorodnitsky (2001_CR42) 1993
J Delsarte (2001_CR13) 1938; 17
JK Misiewicz (2001_CR39) 2020; 483
K Oleszkiewicz (2001_CR40) 2003
A Castaner (2001_CR8) 2019; 172
K Urbanik (2001_CR48) 1964; 23
BH Jasiulis-Gołdyn (2001_CR19) 2012; 122
K Kaniowski (2001_CR27) 2000; 20
JK Misiewicz (2001_CR38) 2005; 18
2001_CR33
NH Bingham (2001_CR6) 1987; 48
JFC Kingman (2001_CR29) 1963; 109
P Embrechts (2001_CR14) 1997
W Jarczyk (2001_CR17) 2009; 22
YM Berezansky (2001_CR4) 1998
2001_CR26
BH Jasiulis-Gołdyn (2001_CR21) 2016; 36
2001_CR1
M Borowiecka-Olszewska (2001_CR7) 2015; 21
M Larsson (2001_CR31) 2011; 43
HA David (2001_CR12) 2003
K Urbanik (2001_CR51) 1984; 80
BH Jasiulis-Gołdyn (2001_CR22) 2015; 55
2001_CR56
2001_CR18
S Asmussen (2001_CR3) 2000
J Kucharczak (2001_CR30) 1986; 34
C Lefévre (2001_CR32) 2018; 20
DG Kendall (2001_CR28) 1968; 9
JK Misiewicz (2001_CR37) 2018; 92
2001_CR53
K Urbanik (2001_CR50) 1976; 24
BH Jasiulis-Gołdyn (2001_CR20) 2011; 24
K Urbanik (2001_CR54) 1993; 14
BH Jasiulis-Gołdyn (2001_CR25) 2016; 60
C Constantinescu (2001_CR11) 2011; 49
References_xml – volume: 17
  start-page: 213
  issue: 9
  year: 1938
  ident: 2001_CR13
  publication-title: J. Math. Pures Appl.
  contributor:
    fullname: J Delsarte
– volume: 24
  start-page: 3751
  issue: 4B
  year: 2018
  ident: 2001_CR15
  publication-title: Bernoulli
  doi: 10.3150/17-BEJ977
  contributor:
    fullname: C Genest
– volume: 83
  start-page: 57
  issue: 1
  year: 1986
  ident: 2001_CR52
  publication-title: Stud. Math.
  doi: 10.4064/sm-45-1-57-70
  contributor:
    fullname: K Urbanik
– volume: 483
  issue: 1
  year: 2020
  ident: 2001_CR39
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.123575
  contributor:
    fullname: JK Misiewicz
– ident: 2001_CR53
  doi: 10.1007/978-94-009-3859-5_11
– volume: 101
  start-page: 1771
  issue: 8
  year: 2010
  ident: 2001_CR34
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2010.03.015
  contributor:
    fullname: AJ McNeil
– volume: 34
  start-page: 475
  year: 1986
  ident: 2001_CR30
  publication-title: Bull. Pol. Acad. Sci. Math
  contributor:
    fullname: J Kucharczak
– volume: 172
  start-page: 47
  year: 2019
  ident: 2001_CR8
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2019.01.007
  contributor:
    fullname: A Castaner
– ident: 2001_CR46
– ident: 2001_CR47
  doi: 10.1002/9781119157052.ch2
– volume: 48
  start-page: 117
  issue: 1
  year: 1987
  ident: 2001_CR6
  publication-title: Coll. Math.
  doi: 10.4064/cm-48-1-117-125
  contributor:
    fullname: NH Bingham
– volume: 18
  start-page: 837
  issue: 4
  year: 2005
  ident: 2001_CR38
  publication-title: J. Theoret. Probab.
  doi: 10.1007/s10959-005-7528-0
  contributor:
    fullname: JK Misiewicz
– ident: 2001_CR56
  doi: 10.1215/S0012-7094-56-02317-1
– ident: 2001_CR33
– volume: 25
  start-page: 281
  year: 1972
  ident: 2001_CR16
  publication-title: Coll. Math.
  doi: 10.4064/cm-25-2-281-289
  contributor:
    fullname: J Gilewski
– volume: 23
  start-page: 217
  issue: 3
  year: 1964
  ident: 2001_CR48
  publication-title: Stud. Math.
  doi: 10.4064/sm-23-3-217-245
  contributor:
    fullname: K Urbanik
– volume-title: Probabilistic Metric Spaces
  year: 1983
  ident: 2001_CR43
  contributor:
    fullname: B Schweizer
– volume: 21
  start-page: 2513
  issue: 4
  year: 2015
  ident: 2001_CR7
  publication-title: Bernoulli
  doi: 10.3150/14-BEJ653
  contributor:
    fullname: M Borowiecka-Olszewska
– volume: 24
  start-page: 783
  issue: 9
  year: 1976
  ident: 2001_CR50
  publication-title: Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.
  contributor:
    fullname: K Urbanik
– volume: 55
  start-page: 518
  issue: 4
  year: 2015
  ident: 2001_CR22
  publication-title: Lith. Math. J.
  doi: 10.1007/s10986-015-9296-6
  contributor:
    fullname: BH Jasiulis-Gołdyn
– volume: 22
  start-page: 482
  year: 2009
  ident: 2001_CR17
  publication-title: J. Theor. Probab.
  doi: 10.1007/s10959-008-0195-1
  contributor:
    fullname: W Jarczyk
– volume: 130
  start-page: 3277
  issue: 6
  year: 2020
  ident: 2001_CR24
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/j.spa.2019.09.013
  contributor:
    fullname: BH Jasiulis-Gołdyn
– ident: 2001_CR26
– volume: 14
  start-page: 89
  issue: 1
  year: 1993
  ident: 2001_CR54
  publication-title: Probab. Math. Stat.
  contributor:
    fullname: K Urbanik
– ident: 2001_CR41
  doi: 10.1007/1-4020-4415-1
– volume-title: Order Statistics
  year: 2003
  ident: 2001_CR12
  doi: 10.1002/0471722162
  contributor:
    fullname: HA David
– ident: 2001_CR18
  doi: 10.1007/s00025-023-01946-y
– volume: 167
  start-page: 195
  issue: 3
  year: 2005
  ident: 2001_CR36
  publication-title: Stud. Math.
  doi: 10.4064/sm167-3-1
  contributor:
    fullname: JK Misiewicz
– volume-title: Harmonic Analysis in Hypercomplex Systems
  year: 1998
  ident: 2001_CR4
  doi: 10.1007/978-94-017-1758-8
  contributor:
    fullname: YM Berezansky
– volume: 44
  start-page: 919
  issue: 3
  year: 2019
  ident: 2001_CR9
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2018.0950
  contributor:
    fullname: B Chen
– volume-title: Modelling Extremal Events for Insurance and Finance
  year: 1997
  ident: 2001_CR14
  doi: 10.1007/978-3-642-33483-2
  contributor:
    fullname: P Embrechts
– volume: 60
  start-page: 45
  issue: 1
  year: 2016
  ident: 2001_CR25
  publication-title: Theor. Probab. Appl.
  doi: 10.1137/S0040585X97T987491
  contributor:
    fullname: BH Jasiulis-Gołdyn
– volume: 332
  start-page: 365
  issue: 1
  year: 1992
  ident: 2001_CR10
  publication-title: Trans. Am. Math. Soc.
  contributor:
    fullname: WC Connett
– ident: 2001_CR44
– start-page: 188
  volume-title: Lecture Notes in Math. 1807 Geometric Aspects of Functional Analysis
  year: 2003
  ident: 2001_CR40
  contributor:
    fullname: K Oleszkiewicz
– volume: 57
  start-page: 479
  issue: 4
  year: 2017
  ident: 2001_CR23
  publication-title: Lith. Math. J.
  doi: 10.1007/s10986-017-9375-y
  contributor:
    fullname: BH Jasiulis-Gołdyn
– volume: 92
  start-page: 911
  year: 2018
  ident: 2001_CR37
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-018-0578-z
  contributor:
    fullname: JK Misiewicz
– volume: 24
  start-page: 746
  issue: 3
  year: 2011
  ident: 2001_CR20
  publication-title: J. Theor. Probab.
  doi: 10.1007/s10959-010-0279-6
  contributor:
    fullname: BH Jasiulis-Gołdyn
– volume: 46
  start-page: 297
  issue: 2
  year: 2004
  ident: 2001_CR55
  publication-title: Aust. N. Z. J. Stat.
  doi: 10.1111/j.1467-842X.2004.00330.x
  contributor:
    fullname: J Wesołowski
– volume: 109
  start-page: 11
  issue: 1
  year: 1963
  ident: 2001_CR29
  publication-title: Acta Math.
  doi: 10.1007/BF02391808
  contributor:
    fullname: JFC Kingman
– year: 2022
  ident: 2001_CR2
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/s10463-022-00858-y
  contributor:
    fullname: M Arendarczyk
– volume: 36
  start-page: 165
  issue: 1
  year: 2016
  ident: 2001_CR21
  publication-title: Probab. Math. Stat.
  contributor:
    fullname: BH Jasiulis-Gołdyn
– volume: 37
  start-page: 3059
  issue: 5B
  year: 2009
  ident: 2001_CR35
  publication-title: Ann. Stat.
  doi: 10.1214/07-AOS556
  contributor:
    fullname: AJ McNeil
– volume: 80
  start-page: 167
  issue: 2
  year: 1984
  ident: 2001_CR51
  publication-title: Stud. Math.
  doi: 10.4064/sm-80-2-167-189
  contributor:
    fullname: K Urbanik
– volume: 49
  start-page: 487
  issue: 3
  year: 2011
  ident: 2001_CR11
  publication-title: Insur. Math. Econ.
  doi: 10.1016/j.insmatheco.2011.08.006
  contributor:
    fullname: C Constantinescu
– volume: 9
  start-page: 163
  issue: 3
  year: 1968
  ident: 2001_CR28
  publication-title: Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
  doi: 10.1007/BF00535637
  contributor:
    fullname: DG Kendall
– volume: 43
  start-page: 195
  year: 2011
  ident: 2001_CR31
  publication-title: Adv. Appl. Probab.
  doi: 10.1239/aap/1300198519
  contributor:
    fullname: M Larsson
– volume: 20
  start-page: 1003
  issue: 3
  year: 2018
  ident: 2001_CR32
  publication-title: Methodol. Comput. Appl. Probab.
  doi: 10.1007/s11009-017-9564-5
  contributor:
    fullname: C Lefévre
– ident: 2001_CR45
– volume-title: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance
  year: 1993
  ident: 2001_CR42
  contributor:
    fullname: G Samorodnitsky
– volume: 45
  start-page: 57
  issue: 1
  year: 1973
  ident: 2001_CR49
  publication-title: Stud. Math.
  doi: 10.4064/sm-45-1-57-70
  contributor:
    fullname: K Urbanik
– volume: 23
  start-page: 16
  issue: 4
  year: 1971
  ident: 2001_CR5
  publication-title: Proc. Lond. Math. Sci.
  doi: 10.1112/plms/s3-23.1.16
  contributor:
    fullname: NH Bingham
– volume: 122
  start-page: 437
  issue: 3
  year: 2012
  ident: 2001_CR19
  publication-title: Proc. Math. Sci.
  doi: 10.1007/s12044-012-0085-4
  contributor:
    fullname: BH Jasiulis-Gołdyn
– volume-title: Ruin Probabilities
  year: 2000
  ident: 2001_CR3
  doi: 10.1142/2779
  contributor:
    fullname: S Asmussen
– volume: 20
  start-page: 373
  issue: 2
  year: 2000
  ident: 2001_CR27
  publication-title: Probab. Math. Stat.
  contributor:
    fullname: K Kaniowski
– ident: 2001_CR1
  doi: 10.1007/s10959-023-01285-2
SSID ssj0052212
Score 2.3349264
Snippet This paper deals with the generalized convolutions connected with the Williamson transform and the maximum operation. We focus on such convolutions which can...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
SubjectTerms Mathematics
Mathematics and Statistics
Title How Exceptional is the Extremal Kendall and Kendall-Type Convolution
URI https://link.springer.com/article/10.1007/s00025-023-02001-6
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5se9GDb7G-2IM3jSTuJtkcS5saRb1YwVvYJ4gllaZVf76TJxRE0EOSTTKE5ctkZjbzAjj3pOVGaetQ7VuHKc4cbgKNO9RvmkluTJE7nDyFjy98FBdlcmj76yJ7u2o8kqWgbnPd3LLzKqoY3Io4oKADPdQ9PjJ3bxDfJfeNAEaLonJyMlxnIXvROlfm56es6qNVZ2ipY8Zb_5rdNmzWJiUZVDywA2sm24WNh7Yea74Ho2T2SeKvOoQFiV9zgrfx0mKORFOC8laL6ZSITDdjp1iikuEs-6i5cx-ex_FkmDh1_wRHUeovHO16Eg0qy2lAtfSkL7VyuZIqktG1kMaEIrQeDXiEgPmRKwQVkeImlCG9NsrSA-hms8wcAtGeawKUDsp6lvnMSolvFc9YJIWmUvThokExfa_KZKRtQeQSmxSxSUts0qAPlw2Kaf3J5L-QH_2N_BjWi57wVczJCXQX86U5hU6ul2c1pxTH28nN-BsNv7lm
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NQEB5se1AP7mJdc_CmgSTvJXk5li5EbHuxQnsKbwWhpNK06s93shUKIughIcsQwpfJzDxm5huAe1cYpqUyNlG-salk1GY6ULhD_6aoYFrnvcPxSziesl4_p8mhdS9MUe1epyQLS71pdnOK0avoY3DLC4GCBrRytnOvCa3OdDbr1RYYQ4oyy0lxoYX6RapmmZ-fsu2QtrOhhZMZHP7v9Y7goAoqrU6pBcewo9MT2B9tGFmzU-jFi0-r_1UVsaDwW2bhbby0WqLQ3EKLq_h8bvFU1cd2vki1uov0o9LPM3gd9Cfd2K4mKNiSEH9lK8cVGFIZRgKihCt8oaTDpJCRiDwutA55aFwSsAgR8yOHc8IjyXQoQuJpacg5NNNFqi_AUq6jA7QP0riG-tQIgd8Vz2gkuCKCt-GhhjF5L4kykg0lcoFNgtgkBTZJ0IbHGsWk-mmyX8Qv_yZ-B7vxZDRMhk_j5yvYyyfElxUo19BcLdf6BhqZWt9WavMNtNG8Cg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BdGDb7E-c_CmoUl3k2yOpW1sUYtgBW9hnyCUtDSp-vOdvAoFEcRDQjYZlvDtZGY28wK4cYVhWipjE-UZm0pGbaZ9hSfUb4oKpnWeOzx8CcZvrD_Iy-SssviLaPfaJVnmNORVmpKsPVemvUp8c4o2rKhv8MiDgvxNaOa_xWgDmt3R5D6qpTGaF6XHk-KmC3mNVIkzP8-yrpzWPaOFwon2_v-q-7BbGZtWt-SOA9jQySHsPK0qtaZH0B_OPq3BVxXcgsTvqYWP8Va2QKKphZJY8enU4omqr-1882r1ZslHxbfH8BoNJr2hXXVWsCUhXmYrxxVoahlGfKKEKzyhpMOkkKEIO1xoHfDAuMRnIaLnhQ7nhIeS6UAEpKOlISfQSGaJPgVLuY72UW5I4xrqUSMErjeOaCi4IoK34LaGNJ6XBTTiVankApsYsYkLbGK_BXc1onH1MaW_kJ_9jfwatp77Ufw4Gj-cw3beOL4MTLmARrZY6kvYTNXyquKgbwIyxKE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Exceptional+is+the+Extremal+Kendall+and+Kendall-Type+Convolution&rft.jtitle=Resultate+der+Mathematik&rft.au=Jasiulis-Go%C5%82dyn%2C+Barbara+H.&rft.au=Misiewicz%2C+Jolanta+K.&rft.au=Omey%2C+Edward&rft.au=Weso%C5%82owski%2C+Jacek&rft.date=2023-12-01&rft.pub=Springer+International+Publishing&rft.issn=1422-6383&rft.eissn=1420-9012&rft.volume=78&rft.issue=6&rft_id=info:doi/10.1007%2Fs00025-023-02001-6&rft.externalDocID=10_1007_s00025_023_02001_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon