Image augmentation to improve construction resource detection using generative adversarial networks, cut-and-paste, and image transformation techniques
The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three techniques: removing-and-inpainting, cut-and-paste, and image-variation. The removing-and-inpainting technique arbitrarily removes objects fro...
Saved in:
Published in: | Automation in construction Vol. 115; p. 103198 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
01-07-2020
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three techniques: removing-and-inpainting, cut-and-paste, and image-variation. The removing-and-inpainting technique arbitrarily removes objects from images and reconstructs the removed regions via generative adversarial networks (GAN). The cut-and-paste technique extracts objects from the original dataset and places them into the reconstructed images via the previous technique. The image-variation technique applies three image transformation techniques, intensity-, blur- and scale-variation, to the images. To evaluate the method, 656 unmanned aerial vehicle (UAV)-acquired construction site images were used as the original dataset. A faster region-based convolutional neural network (Faster R-CNN) trained with the augmented training dataset achieves better performance, which is higher than that of a network trained with the original dataset. These results prove that the method is optimal for improving construction resource detection in UAV-acquired images.
•The method constructs a dataset for improving construction resource detection.•The removing-and-inpainting removes objects and reconstructs regions via GAN.•The cut-and-paste extracts objects and places them into the images.•The image-variation applies intensity-, blur- and scale-variation to the images.•A faster R-CNN trained with the augmented dataset achieves the best performance. |
---|---|
AbstractList | The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three techniques: removing-and-inpainting, cut-and-paste, and image-variation. The removing-and-inpainting technique arbitrarily removes objects from images and reconstructs the removed regions via generative adversarial networks (GAN). The cut-and-paste technique extracts objects from the original dataset and places them into the reconstructed images via the previous technique. The image-variation technique applies three image transformation techniques, intensity-, blur- and scale-variation, to the images. To evaluate the method, 656 unmanned aerial vehicle (UAV)-acquired construction site images were used as the original dataset. A faster region-based convolutional neural network (Faster R-CNN) trained with the augmented training dataset achieves better performance, which is higher than that of a network trained with the original dataset. These results prove that the method is optimal for improving construction resource detection in UAV-acquired images. The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three techniques: removing-and-inpainting, cut-and-paste, and image-variation. The removing-and-inpainting technique arbitrarily removes objects from images and reconstructs the removed regions via generative adversarial networks (GAN). The cut-and-paste technique extracts objects from the original dataset and places them into the reconstructed images via the previous technique. The image-variation technique applies three image transformation techniques, intensity-, blur- and scale-variation, to the images. To evaluate the method, 656 unmanned aerial vehicle (UAV)-acquired construction site images were used as the original dataset. A faster region-based convolutional neural network (Faster R-CNN) trained with the augmented training dataset achieves better performance, which is higher than that of a network trained with the original dataset. These results prove that the method is optimal for improving construction resource detection in UAV-acquired images. •The method constructs a dataset for improving construction resource detection.•The removing-and-inpainting removes objects and reconstructs regions via GAN.•The cut-and-paste extracts objects and places them into the images.•The image-variation applies intensity-, blur- and scale-variation to the images.•A faster R-CNN trained with the augmented dataset achieves the best performance. |
ArticleNumber | 103198 |
Author | Bang, Seongdeok Baek, Francis Kim, Hyoungkwan Park, Somin Kim, Wontae |
Author_xml | – sequence: 1 givenname: Seongdeok surname: Bang fullname: Bang, Seongdeok email: bangdeok@yonsei.ac.kr – sequence: 2 givenname: Francis surname: Baek fullname: Baek, Francis email: fbaek@yonsei.ac.kr – sequence: 3 givenname: Somin surname: Park fullname: Park, Somin email: somin109@yonsei.ac.kr – sequence: 4 givenname: Wontae surname: Kim fullname: Kim, Wontae email: wontkim@hotmail.com – sequence: 5 givenname: Hyoungkwan surname: Kim fullname: Kim, Hyoungkwan email: hyoungkwan@yonsei.ac.kr |
BookMark | eNp9UU1LAzEUDFLBtvoPPAS8dmuyX8leBCl-FApe9BzS5G1NbZOaZCv-Ev-uWbdnT-8xvJlh3kzQyDoLCF1TMqeE1rfbueyicnaek7yHCtrwMzSmnOUZ4w0doTFp8jqrOKku0CSELSGEkboZo5_lXm4Ay26zBxtlNM7i6LDZH7w7Ak6iIfpO_eEeguu8AqwhwgB1wdgN3oAFn7iJIPURfJDeyB22EL-c_wgzrLqYSauzgwwRZjityaH3jV7a0Dq_PzmDerfms4Nwic5buQtwdZpT9Pb48Lp4zlYvT8vF_SpTRVHGjOc1W9NSaqmZZoXkQOqqzqtGV5q1Uje6bgpOgPK1Jm3OqVpTLSsFrNS8KlgxRTeDbsrb-0axTRltshR5WbD0wqps0lU5XCnvQvDQioNPAfy3oET0FYitGCoQfQViqCDR7gYapARHA14EZcAq0ManBwrtzP8Cv2Xtl_M |
CitedBy_id | crossref_primary_10_1016_j_autcon_2024_105265 crossref_primary_10_1111_mice_12672 crossref_primary_10_1016_j_array_2024_100343 crossref_primary_10_1145_3502287 crossref_primary_10_1016_j_autcon_2023_105060 crossref_primary_10_3389_fbuil_2020_575738 crossref_primary_10_1016_j_cscm_2023_e02132 crossref_primary_10_1016_j_engappai_2023_106564 crossref_primary_10_1016_j_autcon_2024_105504 crossref_primary_10_1111_mice_12832 crossref_primary_10_3390_agronomy13030887 crossref_primary_10_3390_s22166193 crossref_primary_10_1016_j_autcon_2021_103566 crossref_primary_10_1016_j_autcon_2022_104138 crossref_primary_10_1016_j_autcon_2023_104771 crossref_primary_10_1016_j_autcon_2023_104773 crossref_primary_10_3390_s21175767 crossref_primary_10_1007_s00138_021_01237_y crossref_primary_10_5937_jaes0_29474 crossref_primary_10_1061__ASCE_CP_1943_5487_0000994 crossref_primary_10_1007_s00521_024_09580_7 crossref_primary_10_1016_j_eswa_2023_122046 crossref_primary_10_1016_j_engappai_2023_106458 crossref_primary_10_3390_app12146982 crossref_primary_10_3390_s22197383 crossref_primary_10_1016_j_autcon_2024_105470 crossref_primary_10_1088_1755_1315_1101_9_092002 crossref_primary_10_1016_j_autcon_2023_104888 crossref_primary_10_1061_JCCEE5_CPENG_5744 crossref_primary_10_1007_s12205_024_1643_x crossref_primary_10_1016_j_autcon_2021_103871 crossref_primary_10_3390_drones7110666 crossref_primary_10_1002_jnm_3134 crossref_primary_10_3390_s24134205 crossref_primary_10_1007_s00371_023_02920_z crossref_primary_10_1111_mice_12714 crossref_primary_10_1007_s00170_021_07649_4 crossref_primary_10_1016_j_autcon_2024_105286 crossref_primary_10_1016_j_autcon_2022_104152 crossref_primary_10_1016_j_dibe_2022_100088 crossref_primary_10_1155_2024_1032674 crossref_primary_10_1177_15485129231170225 crossref_primary_10_1007_s41315_022_00257_9 crossref_primary_10_1016_j_autcon_2021_104034 crossref_primary_10_1016_j_autcon_2022_104674 crossref_primary_10_1016_j_isprsjprs_2023_06_013 crossref_primary_10_1007_s40430_022_03576_x crossref_primary_10_1016_j_measurement_2022_111219 crossref_primary_10_1016_j_autcon_2022_104669 crossref_primary_10_1016_j_aei_2024_102650 crossref_primary_10_1016_j_ssci_2022_105958 crossref_primary_10_3390_diagnostics12061344 crossref_primary_10_1007_s00371_023_02899_7 crossref_primary_10_3390_buildings12070952 crossref_primary_10_1016_j_jobe_2024_108943 crossref_primary_10_3390_electronics10111269 crossref_primary_10_1139_cjce_2022_0379 crossref_primary_10_1016_j_jobe_2024_109299 crossref_primary_10_1016_j_autcon_2021_103892 crossref_primary_10_1016_j_autcon_2023_104744 crossref_primary_10_1017_S0263574724000122 crossref_primary_10_1016_j_engstruct_2023_116058 crossref_primary_10_1016_j_conbuildmat_2021_123268 crossref_primary_10_1061__ASCE_CP_1943_5487_0001015 |
Cites_doi | 10.1016/j.aei.2013.09.001 10.1061/(ASCE)CP.1943-5487.0000205 10.1061/(ASCE)CP.1943-5487.0000677 10.1186/s40327-015-0029-z 10.1016/j.autcon.2011.04.016 10.1061/(ASCE)CP.1943-5487.0000027 10.1016/j.autcon.2015.02.007 10.1016/j.autcon.2017.08.031 10.1016/j.autcon.2011.05.023 10.1007/s11263-015-0816-y 10.1139/l2012-055 10.1016/j.autcon.2018.12.014 10.1016/j.aei.2011.01.003 10.1016/j.autcon.2016.08.018 10.1016/j.aei.2018.05.003 10.1016/j.autcon.2018.11.033 10.1061/(ASCE)CO.1943-7862.0000974 10.1016/j.autcon.2013.03.005 10.1111/mice.12385 10.1061/(ASCE)CO.1943-7862.0000438 10.1016/j.autcon.2016.05.008 10.22260/ISARC2017/0116 10.1016/j.neucom.2018.09.013 10.1111/mice.12235 10.1061/(ASCE)0887-3801(2007)21:4(238) 10.1111/mice.12334 10.1111/mice.12297 10.1016/j.aei.2013.10.001 10.1016/j.autcon.2018.02.018 10.1111/j.1467-8667.2010.00690.x 10.1016/j.aei.2015.02.001 10.1016/j.autcon.2019.03.025 10.1109/ICCV.2017.146 10.1016/j.autcon.2016.11.009 10.1016/j.aei.2013.11.002 10.1111/j.1467-8667.2008.00580.x 10.1016/j.autcon.2018.04.002 10.1111/mice.12440 10.1109/ICPR.2018.8545614 10.1016/j.autcon.2017.06.014 10.3846/jcem.2018.6133 10.1111/mice.12174 10.1061/(ASCE)CP.1943-5487.0000562 10.1061/(ASCE)CP.1943-5487.0000731 10.1108/CI-12-2012-0063 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Jul 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Jul 2020 |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.autcon.2020.103198 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1872-7891 |
ExternalDocumentID | 10_1016_j_autcon_2020_103198 S0926580519311653 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c334t-8267b14adad7d73a8e0656259d5d7fad9d69380e18bd0f281cb1da5ce74d85373 |
ISSN | 0926-5805 |
IngestDate | Thu Oct 10 20:18:51 EDT 2024 Thu Sep 26 19:39:00 EDT 2024 Fri Feb 23 02:47:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data augmentation UAV GAN Construction resource detection On-site management |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c334t-8267b14adad7d73a8e0656259d5d7fad9d69380e18bd0f281cb1da5ce74d85373 |
PQID | 2437187549 |
PQPubID | 2045277 |
ParticipantIDs | proquest_journals_2437187549 crossref_primary_10_1016_j_autcon_2020_103198 elsevier_sciencedirect_doi_10_1016_j_autcon_2020_103198 |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Automation in construction |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Elasal, Swart, Miller (bb0180) 2018; 4 Zou, Kim (bb0065) 2007; 21 Dutta, Zissermann (bb0285) 2019 Ham, Han, Lin, Golparvar-Fard (bb0155) 2016; 4 Bang, Kim, Kim (bb0165) 2017; 84 Frid-Adar, Diamant, Klang, Amitai, Goldberger, Greenspan (bb0270) 2018; 321 Tang, Chen, Shen, Ganapathy (bb0040) 2016; 31 Cha, Choi, Suh, Mahmoudkhani, Büyüköztürk (bb0150) 2018; 33 Chi, Caldas, Kim (bb0105) 2009; 24 Kim, Kim, Kim (bb0210) 2016; 71 Zhang, Wang, Li, Yang, Dai, Peng, Fei, Liu, Li, Chen (bb0140) 2017; 32 Yang (bb0215) 2018; 24 Seo, Han, Lee, Kim (bb0035) 2015; 29 Kuznetsova, Rom, Alldrin, Uijlings, Krasin, Pont-Tuset, Kamali, Popov, Malloci, Duerig (bb0135) 2018 Park, Elsafty, Zhu (bb0030) 2015; 141 Golparvar-Fard, Peña-Mora, Savarese (bb0050) 2012; 29 Chi, Caldas (bb0100) 2011; 26 Zhou, Khosla, Lapedriza, Torralba, Oliva (bb0280) 2016 . Turkan, Bosché, T. Haas, Haas (bb0095) 2014; 14 Hamledari, McCabe, Davari (bb0205) 2017; 74 Son, Choi, Seong, Kim (bb0230) 2019; 99 Wang, Chen, Yin (bb0160) 2016; 72 Y. Annadani, C. Jawahar, Augment and adapt: A simple approach to image tampering detection, 24th International Conference on Pattern Recognition (ICPR 2018), Beijing, China, IEEE, pp. 2983–2988 Gong, Caldas (bb0055) 2009; 24 Han, Lin, Golparvar-Fard (bb0080) 2015 Han, Golparvar-Fard (bb0200) 2015; 53 Kim, Bang, Jeong, Ham, Kim (bb0060) 2018; 92 Brilakis, Park, Jog (bb0185) 2011; 25 Karras, Laine, Aila (bb0275) 2018 Fang, Ding, Luo, Love (bb0010) 2018; 91 Krizhevsky, Sutskever, Hinton (bb0220) 2012 Son, Kim, Hwang, Kim, Kang (bb0195) 2014; 28 Yang, Li, Huang, Zhai, Wang, Wang (bb0110) 2018; 33 Golparvar-Fard, Heydarian, Niebles (bb0115) 2013; 27 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bb0125) 2015; 115 Bang, Park, Kim, Kim (bb0145) 2019; 34 Fang, Ding, Zhong, Love, Luo (bb0015) 2018; 37 Kim, Kim, Kim (bb0020) 2015; 30 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bb0130) 2014 Kim, Kim, Hong, Byun (bb0225) 2017; 32 Bi, Kim, Kumar, Feng, Fulham (bb0265) 2017 Kim, Kim, Kim (bb0085) 2013; 35 Inoue (bb0250) 2018 D. Dwibedi, I. Misra, M. Hebert, Cut, paste and learn: Surprisingly easy synthesis for instance detection, The IEEE international conference on computer vision (ICCV 2017), Venice, Italy, arXiv preprint Wong, Gatt, Stamatescu, McDonnell (bb0255) 2016 Golparvar-Fard, Bohn, Teizer, Savarese, Peña-Mora (bb0075) 2011; 20 Kim, Chi (bb0235) 2019; 104 Kim, Kim, Kim (bb0025) 2017; 83 Kim, Liu, Lee, Kamat (bb0170) 2019; 99 S. Bang, H. Kim, H. Kim, Vision-based 2D map generation for monitoring construction sites using UAV videos, 34th International Symposium on Automation and Robotics in Construction (ISARC 2017), Taipei, Taiwan, pp. 830–833, doi Dimitrov, Golparvar-Fard (bb0190) 2014; 28 Klein, Li, Becerik-Gerber (bb0090) 2012; 21 Kim, Chi (bb0120) 2017; 31 Ahmed, Haas, Haas (bb0070) 2012; 39 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bb0260) 2014 Chi, Caldas (bb0005) 2011; 138 Bügler, Borrmann, Ogunmakin, Vela, Teizer (bb0045) 2017; 32 Turkan (10.1016/j.autcon.2020.103198_bb0095) 2014; 14 Han (10.1016/j.autcon.2020.103198_bb0080) 2015 Krizhevsky (10.1016/j.autcon.2020.103198_bb0220) 2012 Wang (10.1016/j.autcon.2020.103198_bb0160) 2016; 72 Klein (10.1016/j.autcon.2020.103198_bb0090) 2012; 21 Bang (10.1016/j.autcon.2020.103198_bb0165) 2017; 84 Dimitrov (10.1016/j.autcon.2020.103198_bb0190) 2014; 28 Yang (10.1016/j.autcon.2020.103198_bb0110) 2018; 33 Kuznetsova (10.1016/j.autcon.2020.103198_bb0135) 2018 Zhang (10.1016/j.autcon.2020.103198_bb0140) 2017; 32 Bang (10.1016/j.autcon.2020.103198_bb0145) 2019; 34 Kim (10.1016/j.autcon.2020.103198_bb0025) 2017; 83 Gong (10.1016/j.autcon.2020.103198_bb0055) 2009; 24 Ham (10.1016/j.autcon.2020.103198_bb0155) 2016; 4 Bügler (10.1016/j.autcon.2020.103198_bb0045) 2017; 32 Russakovsky (10.1016/j.autcon.2020.103198_bb0125) 2015; 115 Kim (10.1016/j.autcon.2020.103198_bb0210) 2016; 71 Wong (10.1016/j.autcon.2020.103198_bb0255) 2016 Kim (10.1016/j.autcon.2020.103198_bb0085) 2013; 35 Park (10.1016/j.autcon.2020.103198_bb0030) 2015; 141 Yang (10.1016/j.autcon.2020.103198_bb0215) 2018; 24 Lin (10.1016/j.autcon.2020.103198_bb0130) 2014 Tang (10.1016/j.autcon.2020.103198_bb0040) 2016; 31 Kim (10.1016/j.autcon.2020.103198_bb0060) 2018; 92 Chi (10.1016/j.autcon.2020.103198_bb0100) 2011; 26 Fang (10.1016/j.autcon.2020.103198_bb0015) 2018; 37 Seo (10.1016/j.autcon.2020.103198_bb0035) 2015; 29 Cha (10.1016/j.autcon.2020.103198_bb0150) 2018; 33 Han (10.1016/j.autcon.2020.103198_bb0200) 2015; 53 Kim (10.1016/j.autcon.2020.103198_bb0120) 2017; 31 Golparvar-Fard (10.1016/j.autcon.2020.103198_bb0075) 2011; 20 Fang (10.1016/j.autcon.2020.103198_bb0010) 2018; 91 Goodfellow (10.1016/j.autcon.2020.103198_bb0260) 2014 10.1016/j.autcon.2020.103198_bb0245 Inoue (10.1016/j.autcon.2020.103198_bb0250) 2018 Hamledari (10.1016/j.autcon.2020.103198_bb0205) 2017; 74 Bi (10.1016/j.autcon.2020.103198_bb0265) 2017 Frid-Adar (10.1016/j.autcon.2020.103198_bb0270) 2018; 321 Brilakis (10.1016/j.autcon.2020.103198_bb0185) 2011; 25 Zou (10.1016/j.autcon.2020.103198_bb0065) 2007; 21 Ahmed (10.1016/j.autcon.2020.103198_bb0070) 2012; 39 10.1016/j.autcon.2020.103198_bb0175 Dutta (10.1016/j.autcon.2020.103198_bb0285) 2019 Son (10.1016/j.autcon.2020.103198_bb0195) 2014; 28 Karras (10.1016/j.autcon.2020.103198_bb0275) 2018 Chi (10.1016/j.autcon.2020.103198_bb0005) 2011; 138 Kim (10.1016/j.autcon.2020.103198_bb0020) 2015; 30 Chi (10.1016/j.autcon.2020.103198_bb0105) 2009; 24 Son (10.1016/j.autcon.2020.103198_bb0230) 2019; 99 Kim (10.1016/j.autcon.2020.103198_bb0235) 2019; 104 Elasal (10.1016/j.autcon.2020.103198_bb0180) 2018; 4 Kim (10.1016/j.autcon.2020.103198_bb0170) 2019; 99 Golparvar-Fard (10.1016/j.autcon.2020.103198_bb0115) 2013; 27 Kim (10.1016/j.autcon.2020.103198_bb0225) 2017; 32 Zhou (10.1016/j.autcon.2020.103198_bb0280) 2016 Golparvar-Fard (10.1016/j.autcon.2020.103198_bb0050) 2012; 29 10.1016/j.autcon.2020.103198_bb0240 |
References_xml | – volume: 83 start-page: 390 year: 2017 end-page: 403 ident: bb0025 article-title: Image-based construction hazard avoidance system using augmented reality in wearable device publication-title: Autom. Constr. contributor: fullname: Kim – volume: 25 start-page: 713 year: 2011 end-page: 724 ident: bb0185 article-title: Automated vision tracking of project related entities publication-title: Adv. Eng. Inform. contributor: fullname: Jog – volume: 32 year: 2017 ident: bb0225 article-title: Detecting construction equipment using a region-based fully convolutional network and transfer learning publication-title: J. Comput. Civ. Eng. contributor: fullname: Byun – volume: 31 start-page: 65 year: 2016 end-page: 80 ident: bb0040 article-title: A spatial-context-based approach for automated spatial change analysis of piece-wise linear building elements publication-title: Computer-Aided Civil and Infrastructure Engineering contributor: fullname: Ganapathy – start-page: 119 year: 2015 end-page: 131 ident: bb0080 article-title: A formalism for utilization of autonomous vision-based systems and integrated project models for construction progress monitoring publication-title: Conference on Autonomous and Robotic Construction of Infrastructure, Ames, IA, USA contributor: fullname: Golparvar-Fard – year: 2018 ident: bb0135 article-title: The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale publication-title: arXiv preprint arXiv:1811.00982 contributor: fullname: Duerig – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bb0125 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. contributor: fullname: Bernstein – volume: 34 start-page: 1 year: 2019 end-page: 15 ident: bb0145 article-title: Encoder–decoder network for pixel-level road crack detection in black-box images publication-title: Computer-Aided Civil and Infrastructure Engineering contributor: fullname: Kim – start-page: 1097 year: 2012 end-page: 1105 ident: bb0220 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems contributor: fullname: Hinton – volume: 4 start-page: 1 year: 2016 end-page: 8 ident: bb0155 article-title: Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): a review of related works publication-title: Visualization in Engineering contributor: fullname: Golparvar-Fard – year: 2018 ident: bb0275 article-title: A style-based generator architecture for generative adversarial networks publication-title: arXiv Preprint arXiv:1812.04948 contributor: fullname: Aila – year: 2016 ident: bb0280 article-title: Places: an image database for deep scene understanding publication-title: arXiv Preprint arXiv:1610.02055 contributor: fullname: Oliva – year: 2019 ident: bb0285 article-title: VGG image annotator (VIA) publication-title: arXiv Preprint arXiv:1904.10699 contributor: fullname: Zissermann – volume: 39 start-page: 1062 year: 2012 end-page: 1071 ident: bb0070 article-title: Using digital photogrammetry for pipe-works progress tracking publication-title: Can. J. Civ. Eng. contributor: fullname: Haas – volume: 14 start-page: 145 year: 2014 end-page: 167 ident: bb0095 article-title: Tracking of secondary and temporary objects in structural concrete work publication-title: Constr. Innov. contributor: fullname: Haas – volume: 72 start-page: 294 year: 2016 end-page: 308 ident: bb0160 article-title: Detecting and tracking vehicles in traffic by unmanned aerial vehicles publication-title: Autom. Constr. contributor: fullname: Yin – volume: 53 start-page: 44 year: 2015 end-page: 57 ident: bb0200 article-title: Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs publication-title: Autom. Constr. contributor: fullname: Golparvar-Fard – volume: 99 start-page: 168 year: 2019 end-page: 182 ident: bb0170 article-title: Remote proximity monitoring between mobile construction resources using camera-mounted UAVs publication-title: Autom. Constr. contributor: fullname: Kamat – year: 2018 ident: bb0250 article-title: Data augmentation by pairing samples for images classification publication-title: arXiv preprint arXiv:1801.02929 contributor: fullname: Inoue – volume: 32 start-page: 107 year: 2017 end-page: 123 ident: bb0045 article-title: Fusion of photogrammetry and video analysis for productivity assessment of earthwork processes publication-title: Computer-Aided Civil and Infrastructure Engineering contributor: fullname: Teizer – volume: 24 start-page: 252 year: 2009 end-page: 263 ident: bb0055 article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations publication-title: J. Comput. Civ. Eng. contributor: fullname: Caldas – volume: 24 start-page: 568 year: 2018 end-page: 580 ident: bb0215 article-title: Enhancing action recognition of construction workers using data-driven scene parsing publication-title: J. Civ. Eng. Manag. contributor: fullname: Yang – volume: 141 year: 2015 ident: bb0030 article-title: Hardhat-wearing detection for enhancing on-site safety of construction workers publication-title: J. Constr. Eng. Manag. contributor: fullname: Zhu – volume: 27 start-page: 652 year: 2013 end-page: 663 ident: bb0115 article-title: Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers publication-title: Adv. Eng. Inform. contributor: fullname: Niebles – volume: 28 start-page: 1 year: 2014 end-page: 10 ident: bb0195 article-title: Classification of major construction materials in construction environments using ensemble classifiers publication-title: Adv. Eng. Inform. contributor: fullname: Kang – start-page: 2672 year: 2014 end-page: 2680 ident: bb0260 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Proces. Syst. contributor: fullname: Bengio – volume: 91 start-page: 53 year: 2018 end-page: 61 ident: bb0010 article-title: Falls from heights: a computer vision-based approach for safety harness detection publication-title: Autom. Constr. contributor: fullname: Love – volume: 31 year: 2017 ident: bb0120 article-title: Adaptive detector and tracker on construction sites using functional integration and online learning publication-title: J. Comput. Civ. Eng. contributor: fullname: Chi – volume: 99 start-page: 27 year: 2019 end-page: 38 ident: bb0230 article-title: Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks publication-title: Autom. Constr. contributor: fullname: Kim – volume: 26 start-page: 368 year: 2011 end-page: 380 ident: bb0100 article-title: Automated object identification using optical video cameras on construction sites publication-title: Computer-Aided Civil and Infrastructure Engineering contributor: fullname: Caldas – volume: 92 start-page: 188 year: 2018 end-page: 198 ident: bb0060 article-title: Analyzing context and productivity of tunnel earthmoving processes using imaging and simulation publication-title: Autom. Constr. contributor: fullname: Kim – volume: 29 year: 2012 ident: bb0050 article-title: Automated progress monitoring using unordered daily construction photographs and IFC-based building information models publication-title: J. Comput. Civ. Eng. contributor: fullname: Savarese – year: 2017 ident: bb0265 article-title: Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs) publication-title: arXiv preprint arXiv:1707.09747 contributor: fullname: Fulham – volume: 104 start-page: 255 year: 2019 end-page: 264 ident: bb0235 article-title: Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles publication-title: Autom. Constr. contributor: fullname: Chi – volume: 84 start-page: 70 year: 2017 end-page: 80 ident: bb0165 article-title: UAV-based automatic generation of high-resolution panorama at a construction site with a focus on preprocessing for image stitching publication-title: Autom. Constr. contributor: fullname: Kim – volume: 32 start-page: 805 year: 2017 end-page: 819 ident: bb0140 article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network publication-title: Computer-Aided Civil and Infrastructure Engineering contributor: fullname: Chen – start-page: 740 year: 2014 end-page: 755 ident: bb0130 article-title: Microsoft COCO: Common objects in context publication-title: Proceedings of the 2014 European Conference on Computer Vision (ECCV), Zurich, CH contributor: fullname: Zitnick – year: 2016 ident: bb0255 article-title: Understanding data augmentation for classification: when to warp? publication-title: arXiv preprint arXiv:1609.08764 contributor: fullname: McDonnell – volume: 29 start-page: 239 year: 2015 end-page: 251 ident: bb0035 article-title: Computer vision techniques for construction safety and health monitoring publication-title: Adv. Eng. Inform. contributor: fullname: Kim – volume: 321 start-page: 321 year: 2018 end-page: 331 ident: bb0270 article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification publication-title: Neurocomputing contributor: fullname: Greenspan – volume: 35 start-page: 44 year: 2013 end-page: 52 ident: bb0085 article-title: 4D CAD model updating using image processing-based construction progress monitoring publication-title: Autom. Constr. contributor: fullname: Kim – volume: 20 start-page: 1143 year: 2011 end-page: 1155 ident: bb0075 article-title: Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques publication-title: Autom. Constr. contributor: fullname: Peña-Mora – volume: 21 start-page: 238 year: 2007 end-page: 246 ident: bb0065 article-title: Using hue, saturation, and value color space for hydraulic excavator idle time analysis publication-title: J. Comput. Civ. Eng. contributor: fullname: Kim – volume: 24 start-page: 199 year: 2009 end-page: 211 ident: bb0105 article-title: A methodology for object identification and tracking in construction based on spatial modeling and image matching techniques publication-title: Computer-Aided Civil and Infrastructure Engineering contributor: fullname: Kim – volume: 37 start-page: 139 year: 2018 end-page: 149 ident: bb0015 article-title: Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach publication-title: Adv. Eng. Inform. contributor: fullname: Luo – volume: 138 start-page: 341 year: 2011 end-page: 351 ident: bb0005 article-title: Image-based safety assessment: automated spatial safety risk identification of earthmoving and surface mining activities publication-title: J. Constr. Eng. Manag. contributor: fullname: Caldas – volume: 71 start-page: 271 year: 2016 end-page: 282 ident: bb0210 article-title: Data-driven scene parsing method for recognizing construction site objects in the whole image publication-title: Autom. Constr. contributor: fullname: Kim – volume: 28 start-page: 37 year: 2014 end-page: 49 ident: bb0190 article-title: Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections publication-title: Adv. Eng. Inform. contributor: fullname: Golparvar-Fard – volume: 74 start-page: 78 year: 2017 end-page: 94 ident: bb0205 article-title: Automated computer vision-based detection of components of under-construction indoor partitions publication-title: Autom. Constr. contributor: fullname: Davari – volume: 30 year: 2015 ident: bb0020 article-title: Vision-based object-centric safety assessment using fuzzy inference: monitoring struck-by accidents with moving objects publication-title: J. Comput. Civ. Eng. contributor: fullname: Kim – volume: 33 start-page: 1110 year: 2018 end-page: 1126 ident: bb0110 article-title: Computer-aided optimization of surveillance cameras placement on construction sites publication-title: Computer-Aided Civil and Infrastructure Engineering contributor: fullname: Wang – volume: 4 year: 2018 ident: bb0180 article-title: Frame augmentation for imbalanced object detection datasets publication-title: Journal of Computational Vision and Imaging Systems contributor: fullname: Miller – volume: 33 start-page: 731 year: 2018 end-page: 747 ident: bb0150 article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types publication-title: Computer-Aided Civil and Infrastructure Engineering contributor: fullname: Büyüköztürk – volume: 21 start-page: 161 year: 2012 end-page: 171 ident: bb0090 article-title: Imaged-based verification of as-built documentation of operational buildings publication-title: Autom. Constr. contributor: fullname: Becerik-Gerber – volume: 27 start-page: 652 issue: 4 year: 2013 ident: 10.1016/j.autcon.2020.103198_bb0115 article-title: Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2013.09.001 contributor: fullname: Golparvar-Fard – volume: 29 issue: 1 year: 2012 ident: 10.1016/j.autcon.2020.103198_bb0050 article-title: Automated progress monitoring using unordered daily construction photographs and IFC-based building information models publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000205 contributor: fullname: Golparvar-Fard – volume: 31 issue: 5 year: 2017 ident: 10.1016/j.autcon.2020.103198_bb0120 article-title: Adaptive detector and tracker on construction sites using functional integration and online learning publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000677 contributor: fullname: Kim – volume: 4 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.autcon.2020.103198_bb0155 article-title: Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): a review of related works publication-title: Visualization in Engineering doi: 10.1186/s40327-015-0029-z contributor: fullname: Ham – volume: 20 start-page: 1143 issue: 8 year: 2011 ident: 10.1016/j.autcon.2020.103198_bb0075 article-title: Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques publication-title: Autom. Constr. doi: 10.1016/j.autcon.2011.04.016 contributor: fullname: Golparvar-Fard – volume: 24 start-page: 252 issue: 3 year: 2009 ident: 10.1016/j.autcon.2020.103198_bb0055 article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000027 contributor: fullname: Gong – volume: 53 start-page: 44 year: 2015 ident: 10.1016/j.autcon.2020.103198_bb0200 article-title: Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.02.007 contributor: fullname: Han – volume: 84 start-page: 70 year: 2017 ident: 10.1016/j.autcon.2020.103198_bb0165 article-title: UAV-based automatic generation of high-resolution panorama at a construction site with a focus on preprocessing for image stitching publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.08.031 contributor: fullname: Bang – volume: 21 start-page: 161 year: 2012 ident: 10.1016/j.autcon.2020.103198_bb0090 article-title: Imaged-based verification of as-built documentation of operational buildings publication-title: Autom. Constr. doi: 10.1016/j.autcon.2011.05.023 contributor: fullname: Klein – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.autcon.2020.103198_bb0125 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y contributor: fullname: Russakovsky – volume: 39 start-page: 1062 issue: 9 year: 2012 ident: 10.1016/j.autcon.2020.103198_bb0070 article-title: Using digital photogrammetry for pipe-works progress tracking publication-title: Can. J. Civ. Eng. doi: 10.1139/l2012-055 contributor: fullname: Ahmed – volume: 99 start-page: 168 year: 2019 ident: 10.1016/j.autcon.2020.103198_bb0170 article-title: Remote proximity monitoring between mobile construction resources using camera-mounted UAVs publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.12.014 contributor: fullname: Kim – volume: 25 start-page: 713 issue: 4 year: 2011 ident: 10.1016/j.autcon.2020.103198_bb0185 article-title: Automated vision tracking of project related entities publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2011.01.003 contributor: fullname: Brilakis – year: 2016 ident: 10.1016/j.autcon.2020.103198_bb0280 article-title: Places: an image database for deep scene understanding contributor: fullname: Zhou – start-page: 1097 year: 2012 ident: 10.1016/j.autcon.2020.103198_bb0220 article-title: Imagenet classification with deep convolutional neural networks contributor: fullname: Krizhevsky – volume: 71 start-page: 271 year: 2016 ident: 10.1016/j.autcon.2020.103198_bb0210 article-title: Data-driven scene parsing method for recognizing construction site objects in the whole image publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.08.018 contributor: fullname: Kim – year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0135 article-title: The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale contributor: fullname: Kuznetsova – volume: 4 issue: 1 year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0180 article-title: Frame augmentation for imbalanced object detection datasets publication-title: Journal of Computational Vision and Imaging Systems contributor: fullname: Elasal – volume: 37 start-page: 139 year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0015 article-title: Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.05.003 contributor: fullname: Fang – year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0275 article-title: A style-based generator architecture for generative adversarial networks contributor: fullname: Karras – volume: 99 start-page: 27 year: 2019 ident: 10.1016/j.autcon.2020.103198_bb0230 article-title: Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.11.033 contributor: fullname: Son – volume: 141 issue: 9 year: 2015 ident: 10.1016/j.autcon.2020.103198_bb0030 article-title: Hardhat-wearing detection for enhancing on-site safety of construction workers publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0000974 contributor: fullname: Park – volume: 35 start-page: 44 year: 2013 ident: 10.1016/j.autcon.2020.103198_bb0085 article-title: 4D CAD model updating using image processing-based construction progress monitoring publication-title: Autom. Constr. doi: 10.1016/j.autcon.2013.03.005 contributor: fullname: Kim – start-page: 740 year: 2014 ident: 10.1016/j.autcon.2020.103198_bb0130 article-title: Microsoft COCO: Common objects in context contributor: fullname: Lin – start-page: 2672 year: 2014 ident: 10.1016/j.autcon.2020.103198_bb0260 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Proces. Syst. contributor: fullname: Goodfellow – volume: 33 start-page: 1110 issue: 12 year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0110 article-title: Computer-aided optimization of surveillance cameras placement on construction sites publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12385 contributor: fullname: Yang – year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0250 article-title: Data augmentation by pairing samples for images classification contributor: fullname: Inoue – volume: 138 start-page: 341 issue: 3 year: 2011 ident: 10.1016/j.autcon.2020.103198_bb0005 article-title: Image-based safety assessment: automated spatial safety risk identification of earthmoving and surface mining activities publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0000438 contributor: fullname: Chi – volume: 72 start-page: 294 issue: 3 year: 2016 ident: 10.1016/j.autcon.2020.103198_bb0160 article-title: Detecting and tracking vehicles in traffic by unmanned aerial vehicles publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.05.008 contributor: fullname: Wang – start-page: 119 year: 2015 ident: 10.1016/j.autcon.2020.103198_bb0080 article-title: A formalism for utilization of autonomous vision-based systems and integrated project models for construction progress monitoring contributor: fullname: Han – ident: 10.1016/j.autcon.2020.103198_bb0175 doi: 10.22260/ISARC2017/0116 – volume: 321 start-page: 321 year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0270 article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 contributor: fullname: Frid-Adar – volume: 32 start-page: 107 issue: 2 year: 2017 ident: 10.1016/j.autcon.2020.103198_bb0045 article-title: Fusion of photogrammetry and video analysis for productivity assessment of earthwork processes publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12235 contributor: fullname: Bügler – volume: 21 start-page: 238 issue: 4 year: 2007 ident: 10.1016/j.autcon.2020.103198_bb0065 article-title: Using hue, saturation, and value color space for hydraulic excavator idle time analysis publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2007)21:4(238) contributor: fullname: Zou – volume: 33 start-page: 731 issue: 9 year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0150 article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12334 contributor: fullname: Cha – volume: 32 start-page: 805 issue: 10 year: 2017 ident: 10.1016/j.autcon.2020.103198_bb0140 article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12297 contributor: fullname: Zhang – volume: 28 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.autcon.2020.103198_bb0195 article-title: Classification of major construction materials in construction environments using ensemble classifiers publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2013.10.001 contributor: fullname: Son – volume: 91 start-page: 53 year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0010 article-title: Falls from heights: a computer vision-based approach for safety harness detection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.02.018 contributor: fullname: Fang – volume: 26 start-page: 368 issue: 5 year: 2011 ident: 10.1016/j.autcon.2020.103198_bb0100 article-title: Automated object identification using optical video cameras on construction sites publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2010.00690.x contributor: fullname: Chi – year: 2017 ident: 10.1016/j.autcon.2020.103198_bb0265 article-title: Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs) contributor: fullname: Bi – volume: 29 start-page: 239 issue: 2 year: 2015 ident: 10.1016/j.autcon.2020.103198_bb0035 article-title: Computer vision techniques for construction safety and health monitoring publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2015.02.001 contributor: fullname: Seo – volume: 104 start-page: 255 year: 2019 ident: 10.1016/j.autcon.2020.103198_bb0235 article-title: Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.03.025 contributor: fullname: Kim – ident: 10.1016/j.autcon.2020.103198_bb0245 doi: 10.1109/ICCV.2017.146 – volume: 74 start-page: 78 year: 2017 ident: 10.1016/j.autcon.2020.103198_bb0205 article-title: Automated computer vision-based detection of components of under-construction indoor partitions publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.11.009 contributor: fullname: Hamledari – volume: 28 start-page: 37 issue: 1 year: 2014 ident: 10.1016/j.autcon.2020.103198_bb0190 article-title: Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2013.11.002 contributor: fullname: Dimitrov – volume: 24 start-page: 199 issue: 3 year: 2009 ident: 10.1016/j.autcon.2020.103198_bb0105 article-title: A methodology for object identification and tracking in construction based on spatial modeling and image matching techniques publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2008.00580.x contributor: fullname: Chi – volume: 92 start-page: 188 year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0060 article-title: Analyzing context and productivity of tunnel earthmoving processes using imaging and simulation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.04.002 contributor: fullname: Kim – volume: 34 start-page: 1 issue: 8 year: 2019 ident: 10.1016/j.autcon.2020.103198_bb0145 article-title: Encoder–decoder network for pixel-level road crack detection in black-box images publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12440 contributor: fullname: Bang – ident: 10.1016/j.autcon.2020.103198_bb0240 doi: 10.1109/ICPR.2018.8545614 – volume: 83 start-page: 390 year: 2017 ident: 10.1016/j.autcon.2020.103198_bb0025 article-title: Image-based construction hazard avoidance system using augmented reality in wearable device publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.06.014 contributor: fullname: Kim – volume: 24 start-page: 568 issue: 7 year: 2018 ident: 10.1016/j.autcon.2020.103198_bb0215 article-title: Enhancing action recognition of construction workers using data-driven scene parsing publication-title: J. Civ. Eng. Manag. doi: 10.3846/jcem.2018.6133 contributor: fullname: Yang – year: 2016 ident: 10.1016/j.autcon.2020.103198_bb0255 article-title: Understanding data augmentation for classification: when to warp? contributor: fullname: Wong – volume: 31 start-page: 65 issue: 1 year: 2016 ident: 10.1016/j.autcon.2020.103198_bb0040 article-title: A spatial-context-based approach for automated spatial change analysis of piece-wise linear building elements publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12174 contributor: fullname: Tang – volume: 30 issue: 4 year: 2015 ident: 10.1016/j.autcon.2020.103198_bb0020 article-title: Vision-based object-centric safety assessment using fuzzy inference: monitoring struck-by accidents with moving objects publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000562 contributor: fullname: Kim – year: 2019 ident: 10.1016/j.autcon.2020.103198_bb0285 article-title: VGG image annotator (VIA) contributor: fullname: Dutta – volume: 32 issue: 2 year: 2017 ident: 10.1016/j.autcon.2020.103198_bb0225 article-title: Detecting construction equipment using a region-based fully convolutional network and transfer learning publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000731 contributor: fullname: Kim – volume: 14 start-page: 145 issue: 2 year: 2014 ident: 10.1016/j.autcon.2020.103198_bb0095 article-title: Tracking of secondary and temporary objects in structural concrete work publication-title: Constr. Innov. doi: 10.1108/CI-12-2012-0063 contributor: fullname: Turkan |
SSID | ssj0007069 |
Score | 2.5603876 |
Snippet | The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 103198 |
SubjectTerms | Artificial neural networks Augmentation Construction resource detection Construction sites Data augmentation Datasets GAN Generative adversarial networks Image acquisition Image reconstruction Object recognition On-site management UAV Unmanned aerial vehicles |
Title | Image augmentation to improve construction resource detection using generative adversarial networks, cut-and-paste, and image transformation techniques |
URI | https://dx.doi.org/10.1016/j.autcon.2020.103198 https://www.proquest.com/docview/2437187549 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWm0wWwQFBALRTkBbvW0iRxYmc5gkEtC4Q0RXQXObYzmqJJKpJ8C7_L9StJO0I8JDZWZE3iKOeMc-7NfSD0diF4UuWxJjGtOKEShhKENYnjqowSkarM-iEv1uzTNX-_oqvZLHQgHOf-K9IwB1ibzNm_QHu4KEzAMWAOI6AO4x_hfrkzUTii3-x8VlFt5OXW-g5sZPpQMfbsu3fdnyndaTfVW9fBxtaitkFFwjRsboXt7VG7kHGLvOw7ImpFbkXrGuzZjxB27W6ihc3qoUpsOxXCy75r_A9sJPx4W6Nv1XuydVNvlG7GlCKhvwXNLbeDTfDZR32vm912Elpg-f61gWehpx4OMGdDNKx3u-2l3jj_ZZyRlC_cJ3Htdm_OwFzgrv3XsL27dNG9V4XzWtyYQCHjeTALmwoEkWuKfa8I99osZ1YDvWsKFiUH6DCGrS2do8Pl5er64_D2Z4vM1Xf0txfSNW1M4f5av5JD94SBVTtXT9Bjb6bgpePXUzTT9RF6ELLY2yP0aFLI8hn6YVmHp6zDXYM96_AUXhxYhwfWYcs6PLIOT1iHA-vO8R3OnWM4xJZx-C7j8Mi45-jLh9XVuwviW34QmSS0I2DssjKiQgnFFEsE1yCRjYmuUsUqoXKV5Qlf6IiXalHFPJJlpEQqNaMKhCdLXqB53dT6GOFUwOl5BfqTSZpQKUqQ2jJNdSwlFZk8QSQ8-eLWVXYpQsjjTeGQKgxShUPqBLEAT-HVqVOdBTDqN2eeBjQLv1O0hSkECnxNaf7yny_8Cj0c_y-naA5I6tfooFX9G0_Ln-vfx3E |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+augmentation+to+improve+construction+resource+detection+using+generative+adversarial+networks%2C+cut-and-paste%2C+and+image+transformation+techniques&rft.jtitle=Automation+in+construction&rft.au=Bang%2C+Seongdeok&rft.au=Baek%2C+Francis&rft.au=Park%2C+Somin&rft.au=Kim%2C+Wontae&rft.date=2020-07-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=115&rft_id=info:doi/10.1016%2Fj.autcon.2020.103198&rft.externalDocID=S0926580519311653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |