Efficient and stable hybrid perovskite prepared at 60% relative humidity with a hydrophobic additive in anti-solvent
The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress is made with the preparation of hybrid perovskite (CH3NH3PbI3) in a high relative humidity (RH ~ 60%) ambient condition by using a mixture o...
Saved in:
Published in: | Solar energy materials and solar cells Vol. 215; p. 110625 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
15-09-2020
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress is made with the preparation of hybrid perovskite (CH3NH3PbI3) in a high relative humidity (RH ~ 60%) ambient condition by using a mixture of ethyl acetate (EA) and 4-Tertbutyl-Pyridine (tBP) as anti-solvent. A small amount of tBP helps to form a more homogeneous perovskite surface with a higher hydrophobicity. The mixture of EA and tBP is found to be an efficient anti-solvent to extract the primary solvent and moisture in the precursor solution and form mirror-like perovskite thin films. More than 200 perovskite solar cells, with active area of 0.1 cm2, were prepared with the perovskite thin films prepared under ambient conditions. It is showed that a small amount of tBP in EA improves consistently all the photovoltaic parameters of our PSCS, from an average efficiency of 8.64% over 113 cells with only EA as anti-solvent to 13.64% over 131 cells with EA + tBP as the anti-solvent. More than 55% of the last ones show efficiencies higher than 16%. The champion cell, recording an efficiency of 17.41% in the beginning and reaching the maximum efficiency of 18.04%, remains more than 80% of the initial efficiency after more than 180 days of storage in ambient conditions without encapsulation. The proposed method opens the possibility to fabricate highly efficient and stable perovskite solar cells under ambient condition without glove box.
•Homogeneous perovskite thin films can be prepared in high relative humidity ambient.•4-Tertbutyl-Pyridine in ethyl acetate as anti-solvent increases the hydrophobicity of perovskite.•High efficient and stable perovskite solar cells can be produced in ambient conditions.•About 80% of retain in cell's efficiency is achieved after 6 months of storage without encapsulation. |
---|---|
AbstractList | The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress is made with the preparation of hybrid perovskite (CH3NH3PbI3) in a high relative humidity (RH ~ 60%) ambient condition by using a mixture of ethyl acetate (EA) and 4-Tertbutyl-Pyridine (tBP) as anti-solvent. A small amount of tBP helps to form a more homogeneous perovskite surface with a higher hydrophobicity. The mixture of EA and tBP is found to be an efficient anti-solvent to extract the primary solvent and moisture in the precursor solution and form mirror-like perovskite thin films. More than 200 perovskite solar cells, with active area of 0.1 cm2, were prepared with the perovskite thin films prepared under ambient conditions. It is showed that a small amount of tBP in EA improves consistently all the photovoltaic parameters of our PSCS, from an average efficiency of 8.64% over 113 cells with only EA as anti-solvent to 13.64% over 131 cells with EA + tBP as the anti-solvent. More than 55% of the last ones show efficiencies higher than 16%. The champion cell, recording an efficiency of 17.41% in the beginning and reaching the maximum efficiency of 18.04%, remains more than 80% of the initial efficiency after more than 180 days of storage in ambient conditions without encapsulation. The proposed method opens the possibility to fabricate highly efficient and stable perovskite solar cells under ambient condition without glove box.
•Homogeneous perovskite thin films can be prepared in high relative humidity ambient.•4-Tertbutyl-Pyridine in ethyl acetate as anti-solvent increases the hydrophobicity of perovskite.•High efficient and stable perovskite solar cells can be produced in ambient conditions.•About 80% of retain in cell's efficiency is achieved after 6 months of storage without encapsulation. The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress is made with the preparation of hybrid perovskite (CH3NH3PbI3) in a high relative humidity (RH ~ 60%) ambient condition by using a mixture of ethyl acetate (EA) and 4-Tertbutyl-Pyridine (tBP) as anti-solvent. A small amount of tBP helps to form a more homogeneous perovskite surface with a higher hydrophobicity. The mixture of EA and tBP is found to be an efficient anti-solvent to extract the primary solvent and moisture in the precursor solution and form mirror-like perovskite thin films. More than 200 perovskite solar cells, with active area of 0.1 cm2, were prepared with the perovskite thin films prepared under ambient conditions. It is showed that a small amount of tBP in EA improves consistently all the photovoltaic parameters of our PSCS, from an average efficiency of 8.64% over 113 cells with only EA as anti-solvent to 13.64% over 131 cells with EA + tBP as the anti-solvent. More than 55% of the last ones show efficiencies higher than 16%. The champion cell, recording an efficiency of 17.41% in the beginning and reaching the maximum efficiency of 18.04%, remains more than 80% of the initial efficiency after more than 180 days of storage in ambient conditions without encapsulation. The proposed method opens the possibility to fabricate highly efficient and stable perovskite solar cells under ambient condition without glove box. |
ArticleNumber | 110625 |
Author | Abrego-Martínez, Paola Gabriela Hu, Hailin Arias-Ramos, Carlos Fabián Kumar, Yogesh |
Author_xml | – sequence: 1 givenname: Carlos Fabián surname: Arias-Ramos fullname: Arias-Ramos, Carlos Fabián email: cafaar@ier.unam.mx – sequence: 2 givenname: Yogesh surname: Kumar fullname: Kumar, Yogesh – sequence: 3 givenname: Paola Gabriela surname: Abrego-Martínez fullname: Abrego-Martínez, Paola Gabriela – sequence: 4 givenname: Hailin surname: Hu fullname: Hu, Hailin email: hailinzhaohu@gmail.com |
BookMark | eNp9kEtLxDAUhYMoOKP-AxcBcdkxrzbpRhAZHyC40XVIm1sm40xTk0xl_r0pde3qQu455-Z8S3Ta-x4QuqZkRQmt7rar6Hd7k1aMsPxEScXKE7SgStYF57U6RQtSM1kQJtQ5Wsa4JYSwiosFSuuuc62DPmHTWxyTaXaAN8cmOIsHCH6MXy4BHgIMJoDFJuGK3OIAO5PcmKWHvbMuHfGPSxtsstUGP2x841psbN5MItfn9OSK_M0xn7pEZ53ZRbj6mxfo82n98fhSvL0_vz4-vBUt5yIVtRK5SFeXnWi4VcRCWzFQqqqorBRwophSuT-1rBS27FQjmo7KuqFGSgOEX6CbOXcI_vsAMemtP4Q-n9RMCFlKLvmkErOqDT7GAJ0egtubcNSU6Imv3uqZr5746plvtt3PNsgNRgdBx4ljC9YFaJO23v0f8Atazoe7 |
CitedBy_id | crossref_primary_10_1007_s40242_024_4049_x crossref_primary_10_1007_s40243_021_00206_9 crossref_primary_10_1016_j_cej_2023_142328 crossref_primary_10_1016_j_materresbull_2023_112642 crossref_primary_10_1016_j_optmat_2024_115082 crossref_primary_10_3390_en14102918 crossref_primary_10_1039_D3TC03529H crossref_primary_10_1088_1361_6463_ac2d63 crossref_primary_10_1149_2162_8777_ad0d02 crossref_primary_10_1364_OE_489290 crossref_primary_10_1016_j_jallcom_2023_172299 crossref_primary_10_1007_s10854_023_11670_6 crossref_primary_10_1007_s10854_022_07721_z crossref_primary_10_1016_j_solener_2021_03_055 crossref_primary_10_1039_D2TC02632E crossref_primary_10_1088_1361_6641_abd266 crossref_primary_10_1002_er_8615 crossref_primary_10_1016_j_electacta_2021_139530 crossref_primary_10_1002_adom_202303194 crossref_primary_10_1002_er_7843 crossref_primary_10_1007_s12274_021_3673_8 crossref_primary_10_1016_j_apsusc_2022_153207 |
Cites_doi | 10.1039/C7EE03397D 10.1016/j.rser.2018.04.069 10.1016/j.jpowsour.2017.08.074 10.1016/j.jallcom.2017.01.035 10.1007/s10854-019-02100-7 10.1002/aenm.201702019 10.1039/C5TA05988G 10.1039/C4TA04385E 10.1063/1.4891275 10.1016/j.solener.2017.03.077 10.1038/544155a 10.3390/ma7064789 10.1038/s41598-017-12436-x 10.1021/acsami.8b02554 10.1021/jz502547f 10.1016/j.spmi.2017.12.015 10.3390/ma12152494 10.1016/j.rser.2018.01.005 10.1016/j.rser.2017.04.003 10.1039/C8CS00656C 10.1186/s11671-017-2187-5 10.1021/acs.chemmater.8b00136 10.1002/aenm.201601079 10.1021/jacs.6b06320 10.1038/ncomms9397 10.1021/acsami.7b16912 10.1002/adfm.201503559 10.1002/cssc.201600915 10.3390/en9110861 10.1016/j.solmat.2015.12.025 10.1039/C6DT00900J 10.1016/j.rser.2018.09.016 10.1016/j.apsusc.2019.04.069 10.1021/acs.jpclett.5b01309 10.1002/pip.3171 10.1002/smll.201402767 10.1002/aenm.201700576 10.1063/1.5029278 10.3390/ma11061008 10.1021/acs.jpcc.7b00847 10.1038/ncomms15684 10.1016/j.mtener.2018.03.006 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Sep 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Sep 15, 2020 |
DBID | AAYXX CITATION 7SP 7ST 7TB 7U5 8FD C1K FR3 L7M SOI |
DOI | 10.1016/j.solmat.2020.110625 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3398 |
ExternalDocumentID | 10_1016_j_solmat_2020_110625 S0927024820302282 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 4.4 457 4G. 5VS 6OB 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 XPP ZMT ~02 ~G- 1~5 7-5 AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SCB SET SEW SMS WUQ 7SP 7ST 7TB 7U5 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c334t-984625f95f4b3d80dec62e88661768e3082880161d254d5f8b4bf179b1a77ae03 |
ISSN | 0927-0248 |
IngestDate | Thu Oct 10 20:46:17 EDT 2024 Thu Sep 26 17:36:39 EDT 2024 Fri Feb 23 02:46:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrophobic additive Ambient fabrication Perovskite solar cells Anti-solvent |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c334t-984625f95f4b3d80dec62e88661768e3082880161d254d5f8b4bf179b1a77ae03 |
PQID | 2447573730 |
PQPubID | 2045398 |
ParticipantIDs | proquest_journals_2447573730 crossref_primary_10_1016_j_solmat_2020_110625 elsevier_sciencedirect_doi_10_1016_j_solmat_2020_110625 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-15 |
PublicationDateYYYYMMDD | 2020-09-15 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Saliba, Correa-Baena, Wolff, Stolterfoht, Phung, Albrecht, Neher, Abate (bib22) 2018; 30 Ren, Liu, Duan, Xu, Li, Huang, Hu, Zhu, Dai (bib41) 2017; 705 Glaser, Müller, Sendner, Krekeler, Semonin, Hull, Yaffe, Owen, Kowalsky, Pucci, Lovrinčić (bib42) 2015; 6 Grancini, Roldán-Carmona, Zimmermann, Mosconi, Lee, Martineau, Narbey, Oswald, De Angelis, Graetzel, Nazeeruddin (bib14) 2017; 8 Wu, Wu, Tu, He, Lan, Huang, Lin (bib40) 2017; 365 Wang, Wright, Elumalai, Uddin (bib17) 2016; 147 Wei, Audebert, Galmiche, Lauret, Deleporte (bib1) 2014; 7 Tonui, Oseni, Sharma, Yan, Tessema Mola (bib2) 2018; 91 Yang, Kamarudin, Zhang, Kapil, Ma, Hayase (bib25) 2018; 11 Fu, Weber, White (bib39) 2018; 124 Jung, Ji, Kim, Il Seok (bib23) 2019; 48 Gao, Yang, Wang, Sui, Sun, Wei, Cao, Liu (bib24) 2018; 113 Jacobsson, Correa-Baena, Halvani Anaraki, Philippe, Stranks, Bouduban, Tress, Schenk, Teuscher, Moser, Rensmo, Hagfeldt (bib38) 2016; 138 Tang, Bessho, Awai, Kinoshita, Maitani, Jono, Murakami, Wang, Kubo, Uchida, Segawa (bib45) 2017; 7 Bu, Wu, Liu, Yang, Zhou, Yu, Qin, Shi, Wang, Li, Ku, Peng, Huang, Meng, Cheng, Zhong (bib13) 2017; 7 Etgar (bib34) 2017; 11 Shi, Wang, Zhang, Li, Lu, Ma, Hao (bib37) 2015; 3 Moreno-Romero, Corpus-Mendoza, Millán-Franco, Rodríguez-Castañeda, Torres-Herrera, Liu, Hu (bib44) 2019; 30 Asghar, Zhang, Wang, Lund (bib18) 2017; 77 Kim, Seo, Park (bib16) 2016; 9 Sani, Shafie, Lim, Musa (bib20) 2018; 11 Jiang, Yang, Zhou, To, Nanayakkara, Luther, Zhou, Berry, Van De Lagemaat, Padture, Zhu, Al-Jassim (bib3) 2015; 6 Chang, Zou, Cheng, Ling, Yao, Chen (bib27) 2019; 12 Jung, Park (bib8) 2015; 11 Boix, Agarwala, Koh, Mathews, Mhaisalkar (bib12) 2015; 6 Im, Kim, Park (bib29) 2014; 2 Dong, Ha, Yang, Qiu, Fan, Zhang, Bai, Gao, Fu (bib33) 2019; 484 NREL (bib11) 2020 Yang, Kapil, Zhang, Hu, Kamarudin, Ma, Hayase (bib30) 2018; 10 Elseman, Sajid, Wei, Shalan, Rashad, Li (bib4) 2018 Green, Dunlop, Levi, Hohl-Ebinger, Yoshita, Ho-Baillie (bib10) 2019; 27 Zhu, Bao, Wang, Li, Zhou, Yang, Lv, Wang, Yu, Zou (bib28) 2016; 45 Wali, Elumalai, Iqbal, Uddin, Jose (bib19) 2018; 84 Jamal, Bashar, Hasan, Almutairi, Alharbi, Alharthi, Karim, Misran, Amin, Bin Sopian, Akhtaruzzaman (bib6) 2018; 98 Toshniwal, Kheraj (bib5) 2017; 149 Tang, He, Peng (bib15) 2017; 12 Habisreutinger, Noel, Snaith, Nicholas (bib32) 2017; 7 Shao, Liu, Portale, Fang, Blake, ten Brink, Koster, Loi (bib21) 2018; 8 Zhang, Wu, Chen, Zhu, Xiong, Yang, Chen, Chen, Han, Chen (bib26) 2018; 8 Liu, Ding, Zhou, Gao, Cheng, Zhao, Xu (bib36) 2017; 121 Wu, Shi, Ding, Ren, Hayat, Alsaedi, Ding, Xu, Dai (bib31) 2018; 10 Leyden, Ono, Raga, Kato, Wang, Qi (bib35) 2014; 2 Barbara (bib43) 2004 Gong, Li, Shi, Ma, Wang, Liao (bib46) 2015; 25 Yang, You (bib9) 2017; 544 Elumalai, Mahmud, Wang, Uddin (bib7) 2016; 9 Tang (10.1016/j.solmat.2020.110625_bib15) 2017; 12 Zhang (10.1016/j.solmat.2020.110625_bib26) 2018; 8 Yang (10.1016/j.solmat.2020.110625_bib9) 2017; 544 Wali (10.1016/j.solmat.2020.110625_bib19) 2018; 84 Fu (10.1016/j.solmat.2020.110625_bib39) 2018; 124 Etgar (10.1016/j.solmat.2020.110625_bib34) 2017; 11 Elseman (10.1016/j.solmat.2020.110625_bib4) 2018 Yang (10.1016/j.solmat.2020.110625_bib30) 2018; 10 Liu (10.1016/j.solmat.2020.110625_bib36) 2017; 121 Green (10.1016/j.solmat.2020.110625_bib10) 2019; 27 Toshniwal (10.1016/j.solmat.2020.110625_bib5) 2017; 149 Jamal (10.1016/j.solmat.2020.110625_bib6) 2018; 98 Shao (10.1016/j.solmat.2020.110625_bib21) 2018; 8 Boix (10.1016/j.solmat.2020.110625_bib12) 2015; 6 Kim (10.1016/j.solmat.2020.110625_bib16) 2016; 9 Chang (10.1016/j.solmat.2020.110625_bib27) 2019; 12 Ren (10.1016/j.solmat.2020.110625_bib41) 2017; 705 Sani (10.1016/j.solmat.2020.110625_bib20) 2018; 11 Gong (10.1016/j.solmat.2020.110625_bib46) 2015; 25 Shi (10.1016/j.solmat.2020.110625_bib37) 2015; 3 Moreno-Romero (10.1016/j.solmat.2020.110625_bib44) 2019; 30 Yang (10.1016/j.solmat.2020.110625_bib25) 2018; 11 Jung (10.1016/j.solmat.2020.110625_bib23) 2019; 48 NREL (10.1016/j.solmat.2020.110625_bib11) 2020 Im (10.1016/j.solmat.2020.110625_bib29) 2014; 2 Jiang (10.1016/j.solmat.2020.110625_bib3) 2015; 6 Asghar (10.1016/j.solmat.2020.110625_bib18) 2017; 77 Elumalai (10.1016/j.solmat.2020.110625_bib7) 2016; 9 Wu (10.1016/j.solmat.2020.110625_bib31) 2018; 10 Jacobsson (10.1016/j.solmat.2020.110625_bib38) 2016; 138 Glaser (10.1016/j.solmat.2020.110625_bib42) 2015; 6 Wang (10.1016/j.solmat.2020.110625_bib17) 2016; 147 Habisreutinger (10.1016/j.solmat.2020.110625_bib32) 2017; 7 Grancini (10.1016/j.solmat.2020.110625_bib14) 2017; 8 Tang (10.1016/j.solmat.2020.110625_bib45) 2017; 7 Saliba (10.1016/j.solmat.2020.110625_bib22) 2018; 30 Zhu (10.1016/j.solmat.2020.110625_bib28) 2016; 45 Wei (10.1016/j.solmat.2020.110625_bib1) 2014; 7 Gao (10.1016/j.solmat.2020.110625_bib24) 2018; 113 Leyden (10.1016/j.solmat.2020.110625_bib35) 2014; 2 Jung (10.1016/j.solmat.2020.110625_bib8) 2015; 11 Dong (10.1016/j.solmat.2020.110625_bib33) 2019; 484 Bu (10.1016/j.solmat.2020.110625_bib13) 2017; 7 Wu (10.1016/j.solmat.2020.110625_bib40) 2017; 365 Tonui (10.1016/j.solmat.2020.110625_bib2) 2018; 91 Barbara (10.1016/j.solmat.2020.110625_bib43) 2004 |
References_xml | – volume: 124 year: 2018 ident: bib39 article-title: Characterization of trap states in perovskite films by simultaneous fitting of steady-state and transient photoluminescence measurements publication-title: J. Appl. Phys. contributor: fullname: White – volume: 2 start-page: 18742 year: 2014 end-page: 18745 ident: bib35 article-title: High performance perovskite solar cells by hybrid chemical vapor deposition publication-title: J. Mater. Chem. contributor: fullname: Qi – volume: 10 start-page: 16482 year: 2018 end-page: 16489 ident: bib30 article-title: Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Hayase – volume: 113 start-page: 761 year: 2018 end-page: 768 ident: bib24 article-title: Anti-solvent surface engineering via diethyl ether to enhance the photovoltaic conversion efficiency of perovskite solar cells to 18.76% publication-title: Superlattice. Microst. contributor: fullname: Liu – volume: 484 start-page: 637 year: 2019 end-page: 645 ident: bib33 article-title: 4-Tert butylpyridine induced MAPbI3 film quality enhancement for improving the photovoltaic performance of perovskite solar cells with two- step deposition route publication-title: Appl. Surf. Sci. contributor: fullname: Fu – volume: 25 start-page: 6671 year: 2015 end-page: 6678 ident: bib46 article-title: Controllable perovskite crystallization by water additive for high-performance solar cells publication-title: Adv. Funct. Mater. contributor: fullname: Liao – volume: 48 start-page: 2011 year: 2019 end-page: 2038 ident: bib23 article-title: Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications publication-title: Chem. Soc. Rev. contributor: fullname: Il Seok – volume: 2 year: 2014 ident: bib29 article-title: Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3 publication-title: Apl. Mater. contributor: fullname: Park – volume: 147 start-page: 255 year: 2016 end-page: 275 ident: bib17 article-title: Stability of perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells contributor: fullname: Uddin – volume: 138 start-page: 10331 year: 2016 end-page: 10343 ident: bib38 article-title: Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells publication-title: J. Am. Chem. Soc. contributor: fullname: Hagfeldt – volume: 45 start-page: 7856 year: 2016 end-page: 7865 ident: bib28 article-title: Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells publication-title: Dalton Trans. contributor: fullname: Zou – volume: 7 start-page: 1 year: 2017 end-page: 7 ident: bib45 article-title: Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite publication-title: Sci. Rep. contributor: fullname: Segawa – volume: 6 start-page: 1 year: 2015 end-page: 10 ident: bib3 article-title: Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential publication-title: Nat. Commun. contributor: fullname: Al-Jassim – volume: 9 start-page: 861 year: 2016 ident: bib7 article-title: Perovskite solar cells: progress and advancements publication-title: Energies contributor: fullname: Uddin – year: 2004 ident: bib43 article-title: Infrared Spectroscopy: Fundamentals and Applications contributor: fullname: Barbara – year: 2020 ident: bib11 article-title: Best Research-Cell Efficiencies contributor: fullname: NREL – volume: 8 start-page: 1 year: 2017 end-page: 8 ident: bib14 article-title: One-Year stable perovskite solar cells by 2D/3D interface engineering publication-title: Nat. Commun. contributor: fullname: Nazeeruddin – volume: 30 start-page: 17491 year: 2019 end-page: 17503 ident: bib44 article-title: Roughness and structural modification of PbI2 thin films by isopropanol treatment to improve methylammonium lead halide formation and solar cell efficiency publication-title: J. Mater. Sci. Mater. Electron. contributor: fullname: Hu – volume: 6 start-page: 2913 year: 2015 end-page: 2918 ident: bib42 article-title: Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites publication-title: J. Phys. Chem. Lett. contributor: fullname: Lovrinčić – volume: 98 start-page: 469 year: 2018 end-page: 488 ident: bib6 article-title: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Akhtaruzzaman – volume: 11 start-page: 1 year: 2018 end-page: 11 ident: bib25 article-title: Enhanced crystallization by methanol additive in anti-solvent for achieving high-quality MAPbI publication-title: ChemSusChem contributor: fullname: Hayase – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: bib13 article-title: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells publication-title: Adv. Energy Mater. contributor: fullname: Zhong – volume: 9 start-page: 2528 year: 2016 end-page: 2540 ident: bib16 article-title: Material and device stability in perovskite solar cells publication-title: ChemSusChem contributor: fullname: Park – volume: 11 start-page: 1008 year: 2018 ident: bib20 article-title: Advancement on lead-free organic-inorganic halide perovskite solar cells: a review publication-title: Materials contributor: fullname: Musa – volume: 3 start-page: 22191 year: 2015 end-page: 22198 ident: bib37 article-title: Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells publication-title: J. Mater. Chem. A. contributor: fullname: Hao – volume: 10 start-page: 3602 year: 2018 end-page: 3608 ident: bib31 article-title: Incorporating 4-tert-Butylpyridine in an antisolvent: a facile approach to obtain highly efficient and stable perovskite solar cells publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Dai – volume: 91 start-page: 1025 year: 2018 end-page: 1044 ident: bib2 article-title: Perovskites photovoltaic solar cells: an overview of current status publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Tessema Mola – volume: 365 start-page: 1 year: 2017 end-page: 6 ident: bib40 article-title: Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20% publication-title: J. Power Sources contributor: fullname: Lin – volume: 8 start-page: 1702019 year: 2018 ident: bib21 article-title: Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency publication-title: Adv. Energy Mater. contributor: fullname: Loi – volume: 8 start-page: 125 year: 2018 end-page: 133 ident: bib26 article-title: Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber, Mater publication-title: Today Energy contributor: fullname: Chen – volume: 7 start-page: 1 year: 2017 end-page: 8 ident: bib32 article-title: Investigating the role of 4-tert butylpyridine in perovskite solar cells publication-title: Adv. Energy Mater. contributor: fullname: Nicholas – volume: 11 start-page: 234 year: 2017 end-page: 242 ident: bib34 article-title: The merit of perovskite's dimensionality; can this replace the 3D halide perovskite? publication-title: Energy Environ. Sci. contributor: fullname: Etgar – volume: 705 start-page: 205 year: 2017 end-page: 210 ident: bib41 article-title: Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating publication-title: J. Alloys Compd. contributor: fullname: Dai – volume: 27 start-page: 565 year: 2019 end-page: 575 ident: bib10 article-title: Solar cell efficiency tables (version 54) publication-title: Prog. Photovoltaics Res. Appl. contributor: fullname: Ho-Baillie – volume: 77 start-page: 131 year: 2017 end-page: 146 ident: bib18 article-title: Device stability of perovskite solar cells – a review publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Lund – volume: 149 start-page: 54 year: 2017 end-page: 59 ident: bib5 article-title: Development of organic-inorganic tin halide perovskites: a review publication-title: Sol. Energy contributor: fullname: Kheraj – volume: 7 start-page: 4789 year: 2014 end-page: 4802 ident: bib1 article-title: Photostability of 2D organic-inorganic hybrid perovskites publication-title: Materials contributor: fullname: Deleporte – volume: 30 start-page: 4193 year: 2018 end-page: 4201 ident: bib22 article-title: How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures publication-title: Chem. Mater. contributor: fullname: Abate – volume: 11 start-page: 10 year: 2015 end-page: 25 ident: bib8 article-title: Perovskite solar cells: from materials to devices publication-title: Small contributor: fullname: Park – volume: 544 start-page: 155 year: 2017 end-page: 156 ident: bib9 article-title: Make perovskite solar cells stable publication-title: Nature contributor: fullname: You – volume: 12 start-page: 2494 year: 2019 ident: bib27 article-title: Influence of solution deposition process on modulating majority charge carrier type and quality of perovskite thin films for solar cells publication-title: Materials contributor: fullname: Chen – volume: 6 start-page: 898 year: 2015 end-page: 907 ident: bib12 article-title: Perovskite solar cells: beyond methylammonium lead iodide publication-title: J. Phys. Chem. Lett. contributor: fullname: Mhaisalkar – volume: 84 start-page: 89 year: 2018 end-page: 110 ident: bib19 article-title: Tandem perovskite solar cells publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Jose – year: 2018 ident: bib4 article-title: Pathways towards High-Stable, Low-Cost and Efficient Perovskite Solar Cells, Emerging Solar Energy Materials contributor: fullname: Li – volume: 12 start-page: 410 year: 2017 ident: bib15 article-title: A short progress report on high-efficiency perovskite solar cells publication-title: Nanoscale Res. Lett. contributor: fullname: Peng – volume: 121 start-page: 6546 year: 2017 end-page: 6553 ident: bib36 article-title: Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer publication-title: J. Phys. Chem. C contributor: fullname: Xu – volume: 11 start-page: 234 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib34 article-title: The merit of perovskite's dimensionality; can this replace the 3D halide perovskite? publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03397D contributor: fullname: Etgar – volume: 91 start-page: 1025 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib2 article-title: Perovskites photovoltaic solar cells: an overview of current status publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.069 contributor: fullname: Tonui – volume: 11 start-page: 1 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib25 article-title: Enhanced crystallization by methanol additive in anti-solvent for achieving high-quality MAPbI3 perovskite films in humid atmosphere publication-title: ChemSusChem contributor: fullname: Yang – volume: 365 start-page: 1 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib40 article-title: Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20% publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.08.074 contributor: fullname: Wu – volume: 705 start-page: 205 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib41 article-title: Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.01.035 contributor: fullname: Ren – volume: 30 start-page: 17491 year: 2019 ident: 10.1016/j.solmat.2020.110625_bib44 article-title: Roughness and structural modification of PbI2 thin films by isopropanol treatment to improve methylammonium lead halide formation and solar cell efficiency publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-02100-7 contributor: fullname: Moreno-Romero – volume: 8 start-page: 1702019 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib21 article-title: Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702019 contributor: fullname: Shao – volume: 3 start-page: 22191 year: 2015 ident: 10.1016/j.solmat.2020.110625_bib37 article-title: Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA05988G contributor: fullname: Shi – volume: 2 start-page: 18742 year: 2014 ident: 10.1016/j.solmat.2020.110625_bib35 article-title: High performance perovskite solar cells by hybrid chemical vapor deposition publication-title: J. Mater. Chem. doi: 10.1039/C4TA04385E contributor: fullname: Leyden – volume: 2 year: 2014 ident: 10.1016/j.solmat.2020.110625_bib29 article-title: Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3 publication-title: Apl. Mater. doi: 10.1063/1.4891275 contributor: fullname: Im – volume: 149 start-page: 54 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib5 article-title: Development of organic-inorganic tin halide perovskites: a review publication-title: Sol. Energy doi: 10.1016/j.solener.2017.03.077 contributor: fullname: Toshniwal – year: 2004 ident: 10.1016/j.solmat.2020.110625_bib43 contributor: fullname: Barbara – volume: 544 start-page: 155 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib9 article-title: Make perovskite solar cells stable publication-title: Nature doi: 10.1038/544155a contributor: fullname: Yang – volume: 7 start-page: 4789 year: 2014 ident: 10.1016/j.solmat.2020.110625_bib1 article-title: Photostability of 2D organic-inorganic hybrid perovskites publication-title: Materials doi: 10.3390/ma7064789 contributor: fullname: Wei – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib45 article-title: Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite publication-title: Sci. Rep. doi: 10.1038/s41598-017-12436-x contributor: fullname: Tang – volume: 10 start-page: 16482 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib30 article-title: Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02554 contributor: fullname: Yang – volume: 6 start-page: 898 year: 2015 ident: 10.1016/j.solmat.2020.110625_bib12 article-title: Perovskite solar cells: beyond methylammonium lead iodide publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502547f contributor: fullname: Boix – volume: 113 start-page: 761 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib24 article-title: Anti-solvent surface engineering via diethyl ether to enhance the photovoltaic conversion efficiency of perovskite solar cells to 18.76% publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2017.12.015 contributor: fullname: Gao – volume: 12 start-page: 2494 year: 2019 ident: 10.1016/j.solmat.2020.110625_bib27 article-title: Influence of solution deposition process on modulating majority charge carrier type and quality of perovskite thin films for solar cells publication-title: Materials doi: 10.3390/ma12152494 contributor: fullname: Chang – volume: 84 start-page: 89 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib19 article-title: Tandem perovskite solar cells publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.01.005 contributor: fullname: Wali – volume: 77 start-page: 131 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib18 article-title: Device stability of perovskite solar cells – a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.003 contributor: fullname: Asghar – volume: 48 start-page: 2011 year: 2019 ident: 10.1016/j.solmat.2020.110625_bib23 article-title: Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00656C contributor: fullname: Jung – volume: 12 start-page: 410 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib15 article-title: A short progress report on high-efficiency perovskite solar cells publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2187-5 contributor: fullname: Tang – volume: 30 start-page: 4193 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib22 article-title: How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00136 contributor: fullname: Saliba – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib32 article-title: Investigating the role of 4-tert butylpyridine in perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601079 contributor: fullname: Habisreutinger – volume: 138 start-page: 10331 year: 2016 ident: 10.1016/j.solmat.2020.110625_bib38 article-title: Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06320 contributor: fullname: Jacobsson – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.solmat.2020.110625_bib3 article-title: Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential publication-title: Nat. Commun. doi: 10.1038/ncomms9397 contributor: fullname: Jiang – volume: 10 start-page: 3602 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib31 article-title: Incorporating 4-tert-Butylpyridine in an antisolvent: a facile approach to obtain highly efficient and stable perovskite solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16912 contributor: fullname: Wu – volume: 25 start-page: 6671 year: 2015 ident: 10.1016/j.solmat.2020.110625_bib46 article-title: Controllable perovskite crystallization by water additive for high-performance solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503559 contributor: fullname: Gong – year: 2018 ident: 10.1016/j.solmat.2020.110625_bib4 contributor: fullname: Elseman – volume: 9 start-page: 2528 year: 2016 ident: 10.1016/j.solmat.2020.110625_bib16 article-title: Material and device stability in perovskite solar cells publication-title: ChemSusChem doi: 10.1002/cssc.201600915 contributor: fullname: Kim – volume: 9 start-page: 861 year: 2016 ident: 10.1016/j.solmat.2020.110625_bib7 article-title: Perovskite solar cells: progress and advancements publication-title: Energies doi: 10.3390/en9110861 contributor: fullname: Elumalai – volume: 147 start-page: 255 year: 2016 ident: 10.1016/j.solmat.2020.110625_bib17 article-title: Stability of perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.12.025 contributor: fullname: Wang – volume: 45 start-page: 7856 year: 2016 ident: 10.1016/j.solmat.2020.110625_bib28 article-title: Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells publication-title: Dalton Trans. doi: 10.1039/C6DT00900J contributor: fullname: Zhu – volume: 98 start-page: 469 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib6 article-title: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.09.016 contributor: fullname: Jamal – volume: 484 start-page: 637 year: 2019 ident: 10.1016/j.solmat.2020.110625_bib33 article-title: 4-Tert butylpyridine induced MAPbI3 film quality enhancement for improving the photovoltaic performance of perovskite solar cells with two- step deposition route publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.069 contributor: fullname: Dong – volume: 6 start-page: 2913 year: 2015 ident: 10.1016/j.solmat.2020.110625_bib42 article-title: Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01309 contributor: fullname: Glaser – volume: 27 start-page: 565 year: 2019 ident: 10.1016/j.solmat.2020.110625_bib10 article-title: Solar cell efficiency tables (version 54) publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.3171 contributor: fullname: Green – volume: 11 start-page: 10 year: 2015 ident: 10.1016/j.solmat.2020.110625_bib8 article-title: Perovskite solar cells: from materials to devices publication-title: Small doi: 10.1002/smll.201402767 contributor: fullname: Jung – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib13 article-title: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700576 contributor: fullname: Bu – year: 2020 ident: 10.1016/j.solmat.2020.110625_bib11 contributor: fullname: NREL – volume: 124 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib39 article-title: Characterization of trap states in perovskite films by simultaneous fitting of steady-state and transient photoluminescence measurements publication-title: J. Appl. Phys. doi: 10.1063/1.5029278 contributor: fullname: Fu – volume: 11 start-page: 1008 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib20 article-title: Advancement on lead-free organic-inorganic halide perovskite solar cells: a review publication-title: Materials doi: 10.3390/ma11061008 contributor: fullname: Sani – volume: 121 start-page: 6546 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib36 article-title: Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b00847 contributor: fullname: Liu – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.solmat.2020.110625_bib14 article-title: One-Year stable perovskite solar cells by 2D/3D interface engineering publication-title: Nat. Commun. doi: 10.1038/ncomms15684 contributor: fullname: Grancini – volume: 8 start-page: 125 year: 2018 ident: 10.1016/j.solmat.2020.110625_bib26 article-title: Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber, Mater publication-title: Today Energy doi: 10.1016/j.mtener.2018.03.006 contributor: fullname: Zhang |
SSID | ssj0002634 |
Score | 2.495877 |
Snippet | The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 110625 |
SubjectTerms | Acetic acid Ambient fabrication Anti-solvent Commercialization Efficiency Ethyl acetate Humidity Hydrophobic additive Hydrophobicity Perovskite solar cells Perovskites Photovoltaic cells Photovoltaics Pyridines Relative humidity Solar cells Solvents Thin films |
Title | Efficient and stable hybrid perovskite prepared at 60% relative humidity with a hydrophobic additive in anti-solvent |
URI | https://dx.doi.org/10.1016/j.solmat.2020.110625 https://www.proquest.com/docview/2447573730 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBbS9LIdhu6FdesGHbZToCKRLVs5Bm26bocd1g7oToZsyauD1C5iN8D-fUnTioMGwx7ALkaiQJZFfhEpmvzE2PvIapVFoRM2SDMRahUKLSe5yJWDL8ZOswxDA-cX8ZcrfToP54OBPx20b_uvmoY20DVWzv6Ftjc3hQb4DDqHK2gdrn-k93nLCeEzx8H3w9Ko659YmIUcxdW6xngtcgNQ7rlpRtH4g1RdVcva4bF9hUXnnOreoLNdVbfXVYrUrtZSslGBScxNIWAya587s_AVv5jZ6qioEBximjU9TvsTviyoe6QVphZfzQ3l-52Y1bKqR2cmLdp3-JM-S8Ang3-vfrh6E8WepVhlI5AOoe1wWnYxcQNjjT4amLhbmh69ra01xbJjHO8CHrC7xQMbVB-F26nEoXCmjAXys5Fdo8Vcx1MRBHTKtV_tJd1qx3JQEGNxDIIAyRzjwFgiEVFZ9gNO7gscDkeTsEZK2LXusX0JK104ZPuzT_OrzxtnQEZtYsPm8Xz1ZptiuDvWr7yjB35C6_xcHrAn3a6FzwhuT9nAlc_Y4y0uy-es2QCPg6Y5AY8T8HgPPO6Bx03DAXjcw4572HGEHTd8C3bcw44XJd-G3Qv27Wx-eXIuuiM9RBYEYSOm4O5KlU9VHqaB1WPrskg6rcFLhH2vQ-4kMCiwC7FShVblOg3THGxGOjFxbNw4eMmGZVW6V4wrAw4YrCRG5yaUJtdZZvUkz5SVTppJfMiEF2VyS8wtiU9pXCQk-gRFn5DoD1ns5Z103id5lQlA5Dc9j7x6km4lqBOJTJpxAAb09T_f-A171P8BjtiwWd25t2yvtnfvOpzdA9-Utb4 |
link.rule.ids | 315,782,786,27934,27935 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+stable+hybrid+perovskite+prepared+at+60%25+relative+humidity+with+a+hydrophobic+additive+in+anti-solvent&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Arias-Ramos%2C+Carlos+Fabi%C3%A1n&rft.au=Kumar%2C+Yogesh&rft.au=Abrego-Mart%C3%ADnez%2C+Paola+Gabriela&rft.au=Hu%2C+Hailin&rft.date=2020-09-15&rft.pub=Elsevier+B.V&rft.issn=0927-0248&rft.eissn=1879-3398&rft.volume=215&rft_id=info:doi/10.1016%2Fj.solmat.2020.110625&rft.externalDocID=S0927024820302282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |