The cable trench problem: combining the shortest path and minimum spanning tree problems
Let G=( V, E) be a connected graph with specified vertex v 0∈ V, length l( e)⩾0 for each e∈ E, and positive parameters τ and γ. The cable-trench problem (CTP) is to find a spanning tree T such that τl τ ( T)+ γl γ ( T) is minimized where l τ ( T) is the total length of the spanning tree T and l γ (...
Saved in:
Published in: | Computers & operations research Vol. 29; no. 5; pp. 441 - 458 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Elsevier Ltd
01-04-2002
Pergamon Press Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Let
G=(
V,
E) be a connected graph with specified vertex
v
0∈
V, length
l(
e)⩾0 for each
e∈
E, and positive parameters
τ and
γ. The cable-trench problem (CTP) is to find a spanning tree
T such that
τl
τ
(
T)+
γl
γ
(
T) is minimized where
l
τ
(
T) is the total length of the spanning tree
T and
l
γ
(
T) is the total path length in
T from
v
0 to all other vertices of
V. Since all vertices must be connected to
v
0 and only edges from
E are allowed, the solution will not be a Steiner tree. Consider the ratio
R=
τ/
γ. For
R large enough the solution will be a minimum spanning tree and for
R small enough the solution will be a shortest path. In this paper, the CTP will be shown to be NP-complete. A mathematical formulation for the CTP will be provided for specific values of
τ and
γ. Also, a heuristic will be discussed that will solve the CTP for all values of
R.
Both the shortest path and the minimum spanning tree problems are universally discussed in operations research and management science textbooks. Since the late 1950s, efficient algorithms have been known for both of these problems. In this paper, the cable-trench problem is defined which combines the shortest path problem and the minimum spanning tree problem to create a problem that is shown to be NP-complete. In other words, two easy problems are combined to get a more realistic problem that is difficult to solve. Examples are used to illustrate an efficient and effective heuristic solution procedure for the cable-trench problem. |
---|---|
AbstractList | Let
G=(
V,
E) be a connected graph with specified vertex
v
0∈
V, length
l(
e)⩾0 for each
e∈
E, and positive parameters
τ and
γ. The cable-trench problem (CTP) is to find a spanning tree
T such that
τl
τ
(
T)+
γl
γ
(
T) is minimized where
l
τ
(
T) is the total length of the spanning tree
T and
l
γ
(
T) is the total path length in
T from
v
0 to all other vertices of
V. Since all vertices must be connected to
v
0 and only edges from
E are allowed, the solution will not be a Steiner tree. Consider the ratio
R=
τ/
γ. For
R large enough the solution will be a minimum spanning tree and for
R small enough the solution will be a shortest path. In this paper, the CTP will be shown to be NP-complete. A mathematical formulation for the CTP will be provided for specific values of
τ and
γ. Also, a heuristic will be discussed that will solve the CTP for all values of
R.
Both the shortest path and the minimum spanning tree problems are universally discussed in operations research and management science textbooks. Since the late 1950s, efficient algorithms have been known for both of these problems. In this paper, the cable-trench problem is defined which combines the shortest path problem and the minimum spanning tree problem to create a problem that is shown to be NP-complete. In other words, two easy problems are combined to get a more realistic problem that is difficult to solve. Examples are used to illustrate an efficient and effective heuristic solution procedure for the cable-trench problem. Both the shortest path and the minimum spanning tree problems are universally discussed in operations research and management science textbooks. Since the late 1950s, efficient algorithms have been known for both of these problems. In this paper, the cable-trench problem is defined which combines the shortest path problem and the minimum spanning tree problem to create a problem that is shown to be NP-complete. In other words, two easy problems are combined to get a more realistic problem that is difficult to solve. Examples are used to illustrate an efficient and effective heuristic solution procedure for the cable-trench problem. |
Author | Vasko, Francis J. Barbieri, Robert S. Reitmeyer, Kenneth L. Rieksts, Brian Q. Stott, Kenneth L. |
Author_xml | – sequence: 1 givenname: Francis J. surname: Vasko fullname: Vasko, Francis J. email: vako@kutztown.edd organization: Mathematics & CIS Department, Kutztown University, Kutztown, PA 19530, USA – sequence: 2 givenname: Robert S. surname: Barbieri fullname: Barbieri, Robert S. organization: Mathematics & CIS Department, Kutztown University, Kutztown, PA 19530, USA – sequence: 3 givenname: Brian Q. surname: Rieksts fullname: Rieksts, Brian Q. organization: Mathematics & CIS Department, Kutztown University, Kutztown, PA 19530, USA – sequence: 4 givenname: Kenneth L. surname: Reitmeyer fullname: Reitmeyer, Kenneth L. organization: Homer Research Laboratories, Bethlehem Steel Corporation, Bethlehem, PA 18016, USA – sequence: 5 givenname: Kenneth L. surname: Stott fullname: Stott, Kenneth L. organization: Homer Research Laboratories, Bethlehem Steel Corporation, Bethlehem, PA 18016, USA |
BookMark | eNqFkM9LwzAUx4NMcJv-CULwpIfqS9ukrReR4S8YeLCH3UKavtmONa1JJvjfm63qVXIIj3y-7718ZmRieoOEnDO4ZsDEzRskwCPgaX4JcAUAeRKJIzJleZZEmeCrCZn-ISdk5twmQJDFbEpWZYNUq2qL1Fs0uqGD7UPV3VLdd1VrWvNOfWBc01uPztNB-YYqU9MuPHa7jrpBmRGziL9xd0qO12rr8OznnpPy8aFcPEfL16eXxf0y0kmS-kjFNa4VB65yoUTFEVBhVRSMocgLoeNQ6pgpwVKNRc7CidMCs5rpSlVpMicXY9sw92MX9pObfmdNmChZwfMYErGH-Ahp2ztncS0H23bKfkkGcq9QHhTKvR8JIA8KpQi5uzGH4QOfLVrpdBskYd1a1F7WfftPh2_WnHtK |
CODEN | CMORAP |
CitedBy_id | crossref_primary_10_1007_s10479_021_04133_w crossref_primary_10_1016_j_dam_2023_07_010 crossref_primary_10_1016_j_cor_2016_12_015 crossref_primary_10_1111_itor_12312 crossref_primary_10_3390_app9183722 crossref_primary_10_1016_j_cor_2018_10_004 crossref_primary_10_1016_j_procs_2021_11_009 crossref_primary_10_1007_s10100_020_00674_w crossref_primary_10_1016_j_cor_2011_05_015 crossref_primary_10_1111_itor_12857 crossref_primary_10_1002_net_21614 crossref_primary_10_3390_en12203965 crossref_primary_10_1016_j_apenergy_2016_08_094 crossref_primary_10_1007_s10479_006_0058_z |
Cites_doi | 10.1016/S0305-0548(99)00061-1 10.1016/S0925-7721(98)00032-7 10.1002/j.1538-7305.1957.tb01515.x 10.1007/BF01187017 10.1007/BF01294129 10.1007/BF01386390 10.1016/S0377-2217(98)00016-2 |
ContentType | Journal Article |
Copyright | 2001 Elsevier Science Ltd Copyright Pergamon Press Inc. Apr 2002 |
Copyright_xml | – notice: 2001 Elsevier Science Ltd – notice: Copyright Pergamon Press Inc. Apr 2002 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/S0305-0548(00)00083-6 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1873-765X 0305-0548 |
EndPage | 458 |
ExternalDocumentID | 109546720 10_1016_S0305_0548_00_00083_6 S0305054800000836 |
Genre | Feature |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XFK XPP ZMT ~02 ~G- AAXKI AAYXX ABDPE AFJKZ AKRWK CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-a2defa505a86a6b5e0eaeb9911e6896c2eaec21a614ce981818249e7d1cbab43 |
ISSN | 0305-0548 |
IngestDate | Thu Oct 10 15:07:13 EDT 2024 Fri Nov 22 00:26:48 EST 2024 Fri Feb 23 02:33:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Shortest path Networks Graph theory Heuristics Minimum spanning tree NP-completeness |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c334t-a2defa505a86a6b5e0eaeb9911e6896c2eaec21a614ce981818249e7d1cbab43 |
PQID | 195820364 |
PQPubID | 45870 |
PageCount | 18 |
ParticipantIDs | proquest_journals_195820364 crossref_primary_10_1016_S0305_0548_00_00083_6 elsevier_sciencedirect_doi_10_1016_S0305_0548_00_00083_6 |
PublicationCentury | 2000 |
PublicationDate | 2002-04-01 |
PublicationDateYYYYMMDD | 2002-04-01 |
PublicationDate_xml | – month: 04 year: 2002 text: 2002-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Computers & operations research |
PublicationYear | 2002 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Cormen, Leiserson, Rivest (BIB4) 1994 Zhou, Gen (BIB21) 1999; 114 Eppstein D. Shortest path along an MST. Computational Theory 1999. Dijkstra (BIB5) 1959; 1 Garey, Johnson (BIB8) 1979 Winston (BIB18) 1994 Hillier, Lieberman (BIB10) 1995 Prim (BIB15) 1957; 36 Khuller, Raghavachari, Young (BIB11) 1995; 14 Papadimitriou, Steiglitz (BIB14) 1982 Chen, Zhang (BIB2) 2000; 27 Cook, Cunningham, Pulleyblank, Schrijver (BIB3) 1998 Nemhauser, Wolsey (BIB13) 1988 Booth, Westbrook (BIB1) 1994; 11 Gross, Yellen (BIB9) 1999 Kruskal (BIB12) 1956; 7/1 Saltzman MJ. Counterexample to minimum spanning tree = shortest path tree? Usenet News Group Sci.op-research, 31 May 1995. Eppstein D. Email communication, June 3, 1999. Winston (BIB19) 1995 Rosen (BIB16) 1991 Wolsey (BIB20) 1998 Cook (10.1016/S0305-0548(00)00083-6_BIB3) 1998 Nemhauser (10.1016/S0305-0548(00)00083-6_BIB13) 1988 Papadimitriou (10.1016/S0305-0548(00)00083-6_BIB14) 1982 Winston (10.1016/S0305-0548(00)00083-6_BIB19) 1995 Cormen (10.1016/S0305-0548(00)00083-6_BIB4) 1994 Prim (10.1016/S0305-0548(00)00083-6_BIB15) 1957; 36 10.1016/S0305-0548(00)00083-6_BIB17 Garey (10.1016/S0305-0548(00)00083-6_BIB8) 1979 Hillier (10.1016/S0305-0548(00)00083-6_BIB10) 1995 Chen (10.1016/S0305-0548(00)00083-6_BIB2) 2000; 27 Gross (10.1016/S0305-0548(00)00083-6_BIB9) 1999 Zhou (10.1016/S0305-0548(00)00083-6_BIB21) 1999; 114 Booth (10.1016/S0305-0548(00)00083-6_BIB1) 1994; 11 Winston (10.1016/S0305-0548(00)00083-6_BIB18) 1994 10.1016/S0305-0548(00)00083-6_BIB6 Rosen (10.1016/S0305-0548(00)00083-6_BIB16) 1991 10.1016/S0305-0548(00)00083-6_BIB7 Dijkstra (10.1016/S0305-0548(00)00083-6_BIB5) 1959; 1 Wolsey (10.1016/S0305-0548(00)00083-6_BIB20) 1998 Kruskal (10.1016/S0305-0548(00)00083-6_BIB12) 1956; 7/1 Khuller (10.1016/S0305-0548(00)00083-6_BIB11) 1995; 14 |
References_xml | – volume: 14 start-page: 305 year: 1995 end-page: 321 ident: BIB11 article-title: Balancing minimum spanning trees and shortest-path trees publication-title: Algorithmica contributor: fullname: Young – year: 1982 ident: BIB14 publication-title: Combinatorial optimization: algorithms and complexity contributor: fullname: Steiglitz – volume: 11 start-page: 341 year: 1994 end-page: 352 ident: BIB1 article-title: A linear algorithm for analysis of minimum spanning and shortest-path trees of planar graphs publication-title: Algorithmica contributor: fullname: Westbrook – year: 1994 ident: BIB18 publication-title: Operations research: applications and algorithms contributor: fullname: Winston – year: 1995 ident: BIB10 publication-title: Introduction to operations research contributor: fullname: Lieberman – volume: 7/1 start-page: 48 year: 1956 end-page: 50 ident: BIB12 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proceedings of ACM contributor: fullname: Kruskal – year: 1998 ident: BIB20 publication-title: Integer programming contributor: fullname: Wolsey – year: 1991 ident: BIB16 publication-title: Discrete mathematics and its applications contributor: fullname: Rosen – year: 1998 ident: BIB3 publication-title: Combinatorial optimization contributor: fullname: Schrijver – volume: 1 start-page: 269 year: 1959 end-page: 271 ident: BIB5 article-title: A note on two problems in connection with graphs publication-title: Numerische Mathematik contributor: fullname: Dijkstra – volume: 114 start-page: 141 year: 1999 end-page: 152 ident: BIB21 article-title: Genetic algorithm approach on multi-criteria minimum spanning tree problem publication-title: European Journal of Operational Research contributor: fullname: Gen – volume: 36 start-page: 1389 year: 1957 end-page: 1401 ident: BIB15 article-title: Shortest connection networks and some generalizations publication-title: Bell System Technical Journal contributor: fullname: Prim – year: 1988 ident: BIB13 publication-title: Integer and combinatorial optimization contributor: fullname: Wolsey – volume: 27 start-page: 867 year: 2000 end-page: 875 ident: BIB2 article-title: A constrained minimum spanning tree problem publication-title: Computers & Operations Research contributor: fullname: Zhang – year: 1979 ident: BIB8 publication-title: Computers and intractability: a guide to the theory of NP-completeness contributor: fullname: Johnson – year: 1995 ident: BIB19 publication-title: Introduction to mathematical programming: applications and algorithms contributor: fullname: Winston – year: 1994 ident: BIB4 publication-title: Introduction to algorithms contributor: fullname: Rivest – year: 1999 ident: BIB9 publication-title: Graph theory and its applications contributor: fullname: Yellen – year: 1991 ident: 10.1016/S0305-0548(00)00083-6_BIB16 contributor: fullname: Rosen – volume: 27 start-page: 867 year: 2000 ident: 10.1016/S0305-0548(00)00083-6_BIB2 article-title: A constrained minimum spanning tree problem publication-title: Computers & Operations Research doi: 10.1016/S0305-0548(99)00061-1 contributor: fullname: Chen – year: 1994 ident: 10.1016/S0305-0548(00)00083-6_BIB4 contributor: fullname: Cormen – ident: 10.1016/S0305-0548(00)00083-6_BIB7 doi: 10.1016/S0925-7721(98)00032-7 – year: 1988 ident: 10.1016/S0305-0548(00)00083-6_BIB13 contributor: fullname: Nemhauser – year: 1994 ident: 10.1016/S0305-0548(00)00083-6_BIB18 contributor: fullname: Winston – volume: 36 start-page: 1389 year: 1957 ident: 10.1016/S0305-0548(00)00083-6_BIB15 article-title: Shortest connection networks and some generalizations publication-title: Bell System Technical Journal doi: 10.1002/j.1538-7305.1957.tb01515.x contributor: fullname: Prim – year: 1998 ident: 10.1016/S0305-0548(00)00083-6_BIB20 contributor: fullname: Wolsey – year: 1995 ident: 10.1016/S0305-0548(00)00083-6_BIB19 contributor: fullname: Winston – volume: 11 start-page: 341 year: 1994 ident: 10.1016/S0305-0548(00)00083-6_BIB1 article-title: A linear algorithm for analysis of minimum spanning and shortest-path trees of planar graphs publication-title: Algorithmica doi: 10.1007/BF01187017 contributor: fullname: Booth – volume: 14 start-page: 305 year: 1995 ident: 10.1016/S0305-0548(00)00083-6_BIB11 article-title: Balancing minimum spanning trees and shortest-path trees publication-title: Algorithmica doi: 10.1007/BF01294129 contributor: fullname: Khuller – year: 1998 ident: 10.1016/S0305-0548(00)00083-6_BIB3 contributor: fullname: Cook – volume: 1 start-page: 269 year: 1959 ident: 10.1016/S0305-0548(00)00083-6_BIB5 article-title: A note on two problems in connection with graphs publication-title: Numerische Mathematik doi: 10.1007/BF01386390 contributor: fullname: Dijkstra – ident: 10.1016/S0305-0548(00)00083-6_BIB6 – year: 1979 ident: 10.1016/S0305-0548(00)00083-6_BIB8 contributor: fullname: Garey – volume: 7/1 start-page: 48 year: 1956 ident: 10.1016/S0305-0548(00)00083-6_BIB12 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proceedings of ACM contributor: fullname: Kruskal – volume: 114 start-page: 141 year: 1999 ident: 10.1016/S0305-0548(00)00083-6_BIB21 article-title: Genetic algorithm approach on multi-criteria minimum spanning tree problem publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(98)00016-2 contributor: fullname: Zhou – ident: 10.1016/S0305-0548(00)00083-6_BIB17 – year: 1999 ident: 10.1016/S0305-0548(00)00083-6_BIB9 contributor: fullname: Gross – year: 1982 ident: 10.1016/S0305-0548(00)00083-6_BIB14 contributor: fullname: Papadimitriou – year: 1995 ident: 10.1016/S0305-0548(00)00083-6_BIB10 contributor: fullname: Hillier |
SSID | ssj0000721 |
Score | 1.8127191 |
Snippet | Let
G=(
V,
E) be a connected graph with specified vertex
v
0∈
V, length
l(
e)⩾0 for each
e∈
E, and positive parameters
τ and
γ. The cable-trench problem (CTP)... Both the shortest path and the minimum spanning tree problems are universally discussed in operations research and management science textbooks. Since the late... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 441 |
SubjectTerms | Graph theory Heuristics Management science Mathematical models Minimum spanning tree Networks NP-completeness Operations research Shortest path Studies |
Title | The cable trench problem: combining the shortest path and minimum spanning tree problems |
URI | https://dx.doi.org/10.1016/S0305-0548(00)00083-6 https://www.proquest.com/docview/195820364 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpC2N92CVbadd16GEPG8ZZfJPtvZU1oytjsCWMvBnZPqKmJCmR87B_v6Ob7XWMXWAvxpFlCXS-HH1HPhdCXgYsqeowEX4UqhJmZQq-yhHji5pxUQecR7pm5OU8_bTMLmbxbDRyNef6tv8qaWxDWavI2b-QdjcoNuA9yhyvKHW8_rHcKx0P1apAvmvPloxRpj_OV-qCEJpuymvlaCtblVvVxLepPCOr3cpDLbM23bYAbgA55LGuGITU0Nncwta61NnkQd0h81cubzaOIVeN9K4m_eHptmxspLtx8Pbm3cMvDdzIVhr4KSX0uX8ETbuCb9YbxMQVeR8nP5xfhAO3F32o5gJrei8mHcylfAoTk4RzAkY3Z2nkpyxZDpW3PS5php_HtSaOTT4tu6nHJj_8T_uFObqYd9Mhq1fFsXNNTf07Obr1rq_7qq7avMoitkcOQlRyqGMPzj_Mllc9D0h11F83dh8_9qaf8NV0-tpO9itmdIcjaOKzeEQeWIuFnhuoPSYjWI_JPRcwMSYPHRao3SfG5HCQ5fIJWSIkqYYkNZCkFlFvaQdIioCkDpBUAZIiIKkFJHWAVAOAe10-JYv3s8W7S98W9PCrKIpbn4c1CI6rxzPGWZnAFDiUaKEEwLKcVSH-rMKAI2WsIEcqicZvnENaB1XJyzg6IvvrzRqOCQ1A1DkXLE9iiEVaotHOeMKjKBEBF2F9QiZuLYtbk7al6P0ZcfELtfjFVOXGxcUv2AnJ3IoXlnsaTlkgVH736qmTUGEVgSxUDif9jf_Zvw98Su73f5jnZL_d7uCM7Ml698Ji7TuXrqz6 |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cable+trench+problem%3A+combining+the+shortest+path+and+minimum+spanning+tree+problems&rft.jtitle=Computers+%26+operations+research&rft.au=Vasko%2C+Francis+J.&rft.au=Barbieri%2C+Robert+S.&rft.au=Rieksts%2C+Brian+Q.&rft.au=Reitmeyer%2C+Kenneth+L.&rft.date=2002-04-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0548&rft.eissn=1873-765X&rft.volume=29&rft.issue=5&rft.spage=441&rft.epage=458&rft_id=info:doi/10.1016%2FS0305-0548%2800%2900083-6&rft.externalDocID=S0305054800000836 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |