The cable trench problem: combining the shortest path and minimum spanning tree problems

Let G=( V, E) be a connected graph with specified vertex v 0∈ V, length l( e)⩾0 for each e∈ E, and positive parameters τ and γ. The cable-trench problem (CTP) is to find a spanning tree T such that τl τ ( T)+ γl γ ( T) is minimized where l τ ( T) is the total length of the spanning tree T and l γ (...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 29; no. 5; pp. 441 - 458
Main Authors: Vasko, Francis J., Barbieri, Robert S., Rieksts, Brian Q., Reitmeyer, Kenneth L., Stott, Kenneth L.
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01-04-2002
Pergamon Press Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Let G=( V, E) be a connected graph with specified vertex v 0∈ V, length l( e)⩾0 for each e∈ E, and positive parameters τ and γ. The cable-trench problem (CTP) is to find a spanning tree T such that τl τ ( T)+ γl γ ( T) is minimized where l τ ( T) is the total length of the spanning tree T and l γ ( T) is the total path length in T from v 0 to all other vertices of V. Since all vertices must be connected to v 0 and only edges from E are allowed, the solution will not be a Steiner tree. Consider the ratio R= τ/ γ. For R large enough the solution will be a minimum spanning tree and for R small enough the solution will be a shortest path. In this paper, the CTP will be shown to be NP-complete. A mathematical formulation for the CTP will be provided for specific values of τ and γ. Also, a heuristic will be discussed that will solve the CTP for all values of R. Both the shortest path and the minimum spanning tree problems are universally discussed in operations research and management science textbooks. Since the late 1950s, efficient algorithms have been known for both of these problems. In this paper, the cable-trench problem is defined which combines the shortest path problem and the minimum spanning tree problem to create a problem that is shown to be NP-complete. In other words, two easy problems are combined to get a more realistic problem that is difficult to solve. Examples are used to illustrate an efficient and effective heuristic solution procedure for the cable-trench problem.
AbstractList Let G=( V, E) be a connected graph with specified vertex v 0∈ V, length l( e)⩾0 for each e∈ E, and positive parameters τ and γ. The cable-trench problem (CTP) is to find a spanning tree T such that τl τ ( T)+ γl γ ( T) is minimized where l τ ( T) is the total length of the spanning tree T and l γ ( T) is the total path length in T from v 0 to all other vertices of V. Since all vertices must be connected to v 0 and only edges from E are allowed, the solution will not be a Steiner tree. Consider the ratio R= τ/ γ. For R large enough the solution will be a minimum spanning tree and for R small enough the solution will be a shortest path. In this paper, the CTP will be shown to be NP-complete. A mathematical formulation for the CTP will be provided for specific values of τ and γ. Also, a heuristic will be discussed that will solve the CTP for all values of R. Both the shortest path and the minimum spanning tree problems are universally discussed in operations research and management science textbooks. Since the late 1950s, efficient algorithms have been known for both of these problems. In this paper, the cable-trench problem is defined which combines the shortest path problem and the minimum spanning tree problem to create a problem that is shown to be NP-complete. In other words, two easy problems are combined to get a more realistic problem that is difficult to solve. Examples are used to illustrate an efficient and effective heuristic solution procedure for the cable-trench problem.
Both the shortest path and the minimum spanning tree problems are universally discussed in operations research and management science textbooks. Since the late 1950s, efficient algorithms have been known for both of these problems. In this paper, the cable-trench problem is defined which combines the shortest path problem and the minimum spanning tree problem to create a problem that is shown to be NP-complete. In other words, two easy problems are combined to get a more realistic problem that is difficult to solve. Examples are used to illustrate an efficient and effective heuristic solution procedure for the cable-trench problem.
Author Vasko, Francis J.
Barbieri, Robert S.
Reitmeyer, Kenneth L.
Rieksts, Brian Q.
Stott, Kenneth L.
Author_xml – sequence: 1
  givenname: Francis J.
  surname: Vasko
  fullname: Vasko, Francis J.
  email: vako@kutztown.edd
  organization: Mathematics & CIS Department, Kutztown University, Kutztown, PA 19530, USA
– sequence: 2
  givenname: Robert S.
  surname: Barbieri
  fullname: Barbieri, Robert S.
  organization: Mathematics & CIS Department, Kutztown University, Kutztown, PA 19530, USA
– sequence: 3
  givenname: Brian Q.
  surname: Rieksts
  fullname: Rieksts, Brian Q.
  organization: Mathematics & CIS Department, Kutztown University, Kutztown, PA 19530, USA
– sequence: 4
  givenname: Kenneth L.
  surname: Reitmeyer
  fullname: Reitmeyer, Kenneth L.
  organization: Homer Research Laboratories, Bethlehem Steel Corporation, Bethlehem, PA 18016, USA
– sequence: 5
  givenname: Kenneth L.
  surname: Stott
  fullname: Stott, Kenneth L.
  organization: Homer Research Laboratories, Bethlehem Steel Corporation, Bethlehem, PA 18016, USA
BookMark eNqFkM9LwzAUx4NMcJv-CULwpIfqS9ukrReR4S8YeLCH3UKavtmONa1JJvjfm63qVXIIj3y-7718ZmRieoOEnDO4ZsDEzRskwCPgaX4JcAUAeRKJIzJleZZEmeCrCZn-ISdk5twmQJDFbEpWZYNUq2qL1Fs0uqGD7UPV3VLdd1VrWvNOfWBc01uPztNB-YYqU9MuPHa7jrpBmRGziL9xd0qO12rr8OznnpPy8aFcPEfL16eXxf0y0kmS-kjFNa4VB65yoUTFEVBhVRSMocgLoeNQ6pgpwVKNRc7CidMCs5rpSlVpMicXY9sw92MX9pObfmdNmChZwfMYErGH-Ahp2ztncS0H23bKfkkGcq9QHhTKvR8JIA8KpQi5uzGH4QOfLVrpdBskYd1a1F7WfftPh2_WnHtK
CODEN CMORAP
CitedBy_id crossref_primary_10_1007_s10479_021_04133_w
crossref_primary_10_1016_j_dam_2023_07_010
crossref_primary_10_1016_j_cor_2016_12_015
crossref_primary_10_1111_itor_12312
crossref_primary_10_3390_app9183722
crossref_primary_10_1016_j_cor_2018_10_004
crossref_primary_10_1016_j_procs_2021_11_009
crossref_primary_10_1007_s10100_020_00674_w
crossref_primary_10_1016_j_cor_2011_05_015
crossref_primary_10_1111_itor_12857
crossref_primary_10_1002_net_21614
crossref_primary_10_3390_en12203965
crossref_primary_10_1016_j_apenergy_2016_08_094
crossref_primary_10_1007_s10479_006_0058_z
Cites_doi 10.1016/S0305-0548(99)00061-1
10.1016/S0925-7721(98)00032-7
10.1002/j.1538-7305.1957.tb01515.x
10.1007/BF01187017
10.1007/BF01294129
10.1007/BF01386390
10.1016/S0377-2217(98)00016-2
ContentType Journal Article
Copyright 2001 Elsevier Science Ltd
Copyright Pergamon Press Inc. Apr 2002
Copyright_xml – notice: 2001 Elsevier Science Ltd
– notice: Copyright Pergamon Press Inc. Apr 2002
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0305-0548(00)00083-6
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1873-765X
0305-0548
EndPage 458
ExternalDocumentID 109546720
10_1016_S0305_0548_00_00083_6
S0305054800000836
Genre Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AAXKI
AAYXX
ABDPE
AFJKZ
AKRWK
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-a2defa505a86a6b5e0eaeb9911e6896c2eaec21a614ce981818249e7d1cbab43
ISSN 0305-0548
IngestDate Thu Oct 10 15:07:13 EDT 2024
Fri Nov 22 00:26:48 EST 2024
Fri Feb 23 02:33:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Shortest path
Networks
Graph theory
Heuristics
Minimum spanning tree
NP-completeness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-a2defa505a86a6b5e0eaeb9911e6896c2eaec21a614ce981818249e7d1cbab43
PQID 195820364
PQPubID 45870
PageCount 18
ParticipantIDs proquest_journals_195820364
crossref_primary_10_1016_S0305_0548_00_00083_6
elsevier_sciencedirect_doi_10_1016_S0305_0548_00_00083_6
PublicationCentury 2000
PublicationDate 2002-04-01
PublicationDateYYYYMMDD 2002-04-01
PublicationDate_xml – month: 04
  year: 2002
  text: 2002-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2002
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Cormen, Leiserson, Rivest (BIB4) 1994
Zhou, Gen (BIB21) 1999; 114
Eppstein D. Shortest path along an MST. Computational Theory 1999.
Dijkstra (BIB5) 1959; 1
Garey, Johnson (BIB8) 1979
Winston (BIB18) 1994
Hillier, Lieberman (BIB10) 1995
Prim (BIB15) 1957; 36
Khuller, Raghavachari, Young (BIB11) 1995; 14
Papadimitriou, Steiglitz (BIB14) 1982
Chen, Zhang (BIB2) 2000; 27
Cook, Cunningham, Pulleyblank, Schrijver (BIB3) 1998
Nemhauser, Wolsey (BIB13) 1988
Booth, Westbrook (BIB1) 1994; 11
Gross, Yellen (BIB9) 1999
Kruskal (BIB12) 1956; 7/1
Saltzman MJ. Counterexample to minimum spanning tree = shortest path tree? Usenet News Group Sci.op-research, 31 May 1995.
Eppstein D. Email communication, June 3, 1999.
Winston (BIB19) 1995
Rosen (BIB16) 1991
Wolsey (BIB20) 1998
Cook (10.1016/S0305-0548(00)00083-6_BIB3) 1998
Nemhauser (10.1016/S0305-0548(00)00083-6_BIB13) 1988
Papadimitriou (10.1016/S0305-0548(00)00083-6_BIB14) 1982
Winston (10.1016/S0305-0548(00)00083-6_BIB19) 1995
Cormen (10.1016/S0305-0548(00)00083-6_BIB4) 1994
Prim (10.1016/S0305-0548(00)00083-6_BIB15) 1957; 36
10.1016/S0305-0548(00)00083-6_BIB17
Garey (10.1016/S0305-0548(00)00083-6_BIB8) 1979
Hillier (10.1016/S0305-0548(00)00083-6_BIB10) 1995
Chen (10.1016/S0305-0548(00)00083-6_BIB2) 2000; 27
Gross (10.1016/S0305-0548(00)00083-6_BIB9) 1999
Zhou (10.1016/S0305-0548(00)00083-6_BIB21) 1999; 114
Booth (10.1016/S0305-0548(00)00083-6_BIB1) 1994; 11
Winston (10.1016/S0305-0548(00)00083-6_BIB18) 1994
10.1016/S0305-0548(00)00083-6_BIB6
Rosen (10.1016/S0305-0548(00)00083-6_BIB16) 1991
10.1016/S0305-0548(00)00083-6_BIB7
Dijkstra (10.1016/S0305-0548(00)00083-6_BIB5) 1959; 1
Wolsey (10.1016/S0305-0548(00)00083-6_BIB20) 1998
Kruskal (10.1016/S0305-0548(00)00083-6_BIB12) 1956; 7/1
Khuller (10.1016/S0305-0548(00)00083-6_BIB11) 1995; 14
References_xml – volume: 14
  start-page: 305
  year: 1995
  end-page: 321
  ident: BIB11
  article-title: Balancing minimum spanning trees and shortest-path trees
  publication-title: Algorithmica
  contributor:
    fullname: Young
– year: 1982
  ident: BIB14
  publication-title: Combinatorial optimization: algorithms and complexity
  contributor:
    fullname: Steiglitz
– volume: 11
  start-page: 341
  year: 1994
  end-page: 352
  ident: BIB1
  article-title: A linear algorithm for analysis of minimum spanning and shortest-path trees of planar graphs
  publication-title: Algorithmica
  contributor:
    fullname: Westbrook
– year: 1994
  ident: BIB18
  publication-title: Operations research: applications and algorithms
  contributor:
    fullname: Winston
– year: 1995
  ident: BIB10
  publication-title: Introduction to operations research
  contributor:
    fullname: Lieberman
– volume: 7/1
  start-page: 48
  year: 1956
  end-page: 50
  ident: BIB12
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proceedings of ACM
  contributor:
    fullname: Kruskal
– year: 1998
  ident: BIB20
  publication-title: Integer programming
  contributor:
    fullname: Wolsey
– year: 1991
  ident: BIB16
  publication-title: Discrete mathematics and its applications
  contributor:
    fullname: Rosen
– year: 1998
  ident: BIB3
  publication-title: Combinatorial optimization
  contributor:
    fullname: Schrijver
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: BIB5
  article-title: A note on two problems in connection with graphs
  publication-title: Numerische Mathematik
  contributor:
    fullname: Dijkstra
– volume: 114
  start-page: 141
  year: 1999
  end-page: 152
  ident: BIB21
  article-title: Genetic algorithm approach on multi-criteria minimum spanning tree problem
  publication-title: European Journal of Operational Research
  contributor:
    fullname: Gen
– volume: 36
  start-page: 1389
  year: 1957
  end-page: 1401
  ident: BIB15
  article-title: Shortest connection networks and some generalizations
  publication-title: Bell System Technical Journal
  contributor:
    fullname: Prim
– year: 1988
  ident: BIB13
  publication-title: Integer and combinatorial optimization
  contributor:
    fullname: Wolsey
– volume: 27
  start-page: 867
  year: 2000
  end-page: 875
  ident: BIB2
  article-title: A constrained minimum spanning tree problem
  publication-title: Computers & Operations Research
  contributor:
    fullname: Zhang
– year: 1979
  ident: BIB8
  publication-title: Computers and intractability: a guide to the theory of NP-completeness
  contributor:
    fullname: Johnson
– year: 1995
  ident: BIB19
  publication-title: Introduction to mathematical programming: applications and algorithms
  contributor:
    fullname: Winston
– year: 1994
  ident: BIB4
  publication-title: Introduction to algorithms
  contributor:
    fullname: Rivest
– year: 1999
  ident: BIB9
  publication-title: Graph theory and its applications
  contributor:
    fullname: Yellen
– year: 1991
  ident: 10.1016/S0305-0548(00)00083-6_BIB16
  contributor:
    fullname: Rosen
– volume: 27
  start-page: 867
  year: 2000
  ident: 10.1016/S0305-0548(00)00083-6_BIB2
  article-title: A constrained minimum spanning tree problem
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(99)00061-1
  contributor:
    fullname: Chen
– year: 1994
  ident: 10.1016/S0305-0548(00)00083-6_BIB4
  contributor:
    fullname: Cormen
– ident: 10.1016/S0305-0548(00)00083-6_BIB7
  doi: 10.1016/S0925-7721(98)00032-7
– year: 1988
  ident: 10.1016/S0305-0548(00)00083-6_BIB13
  contributor:
    fullname: Nemhauser
– year: 1994
  ident: 10.1016/S0305-0548(00)00083-6_BIB18
  contributor:
    fullname: Winston
– volume: 36
  start-page: 1389
  year: 1957
  ident: 10.1016/S0305-0548(00)00083-6_BIB15
  article-title: Shortest connection networks and some generalizations
  publication-title: Bell System Technical Journal
  doi: 10.1002/j.1538-7305.1957.tb01515.x
  contributor:
    fullname: Prim
– year: 1998
  ident: 10.1016/S0305-0548(00)00083-6_BIB20
  contributor:
    fullname: Wolsey
– year: 1995
  ident: 10.1016/S0305-0548(00)00083-6_BIB19
  contributor:
    fullname: Winston
– volume: 11
  start-page: 341
  year: 1994
  ident: 10.1016/S0305-0548(00)00083-6_BIB1
  article-title: A linear algorithm for analysis of minimum spanning and shortest-path trees of planar graphs
  publication-title: Algorithmica
  doi: 10.1007/BF01187017
  contributor:
    fullname: Booth
– volume: 14
  start-page: 305
  year: 1995
  ident: 10.1016/S0305-0548(00)00083-6_BIB11
  article-title: Balancing minimum spanning trees and shortest-path trees
  publication-title: Algorithmica
  doi: 10.1007/BF01294129
  contributor:
    fullname: Khuller
– year: 1998
  ident: 10.1016/S0305-0548(00)00083-6_BIB3
  contributor:
    fullname: Cook
– volume: 1
  start-page: 269
  year: 1959
  ident: 10.1016/S0305-0548(00)00083-6_BIB5
  article-title: A note on two problems in connection with graphs
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01386390
  contributor:
    fullname: Dijkstra
– ident: 10.1016/S0305-0548(00)00083-6_BIB6
– year: 1979
  ident: 10.1016/S0305-0548(00)00083-6_BIB8
  contributor:
    fullname: Garey
– volume: 7/1
  start-page: 48
  year: 1956
  ident: 10.1016/S0305-0548(00)00083-6_BIB12
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proceedings of ACM
  contributor:
    fullname: Kruskal
– volume: 114
  start-page: 141
  year: 1999
  ident: 10.1016/S0305-0548(00)00083-6_BIB21
  article-title: Genetic algorithm approach on multi-criteria minimum spanning tree problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(98)00016-2
  contributor:
    fullname: Zhou
– ident: 10.1016/S0305-0548(00)00083-6_BIB17
– year: 1999
  ident: 10.1016/S0305-0548(00)00083-6_BIB9
  contributor:
    fullname: Gross
– year: 1982
  ident: 10.1016/S0305-0548(00)00083-6_BIB14
  contributor:
    fullname: Papadimitriou
– year: 1995
  ident: 10.1016/S0305-0548(00)00083-6_BIB10
  contributor:
    fullname: Hillier
SSID ssj0000721
Score 1.8127191
Snippet Let G=( V, E) be a connected graph with specified vertex v 0∈ V, length l( e)⩾0 for each e∈ E, and positive parameters τ and γ. The cable-trench problem (CTP)...
Both the shortest path and the minimum spanning tree problems are universally discussed in operations research and management science textbooks. Since the late...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 441
SubjectTerms Graph theory
Heuristics
Management science
Mathematical models
Minimum spanning tree
Networks
NP-completeness
Operations research
Shortest path
Studies
Title The cable trench problem: combining the shortest path and minimum spanning tree problems
URI https://dx.doi.org/10.1016/S0305-0548(00)00083-6
https://www.proquest.com/docview/195820364
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpC2N92CVbadd16GEPG8ZZfJPtvZU1oytjsCWMvBnZPqKmJCmR87B_v6Ob7XWMXWAvxpFlCXS-HH1HPhdCXgYsqeowEX4UqhJmZQq-yhHji5pxUQecR7pm5OU8_bTMLmbxbDRyNef6tv8qaWxDWavI2b-QdjcoNuA9yhyvKHW8_rHcKx0P1apAvmvPloxRpj_OV-qCEJpuymvlaCtblVvVxLepPCOr3cpDLbM23bYAbgA55LGuGITU0Nncwta61NnkQd0h81cubzaOIVeN9K4m_eHptmxspLtx8Pbm3cMvDdzIVhr4KSX0uX8ETbuCb9YbxMQVeR8nP5xfhAO3F32o5gJrei8mHcylfAoTk4RzAkY3Z2nkpyxZDpW3PS5php_HtSaOTT4tu6nHJj_8T_uFObqYd9Mhq1fFsXNNTf07Obr1rq_7qq7avMoitkcOQlRyqGMPzj_Mllc9D0h11F83dh8_9qaf8NV0-tpO9itmdIcjaOKzeEQeWIuFnhuoPSYjWI_JPRcwMSYPHRao3SfG5HCQ5fIJWSIkqYYkNZCkFlFvaQdIioCkDpBUAZIiIKkFJHWAVAOAe10-JYv3s8W7S98W9PCrKIpbn4c1CI6rxzPGWZnAFDiUaKEEwLKcVSH-rMKAI2WsIEcqicZvnENaB1XJyzg6IvvrzRqOCQ1A1DkXLE9iiEVaotHOeMKjKBEBF2F9QiZuLYtbk7al6P0ZcfELtfjFVOXGxcUv2AnJ3IoXlnsaTlkgVH736qmTUGEVgSxUDif9jf_Zvw98Su73f5jnZL_d7uCM7Ml698Ji7TuXrqz6
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cable+trench+problem%3A+combining+the+shortest+path+and+minimum+spanning+tree+problems&rft.jtitle=Computers+%26+operations+research&rft.au=Vasko%2C+Francis+J.&rft.au=Barbieri%2C+Robert+S.&rft.au=Rieksts%2C+Brian+Q.&rft.au=Reitmeyer%2C+Kenneth+L.&rft.date=2002-04-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0548&rft.eissn=1873-765X&rft.volume=29&rft.issue=5&rft.spage=441&rft.epage=458&rft_id=info:doi/10.1016%2FS0305-0548%2800%2900083-6&rft.externalDocID=S0305054800000836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon