Efficient and stable hybrid perovskite prepared at 60% relative humidity with a hydrophobic additive in anti-solvent

The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress is made with the preparation of hybrid perovskite (CH3NH3PbI3) in a high relative humidity (RH ~ 60%) ambient condition by using a mixture o...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells Vol. 215; p. 110625
Main Authors: Arias-Ramos, Carlos Fabián, Kumar, Yogesh, Abrego-Martínez, Paola Gabriela, Hu, Hailin
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15-09-2020
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress is made with the preparation of hybrid perovskite (CH3NH3PbI3) in a high relative humidity (RH ~ 60%) ambient condition by using a mixture of ethyl acetate (EA) and 4-Tertbutyl-Pyridine (tBP) as anti-solvent. A small amount of tBP helps to form a more homogeneous perovskite surface with a higher hydrophobicity. The mixture of EA and tBP is found to be an efficient anti-solvent to extract the primary solvent and moisture in the precursor solution and form mirror-like perovskite thin films. More than 200 perovskite solar cells, with active area of 0.1 cm2, were prepared with the perovskite thin films prepared under ambient conditions. It is showed that a small amount of tBP in EA improves consistently all the photovoltaic parameters of our PSCS, from an average efficiency of 8.64% over 113 cells with only EA as anti-solvent to 13.64% over 131 cells with EA + tBP as the anti-solvent. More than 55% of the last ones show efficiencies higher than 16%. The champion cell, recording an efficiency of 17.41% in the beginning and reaching the maximum efficiency of 18.04%, remains more than 80% of the initial efficiency after more than 180 days of storage in ambient conditions without encapsulation. The proposed method opens the possibility to fabricate highly efficient and stable perovskite solar cells under ambient condition without glove box. •Homogeneous perovskite thin films can be prepared in high relative humidity ambient.•4-Tertbutyl-Pyridine in ethyl acetate as anti-solvent increases the hydrophobicity of perovskite.•High efficient and stable perovskite solar cells can be produced in ambient conditions.•About 80% of retain in cell's efficiency is achieved after 6 months of storage without encapsulation.
AbstractList The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress is made with the preparation of hybrid perovskite (CH3NH3PbI3) in a high relative humidity (RH ~ 60%) ambient condition by using a mixture of ethyl acetate (EA) and 4-Tertbutyl-Pyridine (tBP) as anti-solvent. A small amount of tBP helps to form a more homogeneous perovskite surface with a higher hydrophobicity. The mixture of EA and tBP is found to be an efficient anti-solvent to extract the primary solvent and moisture in the precursor solution and form mirror-like perovskite thin films. More than 200 perovskite solar cells, with active area of 0.1 cm2, were prepared with the perovskite thin films prepared under ambient conditions. It is showed that a small amount of tBP in EA improves consistently all the photovoltaic parameters of our PSCS, from an average efficiency of 8.64% over 113 cells with only EA as anti-solvent to 13.64% over 131 cells with EA + tBP as the anti-solvent. More than 55% of the last ones show efficiencies higher than 16%. The champion cell, recording an efficiency of 17.41% in the beginning and reaching the maximum efficiency of 18.04%, remains more than 80% of the initial efficiency after more than 180 days of storage in ambient conditions without encapsulation. The proposed method opens the possibility to fabricate highly efficient and stable perovskite solar cells under ambient condition without glove box. •Homogeneous perovskite thin films can be prepared in high relative humidity ambient.•4-Tertbutyl-Pyridine in ethyl acetate as anti-solvent increases the hydrophobicity of perovskite.•High efficient and stable perovskite solar cells can be produced in ambient conditions.•About 80% of retain in cell's efficiency is achieved after 6 months of storage without encapsulation.
The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress is made with the preparation of hybrid perovskite (CH3NH3PbI3) in a high relative humidity (RH ~ 60%) ambient condition by using a mixture of ethyl acetate (EA) and 4-Tertbutyl-Pyridine (tBP) as anti-solvent. A small amount of tBP helps to form a more homogeneous perovskite surface with a higher hydrophobicity. The mixture of EA and tBP is found to be an efficient anti-solvent to extract the primary solvent and moisture in the precursor solution and form mirror-like perovskite thin films. More than 200 perovskite solar cells, with active area of 0.1 cm2, were prepared with the perovskite thin films prepared under ambient conditions. It is showed that a small amount of tBP in EA improves consistently all the photovoltaic parameters of our PSCS, from an average efficiency of 8.64% over 113 cells with only EA as anti-solvent to 13.64% over 131 cells with EA + tBP as the anti-solvent. More than 55% of the last ones show efficiencies higher than 16%. The champion cell, recording an efficiency of 17.41% in the beginning and reaching the maximum efficiency of 18.04%, remains more than 80% of the initial efficiency after more than 180 days of storage in ambient conditions without encapsulation. The proposed method opens the possibility to fabricate highly efficient and stable perovskite solar cells under ambient condition without glove box.
ArticleNumber 110625
Author Abrego-Martínez, Paola Gabriela
Hu, Hailin
Arias-Ramos, Carlos Fabián
Kumar, Yogesh
Author_xml – sequence: 1
  givenname: Carlos Fabián
  surname: Arias-Ramos
  fullname: Arias-Ramos, Carlos Fabián
  email: cafaar@ier.unam.mx
– sequence: 2
  givenname: Yogesh
  surname: Kumar
  fullname: Kumar, Yogesh
– sequence: 3
  givenname: Paola Gabriela
  surname: Abrego-Martínez
  fullname: Abrego-Martínez, Paola Gabriela
– sequence: 4
  givenname: Hailin
  surname: Hu
  fullname: Hu, Hailin
  email: hailinzhaohu@gmail.com
BookMark eNp9kEtLxDAUhYMoOKP-AxcBcdkxrzbpRhAZHyC40XVIm1sm40xTk0xl_r0pde3qQu455-Z8S3Ta-x4QuqZkRQmt7rar6Hd7k1aMsPxEScXKE7SgStYF57U6RQtSM1kQJtQ5Wsa4JYSwiosFSuuuc62DPmHTWxyTaXaAN8cmOIsHCH6MXy4BHgIMJoDFJuGK3OIAO5PcmKWHvbMuHfGPSxtsstUGP2x841psbN5MItfn9OSK_M0xn7pEZ53ZRbj6mxfo82n98fhSvL0_vz4-vBUt5yIVtRK5SFeXnWi4VcRCWzFQqqqorBRwophSuT-1rBS27FQjmo7KuqFGSgOEX6CbOXcI_vsAMemtP4Q-n9RMCFlKLvmkErOqDT7GAJ0egtubcNSU6Imv3uqZr5746plvtt3PNsgNRgdBx4ljC9YFaJO23v0f8Atazoe7
CitedBy_id crossref_primary_10_1007_s40242_024_4049_x
crossref_primary_10_1007_s40243_021_00206_9
crossref_primary_10_1016_j_cej_2023_142328
crossref_primary_10_1016_j_materresbull_2023_112642
crossref_primary_10_1016_j_optmat_2024_115082
crossref_primary_10_3390_en14102918
crossref_primary_10_1039_D3TC03529H
crossref_primary_10_1088_1361_6463_ac2d63
crossref_primary_10_1149_2162_8777_ad0d02
crossref_primary_10_1364_OE_489290
crossref_primary_10_1016_j_jallcom_2023_172299
crossref_primary_10_1007_s10854_023_11670_6
crossref_primary_10_1007_s10854_022_07721_z
crossref_primary_10_1016_j_solener_2021_03_055
crossref_primary_10_1039_D2TC02632E
crossref_primary_10_1088_1361_6641_abd266
crossref_primary_10_1002_er_8615
crossref_primary_10_1016_j_electacta_2021_139530
crossref_primary_10_1002_adom_202303194
crossref_primary_10_1002_er_7843
crossref_primary_10_1007_s12274_021_3673_8
crossref_primary_10_1016_j_apsusc_2022_153207
Cites_doi 10.1039/C7EE03397D
10.1016/j.rser.2018.04.069
10.1016/j.jpowsour.2017.08.074
10.1016/j.jallcom.2017.01.035
10.1007/s10854-019-02100-7
10.1002/aenm.201702019
10.1039/C5TA05988G
10.1039/C4TA04385E
10.1063/1.4891275
10.1016/j.solener.2017.03.077
10.1038/544155a
10.3390/ma7064789
10.1038/s41598-017-12436-x
10.1021/acsami.8b02554
10.1021/jz502547f
10.1016/j.spmi.2017.12.015
10.3390/ma12152494
10.1016/j.rser.2018.01.005
10.1016/j.rser.2017.04.003
10.1039/C8CS00656C
10.1186/s11671-017-2187-5
10.1021/acs.chemmater.8b00136
10.1002/aenm.201601079
10.1021/jacs.6b06320
10.1038/ncomms9397
10.1021/acsami.7b16912
10.1002/adfm.201503559
10.1002/cssc.201600915
10.3390/en9110861
10.1016/j.solmat.2015.12.025
10.1039/C6DT00900J
10.1016/j.rser.2018.09.016
10.1016/j.apsusc.2019.04.069
10.1021/acs.jpclett.5b01309
10.1002/pip.3171
10.1002/smll.201402767
10.1002/aenm.201700576
10.1063/1.5029278
10.3390/ma11061008
10.1021/acs.jpcc.7b00847
10.1038/ncomms15684
10.1016/j.mtener.2018.03.006
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Sep 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 15, 2020
DBID AAYXX
CITATION
7SP
7ST
7TB
7U5
8FD
C1K
FR3
L7M
SOI
DOI 10.1016/j.solmat.2020.110625
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3398
ExternalDocumentID 10_1016_j_solmat_2020_110625
S0927024820302282
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
4.4
457
4G.
5VS
6OB
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
XPP
ZMT
~02
~G-
1~5
7-5
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SCB
SET
SEW
SMS
WUQ
7SP
7ST
7TB
7U5
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c334t-984625f95f4b3d80dec62e88661768e3082880161d254d5f8b4bf179b1a77ae03
ISSN 0927-0248
IngestDate Thu Oct 10 20:46:17 EDT 2024
Thu Sep 26 17:36:39 EDT 2024
Fri Feb 23 02:46:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrophobic additive
Ambient fabrication
Perovskite solar cells
Anti-solvent
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-984625f95f4b3d80dec62e88661768e3082880161d254d5f8b4bf179b1a77ae03
PQID 2447573730
PQPubID 2045398
ParticipantIDs proquest_journals_2447573730
crossref_primary_10_1016_j_solmat_2020_110625
elsevier_sciencedirect_doi_10_1016_j_solmat_2020_110625
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Solar energy materials and solar cells
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Saliba, Correa-Baena, Wolff, Stolterfoht, Phung, Albrecht, Neher, Abate (bib22) 2018; 30
Ren, Liu, Duan, Xu, Li, Huang, Hu, Zhu, Dai (bib41) 2017; 705
Glaser, Müller, Sendner, Krekeler, Semonin, Hull, Yaffe, Owen, Kowalsky, Pucci, Lovrinčić (bib42) 2015; 6
Grancini, Roldán-Carmona, Zimmermann, Mosconi, Lee, Martineau, Narbey, Oswald, De Angelis, Graetzel, Nazeeruddin (bib14) 2017; 8
Wu, Wu, Tu, He, Lan, Huang, Lin (bib40) 2017; 365
Wang, Wright, Elumalai, Uddin (bib17) 2016; 147
Wei, Audebert, Galmiche, Lauret, Deleporte (bib1) 2014; 7
Tonui, Oseni, Sharma, Yan, Tessema Mola (bib2) 2018; 91
Yang, Kamarudin, Zhang, Kapil, Ma, Hayase (bib25) 2018; 11
Fu, Weber, White (bib39) 2018; 124
Jung, Ji, Kim, Il Seok (bib23) 2019; 48
Gao, Yang, Wang, Sui, Sun, Wei, Cao, Liu (bib24) 2018; 113
Jacobsson, Correa-Baena, Halvani Anaraki, Philippe, Stranks, Bouduban, Tress, Schenk, Teuscher, Moser, Rensmo, Hagfeldt (bib38) 2016; 138
Tang, Bessho, Awai, Kinoshita, Maitani, Jono, Murakami, Wang, Kubo, Uchida, Segawa (bib45) 2017; 7
Bu, Wu, Liu, Yang, Zhou, Yu, Qin, Shi, Wang, Li, Ku, Peng, Huang, Meng, Cheng, Zhong (bib13) 2017; 7
Etgar (bib34) 2017; 11
Shi, Wang, Zhang, Li, Lu, Ma, Hao (bib37) 2015; 3
Moreno-Romero, Corpus-Mendoza, Millán-Franco, Rodríguez-Castañeda, Torres-Herrera, Liu, Hu (bib44) 2019; 30
Asghar, Zhang, Wang, Lund (bib18) 2017; 77
Kim, Seo, Park (bib16) 2016; 9
Sani, Shafie, Lim, Musa (bib20) 2018; 11
Jiang, Yang, Zhou, To, Nanayakkara, Luther, Zhou, Berry, Van De Lagemaat, Padture, Zhu, Al-Jassim (bib3) 2015; 6
Chang, Zou, Cheng, Ling, Yao, Chen (bib27) 2019; 12
Jung, Park (bib8) 2015; 11
Boix, Agarwala, Koh, Mathews, Mhaisalkar (bib12) 2015; 6
Im, Kim, Park (bib29) 2014; 2
Dong, Ha, Yang, Qiu, Fan, Zhang, Bai, Gao, Fu (bib33) 2019; 484
NREL (bib11) 2020
Yang, Kapil, Zhang, Hu, Kamarudin, Ma, Hayase (bib30) 2018; 10
Elseman, Sajid, Wei, Shalan, Rashad, Li (bib4) 2018
Green, Dunlop, Levi, Hohl-Ebinger, Yoshita, Ho-Baillie (bib10) 2019; 27
Zhu, Bao, Wang, Li, Zhou, Yang, Lv, Wang, Yu, Zou (bib28) 2016; 45
Wali, Elumalai, Iqbal, Uddin, Jose (bib19) 2018; 84
Jamal, Bashar, Hasan, Almutairi, Alharbi, Alharthi, Karim, Misran, Amin, Bin Sopian, Akhtaruzzaman (bib6) 2018; 98
Toshniwal, Kheraj (bib5) 2017; 149
Tang, He, Peng (bib15) 2017; 12
Habisreutinger, Noel, Snaith, Nicholas (bib32) 2017; 7
Shao, Liu, Portale, Fang, Blake, ten Brink, Koster, Loi (bib21) 2018; 8
Zhang, Wu, Chen, Zhu, Xiong, Yang, Chen, Chen, Han, Chen (bib26) 2018; 8
Liu, Ding, Zhou, Gao, Cheng, Zhao, Xu (bib36) 2017; 121
Wu, Shi, Ding, Ren, Hayat, Alsaedi, Ding, Xu, Dai (bib31) 2018; 10
Leyden, Ono, Raga, Kato, Wang, Qi (bib35) 2014; 2
Barbara (bib43) 2004
Gong, Li, Shi, Ma, Wang, Liao (bib46) 2015; 25
Yang, You (bib9) 2017; 544
Elumalai, Mahmud, Wang, Uddin (bib7) 2016; 9
Tang (10.1016/j.solmat.2020.110625_bib15) 2017; 12
Zhang (10.1016/j.solmat.2020.110625_bib26) 2018; 8
Yang (10.1016/j.solmat.2020.110625_bib9) 2017; 544
Wali (10.1016/j.solmat.2020.110625_bib19) 2018; 84
Fu (10.1016/j.solmat.2020.110625_bib39) 2018; 124
Etgar (10.1016/j.solmat.2020.110625_bib34) 2017; 11
Elseman (10.1016/j.solmat.2020.110625_bib4) 2018
Yang (10.1016/j.solmat.2020.110625_bib30) 2018; 10
Liu (10.1016/j.solmat.2020.110625_bib36) 2017; 121
Green (10.1016/j.solmat.2020.110625_bib10) 2019; 27
Toshniwal (10.1016/j.solmat.2020.110625_bib5) 2017; 149
Jamal (10.1016/j.solmat.2020.110625_bib6) 2018; 98
Shao (10.1016/j.solmat.2020.110625_bib21) 2018; 8
Boix (10.1016/j.solmat.2020.110625_bib12) 2015; 6
Kim (10.1016/j.solmat.2020.110625_bib16) 2016; 9
Chang (10.1016/j.solmat.2020.110625_bib27) 2019; 12
Ren (10.1016/j.solmat.2020.110625_bib41) 2017; 705
Sani (10.1016/j.solmat.2020.110625_bib20) 2018; 11
Gong (10.1016/j.solmat.2020.110625_bib46) 2015; 25
Shi (10.1016/j.solmat.2020.110625_bib37) 2015; 3
Moreno-Romero (10.1016/j.solmat.2020.110625_bib44) 2019; 30
Yang (10.1016/j.solmat.2020.110625_bib25) 2018; 11
Jung (10.1016/j.solmat.2020.110625_bib23) 2019; 48
NREL (10.1016/j.solmat.2020.110625_bib11) 2020
Im (10.1016/j.solmat.2020.110625_bib29) 2014; 2
Jiang (10.1016/j.solmat.2020.110625_bib3) 2015; 6
Asghar (10.1016/j.solmat.2020.110625_bib18) 2017; 77
Elumalai (10.1016/j.solmat.2020.110625_bib7) 2016; 9
Wu (10.1016/j.solmat.2020.110625_bib31) 2018; 10
Jacobsson (10.1016/j.solmat.2020.110625_bib38) 2016; 138
Glaser (10.1016/j.solmat.2020.110625_bib42) 2015; 6
Wang (10.1016/j.solmat.2020.110625_bib17) 2016; 147
Habisreutinger (10.1016/j.solmat.2020.110625_bib32) 2017; 7
Grancini (10.1016/j.solmat.2020.110625_bib14) 2017; 8
Tang (10.1016/j.solmat.2020.110625_bib45) 2017; 7
Saliba (10.1016/j.solmat.2020.110625_bib22) 2018; 30
Zhu (10.1016/j.solmat.2020.110625_bib28) 2016; 45
Wei (10.1016/j.solmat.2020.110625_bib1) 2014; 7
Gao (10.1016/j.solmat.2020.110625_bib24) 2018; 113
Leyden (10.1016/j.solmat.2020.110625_bib35) 2014; 2
Jung (10.1016/j.solmat.2020.110625_bib8) 2015; 11
Dong (10.1016/j.solmat.2020.110625_bib33) 2019; 484
Bu (10.1016/j.solmat.2020.110625_bib13) 2017; 7
Wu (10.1016/j.solmat.2020.110625_bib40) 2017; 365
Tonui (10.1016/j.solmat.2020.110625_bib2) 2018; 91
Barbara (10.1016/j.solmat.2020.110625_bib43) 2004
References_xml – volume: 124
  year: 2018
  ident: bib39
  article-title: Characterization of trap states in perovskite films by simultaneous fitting of steady-state and transient photoluminescence measurements
  publication-title: J. Appl. Phys.
  contributor:
    fullname: White
– volume: 2
  start-page: 18742
  year: 2014
  end-page: 18745
  ident: bib35
  article-title: High performance perovskite solar cells by hybrid chemical vapor deposition
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Qi
– volume: 10
  start-page: 16482
  year: 2018
  end-page: 16489
  ident: bib30
  article-title: Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Hayase
– volume: 113
  start-page: 761
  year: 2018
  end-page: 768
  ident: bib24
  article-title: Anti-solvent surface engineering via diethyl ether to enhance the photovoltaic conversion efficiency of perovskite solar cells to 18.76%
  publication-title: Superlattice. Microst.
  contributor:
    fullname: Liu
– volume: 484
  start-page: 637
  year: 2019
  end-page: 645
  ident: bib33
  article-title: 4-Tert butylpyridine induced MAPbI3 film quality enhancement for improving the photovoltaic performance of perovskite solar cells with two- step deposition route
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Fu
– volume: 25
  start-page: 6671
  year: 2015
  end-page: 6678
  ident: bib46
  article-title: Controllable perovskite crystallization by water additive for high-performance solar cells
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Liao
– volume: 48
  start-page: 2011
  year: 2019
  end-page: 2038
  ident: bib23
  article-title: Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications
  publication-title: Chem. Soc. Rev.
  contributor:
    fullname: Il Seok
– volume: 2
  year: 2014
  ident: bib29
  article-title: Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3
  publication-title: Apl. Mater.
  contributor:
    fullname: Park
– volume: 147
  start-page: 255
  year: 2016
  end-page: 275
  ident: bib17
  article-title: Stability of perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  contributor:
    fullname: Uddin
– volume: 138
  start-page: 10331
  year: 2016
  end-page: 10343
  ident: bib38
  article-title: Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Hagfeldt
– volume: 45
  start-page: 7856
  year: 2016
  end-page: 7865
  ident: bib28
  article-title: Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells
  publication-title: Dalton Trans.
  contributor:
    fullname: Zou
– volume: 7
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib45
  article-title: Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite
  publication-title: Sci. Rep.
  contributor:
    fullname: Segawa
– volume: 6
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib3
  article-title: Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential
  publication-title: Nat. Commun.
  contributor:
    fullname: Al-Jassim
– volume: 9
  start-page: 861
  year: 2016
  ident: bib7
  article-title: Perovskite solar cells: progress and advancements
  publication-title: Energies
  contributor:
    fullname: Uddin
– year: 2004
  ident: bib43
  article-title: Infrared Spectroscopy: Fundamentals and Applications
  contributor:
    fullname: Barbara
– year: 2020
  ident: bib11
  article-title: Best Research-Cell Efficiencies
  contributor:
    fullname: NREL
– volume: 8
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib14
  article-title: One-Year stable perovskite solar cells by 2D/3D interface engineering
  publication-title: Nat. Commun.
  contributor:
    fullname: Nazeeruddin
– volume: 30
  start-page: 17491
  year: 2019
  end-page: 17503
  ident: bib44
  article-title: Roughness and structural modification of PbI2 thin films by isopropanol treatment to improve methylammonium lead halide formation and solar cell efficiency
  publication-title: J. Mater. Sci. Mater. Electron.
  contributor:
    fullname: Hu
– volume: 6
  start-page: 2913
  year: 2015
  end-page: 2918
  ident: bib42
  article-title: Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites
  publication-title: J. Phys. Chem. Lett.
  contributor:
    fullname: Lovrinčić
– volume: 98
  start-page: 469
  year: 2018
  end-page: 488
  ident: bib6
  article-title: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Akhtaruzzaman
– volume: 11
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib25
  article-title: Enhanced crystallization by methanol additive in anti-solvent for achieving high-quality MAPbI
  publication-title: ChemSusChem
  contributor:
    fullname: Hayase
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib13
  article-title: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Zhong
– volume: 9
  start-page: 2528
  year: 2016
  end-page: 2540
  ident: bib16
  article-title: Material and device stability in perovskite solar cells
  publication-title: ChemSusChem
  contributor:
    fullname: Park
– volume: 11
  start-page: 1008
  year: 2018
  ident: bib20
  article-title: Advancement on lead-free organic-inorganic halide perovskite solar cells: a review
  publication-title: Materials
  contributor:
    fullname: Musa
– volume: 3
  start-page: 22191
  year: 2015
  end-page: 22198
  ident: bib37
  article-title: Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells
  publication-title: J. Mater. Chem. A.
  contributor:
    fullname: Hao
– volume: 10
  start-page: 3602
  year: 2018
  end-page: 3608
  ident: bib31
  article-title: Incorporating 4-tert-Butylpyridine in an antisolvent: a facile approach to obtain highly efficient and stable perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Dai
– volume: 91
  start-page: 1025
  year: 2018
  end-page: 1044
  ident: bib2
  article-title: Perovskites photovoltaic solar cells: an overview of current status
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Tessema Mola
– volume: 365
  start-page: 1
  year: 2017
  end-page: 6
  ident: bib40
  article-title: Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%
  publication-title: J. Power Sources
  contributor:
    fullname: Lin
– volume: 8
  start-page: 1702019
  year: 2018
  ident: bib21
  article-title: Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Loi
– volume: 8
  start-page: 125
  year: 2018
  end-page: 133
  ident: bib26
  article-title: Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber, Mater
  publication-title: Today Energy
  contributor:
    fullname: Chen
– volume: 7
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib32
  article-title: Investigating the role of 4-tert butylpyridine in perovskite solar cells
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Nicholas
– volume: 11
  start-page: 234
  year: 2017
  end-page: 242
  ident: bib34
  article-title: The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Etgar
– volume: 705
  start-page: 205
  year: 2017
  end-page: 210
  ident: bib41
  article-title: Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Dai
– volume: 27
  start-page: 565
  year: 2019
  end-page: 575
  ident: bib10
  article-title: Solar cell efficiency tables (version 54)
  publication-title: Prog. Photovoltaics Res. Appl.
  contributor:
    fullname: Ho-Baillie
– volume: 77
  start-page: 131
  year: 2017
  end-page: 146
  ident: bib18
  article-title: Device stability of perovskite solar cells – a review
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Lund
– volume: 149
  start-page: 54
  year: 2017
  end-page: 59
  ident: bib5
  article-title: Development of organic-inorganic tin halide perovskites: a review
  publication-title: Sol. Energy
  contributor:
    fullname: Kheraj
– volume: 7
  start-page: 4789
  year: 2014
  end-page: 4802
  ident: bib1
  article-title: Photostability of 2D organic-inorganic hybrid perovskites
  publication-title: Materials
  contributor:
    fullname: Deleporte
– volume: 30
  start-page: 4193
  year: 2018
  end-page: 4201
  ident: bib22
  article-title: How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures
  publication-title: Chem. Mater.
  contributor:
    fullname: Abate
– volume: 11
  start-page: 10
  year: 2015
  end-page: 25
  ident: bib8
  article-title: Perovskite solar cells: from materials to devices
  publication-title: Small
  contributor:
    fullname: Park
– volume: 544
  start-page: 155
  year: 2017
  end-page: 156
  ident: bib9
  article-title: Make perovskite solar cells stable
  publication-title: Nature
  contributor:
    fullname: You
– volume: 12
  start-page: 2494
  year: 2019
  ident: bib27
  article-title: Influence of solution deposition process on modulating majority charge carrier type and quality of perovskite thin films for solar cells
  publication-title: Materials
  contributor:
    fullname: Chen
– volume: 6
  start-page: 898
  year: 2015
  end-page: 907
  ident: bib12
  article-title: Perovskite solar cells: beyond methylammonium lead iodide
  publication-title: J. Phys. Chem. Lett.
  contributor:
    fullname: Mhaisalkar
– volume: 84
  start-page: 89
  year: 2018
  end-page: 110
  ident: bib19
  article-title: Tandem perovskite solar cells
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Jose
– year: 2018
  ident: bib4
  article-title: Pathways towards High-Stable, Low-Cost and Efficient Perovskite Solar Cells, Emerging Solar Energy Materials
  contributor:
    fullname: Li
– volume: 12
  start-page: 410
  year: 2017
  ident: bib15
  article-title: A short progress report on high-efficiency perovskite solar cells
  publication-title: Nanoscale Res. Lett.
  contributor:
    fullname: Peng
– volume: 121
  start-page: 6546
  year: 2017
  end-page: 6553
  ident: bib36
  article-title: Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Xu
– volume: 11
  start-page: 234
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib34
  article-title: The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03397D
  contributor:
    fullname: Etgar
– volume: 91
  start-page: 1025
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib2
  article-title: Perovskites photovoltaic solar cells: an overview of current status
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.069
  contributor:
    fullname: Tonui
– volume: 11
  start-page: 1
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib25
  article-title: Enhanced crystallization by methanol additive in anti-solvent for achieving high-quality MAPbI3 perovskite films in humid atmosphere
  publication-title: ChemSusChem
  contributor:
    fullname: Yang
– volume: 365
  start-page: 1
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib40
  article-title: Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.074
  contributor:
    fullname: Wu
– volume: 705
  start-page: 205
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib41
  article-title: Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.01.035
  contributor:
    fullname: Ren
– volume: 30
  start-page: 17491
  year: 2019
  ident: 10.1016/j.solmat.2020.110625_bib44
  article-title: Roughness and structural modification of PbI2 thin films by isopropanol treatment to improve methylammonium lead halide formation and solar cell efficiency
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-02100-7
  contributor:
    fullname: Moreno-Romero
– volume: 8
  start-page: 1702019
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib21
  article-title: Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702019
  contributor:
    fullname: Shao
– volume: 3
  start-page: 22191
  year: 2015
  ident: 10.1016/j.solmat.2020.110625_bib37
  article-title: Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA05988G
  contributor:
    fullname: Shi
– volume: 2
  start-page: 18742
  year: 2014
  ident: 10.1016/j.solmat.2020.110625_bib35
  article-title: High performance perovskite solar cells by hybrid chemical vapor deposition
  publication-title: J. Mater. Chem.
  doi: 10.1039/C4TA04385E
  contributor:
    fullname: Leyden
– volume: 2
  year: 2014
  ident: 10.1016/j.solmat.2020.110625_bib29
  article-title: Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3
  publication-title: Apl. Mater.
  doi: 10.1063/1.4891275
  contributor:
    fullname: Im
– volume: 149
  start-page: 54
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib5
  article-title: Development of organic-inorganic tin halide perovskites: a review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.03.077
  contributor:
    fullname: Toshniwal
– year: 2004
  ident: 10.1016/j.solmat.2020.110625_bib43
  contributor:
    fullname: Barbara
– volume: 544
  start-page: 155
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib9
  article-title: Make perovskite solar cells stable
  publication-title: Nature
  doi: 10.1038/544155a
  contributor:
    fullname: Yang
– volume: 7
  start-page: 4789
  year: 2014
  ident: 10.1016/j.solmat.2020.110625_bib1
  article-title: Photostability of 2D organic-inorganic hybrid perovskites
  publication-title: Materials
  doi: 10.3390/ma7064789
  contributor:
    fullname: Wei
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib45
  article-title: Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12436-x
  contributor:
    fullname: Tang
– volume: 10
  start-page: 16482
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib30
  article-title: Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02554
  contributor:
    fullname: Yang
– volume: 6
  start-page: 898
  year: 2015
  ident: 10.1016/j.solmat.2020.110625_bib12
  article-title: Perovskite solar cells: beyond methylammonium lead iodide
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502547f
  contributor:
    fullname: Boix
– volume: 113
  start-page: 761
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib24
  article-title: Anti-solvent surface engineering via diethyl ether to enhance the photovoltaic conversion efficiency of perovskite solar cells to 18.76%
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2017.12.015
  contributor:
    fullname: Gao
– volume: 12
  start-page: 2494
  year: 2019
  ident: 10.1016/j.solmat.2020.110625_bib27
  article-title: Influence of solution deposition process on modulating majority charge carrier type and quality of perovskite thin films for solar cells
  publication-title: Materials
  doi: 10.3390/ma12152494
  contributor:
    fullname: Chang
– volume: 84
  start-page: 89
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib19
  article-title: Tandem perovskite solar cells
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.01.005
  contributor:
    fullname: Wali
– volume: 77
  start-page: 131
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib18
  article-title: Device stability of perovskite solar cells – a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.003
  contributor:
    fullname: Asghar
– volume: 48
  start-page: 2011
  year: 2019
  ident: 10.1016/j.solmat.2020.110625_bib23
  article-title: Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00656C
  contributor:
    fullname: Jung
– volume: 12
  start-page: 410
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib15
  article-title: A short progress report on high-efficiency perovskite solar cells
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2187-5
  contributor:
    fullname: Tang
– volume: 30
  start-page: 4193
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib22
  article-title: How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00136
  contributor:
    fullname: Saliba
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib32
  article-title: Investigating the role of 4-tert butylpyridine in perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601079
  contributor:
    fullname: Habisreutinger
– volume: 138
  start-page: 10331
  year: 2016
  ident: 10.1016/j.solmat.2020.110625_bib38
  article-title: Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06320
  contributor:
    fullname: Jacobsson
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.solmat.2020.110625_bib3
  article-title: Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9397
  contributor:
    fullname: Jiang
– volume: 10
  start-page: 3602
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib31
  article-title: Incorporating 4-tert-Butylpyridine in an antisolvent: a facile approach to obtain highly efficient and stable perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16912
  contributor:
    fullname: Wu
– volume: 25
  start-page: 6671
  year: 2015
  ident: 10.1016/j.solmat.2020.110625_bib46
  article-title: Controllable perovskite crystallization by water additive for high-performance solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503559
  contributor:
    fullname: Gong
– year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib4
  contributor:
    fullname: Elseman
– volume: 9
  start-page: 2528
  year: 2016
  ident: 10.1016/j.solmat.2020.110625_bib16
  article-title: Material and device stability in perovskite solar cells
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600915
  contributor:
    fullname: Kim
– volume: 9
  start-page: 861
  year: 2016
  ident: 10.1016/j.solmat.2020.110625_bib7
  article-title: Perovskite solar cells: progress and advancements
  publication-title: Energies
  doi: 10.3390/en9110861
  contributor:
    fullname: Elumalai
– volume: 147
  start-page: 255
  year: 2016
  ident: 10.1016/j.solmat.2020.110625_bib17
  article-title: Stability of perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.12.025
  contributor:
    fullname: Wang
– volume: 45
  start-page: 7856
  year: 2016
  ident: 10.1016/j.solmat.2020.110625_bib28
  article-title: Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT00900J
  contributor:
    fullname: Zhu
– volume: 98
  start-page: 469
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib6
  article-title: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.09.016
  contributor:
    fullname: Jamal
– volume: 484
  start-page: 637
  year: 2019
  ident: 10.1016/j.solmat.2020.110625_bib33
  article-title: 4-Tert butylpyridine induced MAPbI3 film quality enhancement for improving the photovoltaic performance of perovskite solar cells with two- step deposition route
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.04.069
  contributor:
    fullname: Dong
– volume: 6
  start-page: 2913
  year: 2015
  ident: 10.1016/j.solmat.2020.110625_bib42
  article-title: Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01309
  contributor:
    fullname: Glaser
– volume: 27
  start-page: 565
  year: 2019
  ident: 10.1016/j.solmat.2020.110625_bib10
  article-title: Solar cell efficiency tables (version 54)
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.3171
  contributor:
    fullname: Green
– volume: 11
  start-page: 10
  year: 2015
  ident: 10.1016/j.solmat.2020.110625_bib8
  article-title: Perovskite solar cells: from materials to devices
  publication-title: Small
  doi: 10.1002/smll.201402767
  contributor:
    fullname: Jung
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib13
  article-title: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700576
  contributor:
    fullname: Bu
– year: 2020
  ident: 10.1016/j.solmat.2020.110625_bib11
  contributor:
    fullname: NREL
– volume: 124
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib39
  article-title: Characterization of trap states in perovskite films by simultaneous fitting of steady-state and transient photoluminescence measurements
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5029278
  contributor:
    fullname: Fu
– volume: 11
  start-page: 1008
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib20
  article-title: Advancement on lead-free organic-inorganic halide perovskite solar cells: a review
  publication-title: Materials
  doi: 10.3390/ma11061008
  contributor:
    fullname: Sani
– volume: 121
  start-page: 6546
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib36
  article-title: Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b00847
  contributor:
    fullname: Liu
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.solmat.2020.110625_bib14
  article-title: One-Year stable perovskite solar cells by 2D/3D interface engineering
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15684
  contributor:
    fullname: Grancini
– volume: 8
  start-page: 125
  year: 2018
  ident: 10.1016/j.solmat.2020.110625_bib26
  article-title: Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber, Mater
  publication-title: Today Energy
  doi: 10.1016/j.mtener.2018.03.006
  contributor:
    fullname: Zhang
SSID ssj0002634
Score 2.495877
Snippet The use of controlled inert ambient to produce hybrid perovskite solar cells (PSCs) makes them less competitive towards the commercialization. Herein, progress...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 110625
SubjectTerms Acetic acid
Ambient fabrication
Anti-solvent
Commercialization
Efficiency
Ethyl acetate
Humidity
Hydrophobic additive
Hydrophobicity
Perovskite solar cells
Perovskites
Photovoltaic cells
Photovoltaics
Pyridines
Relative humidity
Solar cells
Solvents
Thin films
Title Efficient and stable hybrid perovskite prepared at 60% relative humidity with a hydrophobic additive in anti-solvent
URI https://dx.doi.org/10.1016/j.solmat.2020.110625
https://www.proquest.com/docview/2447573730
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBbS9LIdhu6FdesGHbZToCKRLVs5Bm26bocd1g7oToZsyauD1C5iN8D-fUnTioMGwx7ALkaiQJZFfhEpmvzE2PvIapVFoRM2SDMRahUKLSe5yJWDL8ZOswxDA-cX8ZcrfToP54OBPx20b_uvmoY20DVWzv6Ftjc3hQb4DDqHK2gdrn-k93nLCeEzx8H3w9Ko659YmIUcxdW6xngtcgNQ7rlpRtH4g1RdVcva4bF9hUXnnOreoLNdVbfXVYrUrtZSslGBScxNIWAya587s_AVv5jZ6qioEBximjU9TvsTviyoe6QVphZfzQ3l-52Y1bKqR2cmLdp3-JM-S8Ang3-vfrh6E8WepVhlI5AOoe1wWnYxcQNjjT4amLhbmh69ra01xbJjHO8CHrC7xQMbVB-F26nEoXCmjAXys5Fdo8Vcx1MRBHTKtV_tJd1qx3JQEGNxDIIAyRzjwFgiEVFZ9gNO7gscDkeTsEZK2LXusX0JK104ZPuzT_OrzxtnQEZtYsPm8Xz1ZptiuDvWr7yjB35C6_xcHrAn3a6FzwhuT9nAlc_Y4y0uy-es2QCPg6Y5AY8T8HgPPO6Bx03DAXjcw4572HGEHTd8C3bcw44XJd-G3Qv27Wx-eXIuuiM9RBYEYSOm4O5KlU9VHqaB1WPrskg6rcFLhH2vQ-4kMCiwC7FShVblOg3THGxGOjFxbNw4eMmGZVW6V4wrAw4YrCRG5yaUJtdZZvUkz5SVTppJfMiEF2VyS8wtiU9pXCQk-gRFn5DoD1ns5Z103id5lQlA5Dc9j7x6km4lqBOJTJpxAAb09T_f-A171P8BjtiwWd25t2yvtnfvOpzdA9-Utb4
link.rule.ids 315,782,786,27934,27935
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+stable+hybrid+perovskite+prepared+at+60%25+relative+humidity+with+a+hydrophobic+additive+in+anti-solvent&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Arias-Ramos%2C+Carlos+Fabi%C3%A1n&rft.au=Kumar%2C+Yogesh&rft.au=Abrego-Mart%C3%ADnez%2C+Paola+Gabriela&rft.au=Hu%2C+Hailin&rft.date=2020-09-15&rft.pub=Elsevier+B.V&rft.issn=0927-0248&rft.eissn=1879-3398&rft.volume=215&rft_id=info:doi/10.1016%2Fj.solmat.2020.110625&rft.externalDocID=S0927024820302282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon