Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment

Carbon-based fillers for thermal interface materials (TIMs) are attractive due to their advantages such as high thermal conductivity, low thermal expansion, mechanical strength, flexibility, and low weight. In this work, we report a 330% enhancement of the through-plane thermal conductivity (kth) of...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) Vol. 140; pp. 24 - 29
Main Authors: Chung, Seok-Hwan, Kim, Hoyoung, Jeong, Sang Won
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01-12-2018
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon-based fillers for thermal interface materials (TIMs) are attractive due to their advantages such as high thermal conductivity, low thermal expansion, mechanical strength, flexibility, and low weight. In this work, we report a 330% enhancement of the through-plane thermal conductivity (kth) of a graphite-polymer composite TIM film by vertically aligning the graphite fillers with a 10 T superconducting magnet. The filler alignment is based on the large anisotropy in the magnetic susceptibility of graphite platelets. As the filler content increases from 10 to 60 wt%, the anisotropy of thermal conductivity (kth/kin) increases from 1.2 up to 2.3 for a perpendicular magnetic field alignment, whereas it remains the same for a parallel magnetic field alignment. The increased anisotropy is associated with better filler alignment at high filler loadings. This work provides a simple and effective solution to improve the physical properties of composite films by controlling their microstructure. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2018.08.029