Image augmentation to improve construction resource detection using generative adversarial networks, cut-and-paste, and image transformation techniques

The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three techniques: removing-and-inpainting, cut-and-paste, and image-variation. The removing-and-inpainting technique arbitrarily removes objects fro...

Full description

Saved in:
Bibliographic Details
Published in:Automation in construction Vol. 115; p. 103198
Main Authors: Bang, Seongdeok, Baek, Francis, Park, Somin, Kim, Wontae, Kim, Hyoungkwan
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-07-2020
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three techniques: removing-and-inpainting, cut-and-paste, and image-variation. The removing-and-inpainting technique arbitrarily removes objects from images and reconstructs the removed regions via generative adversarial networks (GAN). The cut-and-paste technique extracts objects from the original dataset and places them into the reconstructed images via the previous technique. The image-variation technique applies three image transformation techniques, intensity-, blur- and scale-variation, to the images. To evaluate the method, 656 unmanned aerial vehicle (UAV)-acquired construction site images were used as the original dataset. A faster region-based convolutional neural network (Faster R-CNN) trained with the augmented training dataset achieves better performance, which is higher than that of a network trained with the original dataset. These results prove that the method is optimal for improving construction resource detection in UAV-acquired images. •The method constructs a dataset for improving construction resource detection.•The removing-and-inpainting removes objects and reconstructs regions via GAN.•The cut-and-paste extracts objects and places them into the images.•The image-variation applies intensity-, blur- and scale-variation to the images.•A faster R-CNN trained with the augmented dataset achieves the best performance.
AbstractList The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three techniques: removing-and-inpainting, cut-and-paste, and image-variation. The removing-and-inpainting technique arbitrarily removes objects from images and reconstructs the removed regions via generative adversarial networks (GAN). The cut-and-paste technique extracts objects from the original dataset and places them into the reconstructed images via the previous technique. The image-variation technique applies three image transformation techniques, intensity-, blur- and scale-variation, to the images. To evaluate the method, 656 unmanned aerial vehicle (UAV)-acquired construction site images were used as the original dataset. A faster region-based convolutional neural network (Faster R-CNN) trained with the augmented training dataset achieves better performance, which is higher than that of a network trained with the original dataset. These results prove that the method is optimal for improving construction resource detection in UAV-acquired images.
The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three techniques: removing-and-inpainting, cut-and-paste, and image-variation. The removing-and-inpainting technique arbitrarily removes objects from images and reconstructs the removed regions via generative adversarial networks (GAN). The cut-and-paste technique extracts objects from the original dataset and places them into the reconstructed images via the previous technique. The image-variation technique applies three image transformation techniques, intensity-, blur- and scale-variation, to the images. To evaluate the method, 656 unmanned aerial vehicle (UAV)-acquired construction site images were used as the original dataset. A faster region-based convolutional neural network (Faster R-CNN) trained with the augmented training dataset achieves better performance, which is higher than that of a network trained with the original dataset. These results prove that the method is optimal for improving construction resource detection in UAV-acquired images. •The method constructs a dataset for improving construction resource detection.•The removing-and-inpainting removes objects and reconstructs regions via GAN.•The cut-and-paste extracts objects and places them into the images.•The image-variation applies intensity-, blur- and scale-variation to the images.•A faster R-CNN trained with the augmented dataset achieves the best performance.
ArticleNumber 103198
Author Bang, Seongdeok
Baek, Francis
Kim, Hyoungkwan
Park, Somin
Kim, Wontae
Author_xml – sequence: 1
  givenname: Seongdeok
  surname: Bang
  fullname: Bang, Seongdeok
  email: bangdeok@yonsei.ac.kr
– sequence: 2
  givenname: Francis
  surname: Baek
  fullname: Baek, Francis
  email: fbaek@yonsei.ac.kr
– sequence: 3
  givenname: Somin
  surname: Park
  fullname: Park, Somin
  email: somin109@yonsei.ac.kr
– sequence: 4
  givenname: Wontae
  surname: Kim
  fullname: Kim, Wontae
  email: wontkim@hotmail.com
– sequence: 5
  givenname: Hyoungkwan
  surname: Kim
  fullname: Kim, Hyoungkwan
  email: hyoungkwan@yonsei.ac.kr
BookMark eNp9UU1LAzEUDFLBtvoPPAS8dmuyX8leBCl-FApe9BzS5G1NbZOaZCv-Ev-uWbdnT-8xvJlh3kzQyDoLCF1TMqeE1rfbueyicnaek7yHCtrwMzSmnOUZ4w0doTFp8jqrOKku0CSELSGEkboZo5_lXm4Ay26zBxtlNM7i6LDZH7w7Ak6iIfpO_eEeguu8AqwhwgB1wdgN3oAFn7iJIPURfJDeyB22EL-c_wgzrLqYSauzgwwRZjityaH3jV7a0Dq_PzmDerfms4Nwic5buQtwdZpT9Pb48Lp4zlYvT8vF_SpTRVHGjOc1W9NSaqmZZoXkQOqqzqtGV5q1Uje6bgpOgPK1Jm3OqVpTLSsFrNS8KlgxRTeDbsrb-0axTRltshR5WbD0wqps0lU5XCnvQvDQioNPAfy3oET0FYitGCoQfQViqCDR7gYapARHA14EZcAq0ManBwrtzP8Cv2Xtl_M
CitedBy_id crossref_primary_10_1016_j_autcon_2024_105265
crossref_primary_10_1111_mice_12672
crossref_primary_10_1016_j_array_2024_100343
crossref_primary_10_1145_3502287
crossref_primary_10_1016_j_autcon_2023_105060
crossref_primary_10_3389_fbuil_2020_575738
crossref_primary_10_1016_j_cscm_2023_e02132
crossref_primary_10_1016_j_engappai_2023_106564
crossref_primary_10_1016_j_autcon_2024_105504
crossref_primary_10_1111_mice_12832
crossref_primary_10_3390_agronomy13030887
crossref_primary_10_3390_s22166193
crossref_primary_10_1016_j_autcon_2021_103566
crossref_primary_10_1016_j_autcon_2022_104138
crossref_primary_10_1016_j_autcon_2023_104771
crossref_primary_10_1016_j_autcon_2023_104773
crossref_primary_10_3390_s21175767
crossref_primary_10_1007_s00138_021_01237_y
crossref_primary_10_5937_jaes0_29474
crossref_primary_10_1061__ASCE_CP_1943_5487_0000994
crossref_primary_10_1007_s00521_024_09580_7
crossref_primary_10_1016_j_eswa_2023_122046
crossref_primary_10_1016_j_engappai_2023_106458
crossref_primary_10_3390_app12146982
crossref_primary_10_3390_s22197383
crossref_primary_10_1016_j_autcon_2024_105470
crossref_primary_10_1088_1755_1315_1101_9_092002
crossref_primary_10_1016_j_autcon_2023_104888
crossref_primary_10_1061_JCCEE5_CPENG_5744
crossref_primary_10_1007_s12205_024_1643_x
crossref_primary_10_1016_j_autcon_2021_103871
crossref_primary_10_3390_drones7110666
crossref_primary_10_1002_jnm_3134
crossref_primary_10_3390_s24134205
crossref_primary_10_1007_s00371_023_02920_z
crossref_primary_10_1111_mice_12714
crossref_primary_10_1007_s00170_021_07649_4
crossref_primary_10_1016_j_autcon_2024_105286
crossref_primary_10_1016_j_autcon_2022_104152
crossref_primary_10_1016_j_dibe_2022_100088
crossref_primary_10_1155_2024_1032674
crossref_primary_10_1177_15485129231170225
crossref_primary_10_1007_s41315_022_00257_9
crossref_primary_10_1016_j_autcon_2021_104034
crossref_primary_10_1016_j_autcon_2022_104674
crossref_primary_10_1016_j_isprsjprs_2023_06_013
crossref_primary_10_1007_s40430_022_03576_x
crossref_primary_10_1016_j_measurement_2022_111219
crossref_primary_10_1016_j_autcon_2022_104669
crossref_primary_10_1016_j_aei_2024_102650
crossref_primary_10_1016_j_ssci_2022_105958
crossref_primary_10_3390_diagnostics12061344
crossref_primary_10_1007_s00371_023_02899_7
crossref_primary_10_3390_buildings12070952
crossref_primary_10_1016_j_jobe_2024_108943
crossref_primary_10_3390_electronics10111269
crossref_primary_10_1139_cjce_2022_0379
crossref_primary_10_1016_j_jobe_2024_109299
crossref_primary_10_1016_j_autcon_2021_103892
crossref_primary_10_1016_j_autcon_2023_104744
crossref_primary_10_1017_S0263574724000122
crossref_primary_10_1016_j_engstruct_2023_116058
crossref_primary_10_1016_j_conbuildmat_2021_123268
crossref_primary_10_1061__ASCE_CP_1943_5487_0001015
Cites_doi 10.1016/j.aei.2013.09.001
10.1061/(ASCE)CP.1943-5487.0000205
10.1061/(ASCE)CP.1943-5487.0000677
10.1186/s40327-015-0029-z
10.1016/j.autcon.2011.04.016
10.1061/(ASCE)CP.1943-5487.0000027
10.1016/j.autcon.2015.02.007
10.1016/j.autcon.2017.08.031
10.1016/j.autcon.2011.05.023
10.1007/s11263-015-0816-y
10.1139/l2012-055
10.1016/j.autcon.2018.12.014
10.1016/j.aei.2011.01.003
10.1016/j.autcon.2016.08.018
10.1016/j.aei.2018.05.003
10.1016/j.autcon.2018.11.033
10.1061/(ASCE)CO.1943-7862.0000974
10.1016/j.autcon.2013.03.005
10.1111/mice.12385
10.1061/(ASCE)CO.1943-7862.0000438
10.1016/j.autcon.2016.05.008
10.22260/ISARC2017/0116
10.1016/j.neucom.2018.09.013
10.1111/mice.12235
10.1061/(ASCE)0887-3801(2007)21:4(238)
10.1111/mice.12334
10.1111/mice.12297
10.1016/j.aei.2013.10.001
10.1016/j.autcon.2018.02.018
10.1111/j.1467-8667.2010.00690.x
10.1016/j.aei.2015.02.001
10.1016/j.autcon.2019.03.025
10.1109/ICCV.2017.146
10.1016/j.autcon.2016.11.009
10.1016/j.aei.2013.11.002
10.1111/j.1467-8667.2008.00580.x
10.1016/j.autcon.2018.04.002
10.1111/mice.12440
10.1109/ICPR.2018.8545614
10.1016/j.autcon.2017.06.014
10.3846/jcem.2018.6133
10.1111/mice.12174
10.1061/(ASCE)CP.1943-5487.0000562
10.1061/(ASCE)CP.1943-5487.0000731
10.1108/CI-12-2012-0063
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jul 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.autcon.2020.103198
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2020_103198
S0926580519311653
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-8267b14adad7d73a8e0656259d5d7fad9d69380e18bd0f281cb1da5ce74d85373
ISSN 0926-5805
IngestDate Thu Oct 10 20:18:51 EDT 2024
Thu Sep 26 19:39:00 EDT 2024
Fri Feb 23 02:47:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data augmentation
UAV
GAN
Construction resource detection
On-site management
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-8267b14adad7d73a8e0656259d5d7fad9d69380e18bd0f281cb1da5ce74d85373
PQID 2437187549
PQPubID 2045277
ParticipantIDs proquest_journals_2437187549
crossref_primary_10_1016_j_autcon_2020_103198
elsevier_sciencedirect_doi_10_1016_j_autcon_2020_103198
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Automation in construction
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Elasal, Swart, Miller (bb0180) 2018; 4
Zou, Kim (bb0065) 2007; 21
Dutta, Zissermann (bb0285) 2019
Ham, Han, Lin, Golparvar-Fard (bb0155) 2016; 4
Bang, Kim, Kim (bb0165) 2017; 84
Frid-Adar, Diamant, Klang, Amitai, Goldberger, Greenspan (bb0270) 2018; 321
Tang, Chen, Shen, Ganapathy (bb0040) 2016; 31
Cha, Choi, Suh, Mahmoudkhani, Büyüköztürk (bb0150) 2018; 33
Chi, Caldas, Kim (bb0105) 2009; 24
Kim, Kim, Kim (bb0210) 2016; 71
Zhang, Wang, Li, Yang, Dai, Peng, Fei, Liu, Li, Chen (bb0140) 2017; 32
Yang (bb0215) 2018; 24
Seo, Han, Lee, Kim (bb0035) 2015; 29
Kuznetsova, Rom, Alldrin, Uijlings, Krasin, Pont-Tuset, Kamali, Popov, Malloci, Duerig (bb0135) 2018
Park, Elsafty, Zhu (bb0030) 2015; 141
Golparvar-Fard, Peña-Mora, Savarese (bb0050) 2012; 29
Chi, Caldas (bb0100) 2011; 26
Zhou, Khosla, Lapedriza, Torralba, Oliva (bb0280) 2016
.
Turkan, Bosché, T. Haas, Haas (bb0095) 2014; 14
Hamledari, McCabe, Davari (bb0205) 2017; 74
Son, Choi, Seong, Kim (bb0230) 2019; 99
Wang, Chen, Yin (bb0160) 2016; 72
Y. Annadani, C. Jawahar, Augment and adapt: A simple approach to image tampering detection, 24th International Conference on Pattern Recognition (ICPR 2018), Beijing, China, IEEE, pp. 2983–2988
Gong, Caldas (bb0055) 2009; 24
Han, Lin, Golparvar-Fard (bb0080) 2015
Han, Golparvar-Fard (bb0200) 2015; 53
Kim, Bang, Jeong, Ham, Kim (bb0060) 2018; 92
Brilakis, Park, Jog (bb0185) 2011; 25
Karras, Laine, Aila (bb0275) 2018
Fang, Ding, Luo, Love (bb0010) 2018; 91
Krizhevsky, Sutskever, Hinton (bb0220) 2012
Son, Kim, Hwang, Kim, Kang (bb0195) 2014; 28
Yang, Li, Huang, Zhai, Wang, Wang (bb0110) 2018; 33
Golparvar-Fard, Heydarian, Niebles (bb0115) 2013; 27
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bb0125) 2015; 115
Bang, Park, Kim, Kim (bb0145) 2019; 34
Fang, Ding, Zhong, Love, Luo (bb0015) 2018; 37
Kim, Kim, Kim (bb0020) 2015; 30
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bb0130) 2014
Kim, Kim, Hong, Byun (bb0225) 2017; 32
Bi, Kim, Kumar, Feng, Fulham (bb0265) 2017
Kim, Kim, Kim (bb0085) 2013; 35
Inoue (bb0250) 2018
D. Dwibedi, I. Misra, M. Hebert, Cut, paste and learn: Surprisingly easy synthesis for instance detection, The IEEE international conference on computer vision (ICCV 2017), Venice, Italy, arXiv preprint
Wong, Gatt, Stamatescu, McDonnell (bb0255) 2016
Golparvar-Fard, Bohn, Teizer, Savarese, Peña-Mora (bb0075) 2011; 20
Kim, Chi (bb0235) 2019; 104
Kim, Kim, Kim (bb0025) 2017; 83
Kim, Liu, Lee, Kamat (bb0170) 2019; 99
S. Bang, H. Kim, H. Kim, Vision-based 2D map generation for monitoring construction sites using UAV videos, 34th International Symposium on Automation and Robotics in Construction (ISARC 2017), Taipei, Taiwan, pp. 830–833, doi
Dimitrov, Golparvar-Fard (bb0190) 2014; 28
Klein, Li, Becerik-Gerber (bb0090) 2012; 21
Kim, Chi (bb0120) 2017; 31
Ahmed, Haas, Haas (bb0070) 2012; 39
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bb0260) 2014
Chi, Caldas (bb0005) 2011; 138
Bügler, Borrmann, Ogunmakin, Vela, Teizer (bb0045) 2017; 32
Turkan (10.1016/j.autcon.2020.103198_bb0095) 2014; 14
Han (10.1016/j.autcon.2020.103198_bb0080) 2015
Krizhevsky (10.1016/j.autcon.2020.103198_bb0220) 2012
Wang (10.1016/j.autcon.2020.103198_bb0160) 2016; 72
Klein (10.1016/j.autcon.2020.103198_bb0090) 2012; 21
Bang (10.1016/j.autcon.2020.103198_bb0165) 2017; 84
Dimitrov (10.1016/j.autcon.2020.103198_bb0190) 2014; 28
Yang (10.1016/j.autcon.2020.103198_bb0110) 2018; 33
Kuznetsova (10.1016/j.autcon.2020.103198_bb0135) 2018
Zhang (10.1016/j.autcon.2020.103198_bb0140) 2017; 32
Bang (10.1016/j.autcon.2020.103198_bb0145) 2019; 34
Kim (10.1016/j.autcon.2020.103198_bb0025) 2017; 83
Gong (10.1016/j.autcon.2020.103198_bb0055) 2009; 24
Ham (10.1016/j.autcon.2020.103198_bb0155) 2016; 4
Bügler (10.1016/j.autcon.2020.103198_bb0045) 2017; 32
Russakovsky (10.1016/j.autcon.2020.103198_bb0125) 2015; 115
Kim (10.1016/j.autcon.2020.103198_bb0210) 2016; 71
Wong (10.1016/j.autcon.2020.103198_bb0255) 2016
Kim (10.1016/j.autcon.2020.103198_bb0085) 2013; 35
Park (10.1016/j.autcon.2020.103198_bb0030) 2015; 141
Yang (10.1016/j.autcon.2020.103198_bb0215) 2018; 24
Lin (10.1016/j.autcon.2020.103198_bb0130) 2014
Tang (10.1016/j.autcon.2020.103198_bb0040) 2016; 31
Kim (10.1016/j.autcon.2020.103198_bb0060) 2018; 92
Chi (10.1016/j.autcon.2020.103198_bb0100) 2011; 26
Fang (10.1016/j.autcon.2020.103198_bb0015) 2018; 37
Seo (10.1016/j.autcon.2020.103198_bb0035) 2015; 29
Cha (10.1016/j.autcon.2020.103198_bb0150) 2018; 33
Han (10.1016/j.autcon.2020.103198_bb0200) 2015; 53
Kim (10.1016/j.autcon.2020.103198_bb0120) 2017; 31
Golparvar-Fard (10.1016/j.autcon.2020.103198_bb0075) 2011; 20
Fang (10.1016/j.autcon.2020.103198_bb0010) 2018; 91
Goodfellow (10.1016/j.autcon.2020.103198_bb0260) 2014
10.1016/j.autcon.2020.103198_bb0245
Inoue (10.1016/j.autcon.2020.103198_bb0250) 2018
Hamledari (10.1016/j.autcon.2020.103198_bb0205) 2017; 74
Bi (10.1016/j.autcon.2020.103198_bb0265) 2017
Frid-Adar (10.1016/j.autcon.2020.103198_bb0270) 2018; 321
Brilakis (10.1016/j.autcon.2020.103198_bb0185) 2011; 25
Zou (10.1016/j.autcon.2020.103198_bb0065) 2007; 21
Ahmed (10.1016/j.autcon.2020.103198_bb0070) 2012; 39
10.1016/j.autcon.2020.103198_bb0175
Dutta (10.1016/j.autcon.2020.103198_bb0285) 2019
Son (10.1016/j.autcon.2020.103198_bb0195) 2014; 28
Karras (10.1016/j.autcon.2020.103198_bb0275) 2018
Chi (10.1016/j.autcon.2020.103198_bb0005) 2011; 138
Kim (10.1016/j.autcon.2020.103198_bb0020) 2015; 30
Chi (10.1016/j.autcon.2020.103198_bb0105) 2009; 24
Son (10.1016/j.autcon.2020.103198_bb0230) 2019; 99
Kim (10.1016/j.autcon.2020.103198_bb0235) 2019; 104
Elasal (10.1016/j.autcon.2020.103198_bb0180) 2018; 4
Kim (10.1016/j.autcon.2020.103198_bb0170) 2019; 99
Golparvar-Fard (10.1016/j.autcon.2020.103198_bb0115) 2013; 27
Kim (10.1016/j.autcon.2020.103198_bb0225) 2017; 32
Zhou (10.1016/j.autcon.2020.103198_bb0280) 2016
Golparvar-Fard (10.1016/j.autcon.2020.103198_bb0050) 2012; 29
10.1016/j.autcon.2020.103198_bb0240
References_xml – volume: 83
  start-page: 390
  year: 2017
  end-page: 403
  ident: bb0025
  article-title: Image-based construction hazard avoidance system using augmented reality in wearable device
  publication-title: Autom. Constr.
  contributor:
    fullname: Kim
– volume: 25
  start-page: 713
  year: 2011
  end-page: 724
  ident: bb0185
  article-title: Automated vision tracking of project related entities
  publication-title: Adv. Eng. Inform.
  contributor:
    fullname: Jog
– volume: 32
  year: 2017
  ident: bb0225
  article-title: Detecting construction equipment using a region-based fully convolutional network and transfer learning
  publication-title: J. Comput. Civ. Eng.
  contributor:
    fullname: Byun
– volume: 31
  start-page: 65
  year: 2016
  end-page: 80
  ident: bb0040
  article-title: A spatial-context-based approach for automated spatial change analysis of piece-wise linear building elements
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  contributor:
    fullname: Ganapathy
– start-page: 119
  year: 2015
  end-page: 131
  ident: bb0080
  article-title: A formalism for utilization of autonomous vision-based systems and integrated project models for construction progress monitoring
  publication-title: Conference on Autonomous and Robotic Construction of Infrastructure, Ames, IA, USA
  contributor:
    fullname: Golparvar-Fard
– year: 2018
  ident: bb0135
  article-title: The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale
  publication-title: arXiv preprint arXiv:1811.00982
  contributor:
    fullname: Duerig
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bb0125
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  contributor:
    fullname: Bernstein
– volume: 34
  start-page: 1
  year: 2019
  end-page: 15
  ident: bb0145
  article-title: Encoder–decoder network for pixel-level road crack detection in black-box images
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  contributor:
    fullname: Kim
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bb0220
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Hinton
– volume: 4
  start-page: 1
  year: 2016
  end-page: 8
  ident: bb0155
  article-title: Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): a review of related works
  publication-title: Visualization in Engineering
  contributor:
    fullname: Golparvar-Fard
– year: 2018
  ident: bb0275
  article-title: A style-based generator architecture for generative adversarial networks
  publication-title: arXiv Preprint arXiv:1812.04948
  contributor:
    fullname: Aila
– year: 2016
  ident: bb0280
  article-title: Places: an image database for deep scene understanding
  publication-title: arXiv Preprint arXiv:1610.02055
  contributor:
    fullname: Oliva
– year: 2019
  ident: bb0285
  article-title: VGG image annotator (VIA)
  publication-title: arXiv Preprint arXiv:1904.10699
  contributor:
    fullname: Zissermann
– volume: 39
  start-page: 1062
  year: 2012
  end-page: 1071
  ident: bb0070
  article-title: Using digital photogrammetry for pipe-works progress tracking
  publication-title: Can. J. Civ. Eng.
  contributor:
    fullname: Haas
– volume: 14
  start-page: 145
  year: 2014
  end-page: 167
  ident: bb0095
  article-title: Tracking of secondary and temporary objects in structural concrete work
  publication-title: Constr. Innov.
  contributor:
    fullname: Haas
– volume: 72
  start-page: 294
  year: 2016
  end-page: 308
  ident: bb0160
  article-title: Detecting and tracking vehicles in traffic by unmanned aerial vehicles
  publication-title: Autom. Constr.
  contributor:
    fullname: Yin
– volume: 53
  start-page: 44
  year: 2015
  end-page: 57
  ident: bb0200
  article-title: Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs
  publication-title: Autom. Constr.
  contributor:
    fullname: Golparvar-Fard
– volume: 99
  start-page: 168
  year: 2019
  end-page: 182
  ident: bb0170
  article-title: Remote proximity monitoring between mobile construction resources using camera-mounted UAVs
  publication-title: Autom. Constr.
  contributor:
    fullname: Kamat
– year: 2018
  ident: bb0250
  article-title: Data augmentation by pairing samples for images classification
  publication-title: arXiv preprint arXiv:1801.02929
  contributor:
    fullname: Inoue
– volume: 32
  start-page: 107
  year: 2017
  end-page: 123
  ident: bb0045
  article-title: Fusion of photogrammetry and video analysis for productivity assessment of earthwork processes
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  contributor:
    fullname: Teizer
– volume: 24
  start-page: 252
  year: 2009
  end-page: 263
  ident: bb0055
  article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations
  publication-title: J. Comput. Civ. Eng.
  contributor:
    fullname: Caldas
– volume: 24
  start-page: 568
  year: 2018
  end-page: 580
  ident: bb0215
  article-title: Enhancing action recognition of construction workers using data-driven scene parsing
  publication-title: J. Civ. Eng. Manag.
  contributor:
    fullname: Yang
– volume: 141
  year: 2015
  ident: bb0030
  article-title: Hardhat-wearing detection for enhancing on-site safety of construction workers
  publication-title: J. Constr. Eng. Manag.
  contributor:
    fullname: Zhu
– volume: 27
  start-page: 652
  year: 2013
  end-page: 663
  ident: bb0115
  article-title: Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers
  publication-title: Adv. Eng. Inform.
  contributor:
    fullname: Niebles
– volume: 28
  start-page: 1
  year: 2014
  end-page: 10
  ident: bb0195
  article-title: Classification of major construction materials in construction environments using ensemble classifiers
  publication-title: Adv. Eng. Inform.
  contributor:
    fullname: Kang
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bb0260
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Proces. Syst.
  contributor:
    fullname: Bengio
– volume: 91
  start-page: 53
  year: 2018
  end-page: 61
  ident: bb0010
  article-title: Falls from heights: a computer vision-based approach for safety harness detection
  publication-title: Autom. Constr.
  contributor:
    fullname: Love
– volume: 31
  year: 2017
  ident: bb0120
  article-title: Adaptive detector and tracker on construction sites using functional integration and online learning
  publication-title: J. Comput. Civ. Eng.
  contributor:
    fullname: Chi
– volume: 99
  start-page: 27
  year: 2019
  end-page: 38
  ident: bb0230
  article-title: Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks
  publication-title: Autom. Constr.
  contributor:
    fullname: Kim
– volume: 26
  start-page: 368
  year: 2011
  end-page: 380
  ident: bb0100
  article-title: Automated object identification using optical video cameras on construction sites
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  contributor:
    fullname: Caldas
– volume: 92
  start-page: 188
  year: 2018
  end-page: 198
  ident: bb0060
  article-title: Analyzing context and productivity of tunnel earthmoving processes using imaging and simulation
  publication-title: Autom. Constr.
  contributor:
    fullname: Kim
– volume: 29
  year: 2012
  ident: bb0050
  article-title: Automated progress monitoring using unordered daily construction photographs and IFC-based building information models
  publication-title: J. Comput. Civ. Eng.
  contributor:
    fullname: Savarese
– year: 2017
  ident: bb0265
  article-title: Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs)
  publication-title: arXiv preprint arXiv:1707.09747
  contributor:
    fullname: Fulham
– volume: 104
  start-page: 255
  year: 2019
  end-page: 264
  ident: bb0235
  article-title: Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles
  publication-title: Autom. Constr.
  contributor:
    fullname: Chi
– volume: 84
  start-page: 70
  year: 2017
  end-page: 80
  ident: bb0165
  article-title: UAV-based automatic generation of high-resolution panorama at a construction site with a focus on preprocessing for image stitching
  publication-title: Autom. Constr.
  contributor:
    fullname: Kim
– volume: 32
  start-page: 805
  year: 2017
  end-page: 819
  ident: bb0140
  article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  contributor:
    fullname: Chen
– start-page: 740
  year: 2014
  end-page: 755
  ident: bb0130
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proceedings of the 2014 European Conference on Computer Vision (ECCV), Zurich, CH
  contributor:
    fullname: Zitnick
– year: 2016
  ident: bb0255
  article-title: Understanding data augmentation for classification: when to warp?
  publication-title: arXiv preprint arXiv:1609.08764
  contributor:
    fullname: McDonnell
– volume: 29
  start-page: 239
  year: 2015
  end-page: 251
  ident: bb0035
  article-title: Computer vision techniques for construction safety and health monitoring
  publication-title: Adv. Eng. Inform.
  contributor:
    fullname: Kim
– volume: 321
  start-page: 321
  year: 2018
  end-page: 331
  ident: bb0270
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
  contributor:
    fullname: Greenspan
– volume: 35
  start-page: 44
  year: 2013
  end-page: 52
  ident: bb0085
  article-title: 4D CAD model updating using image processing-based construction progress monitoring
  publication-title: Autom. Constr.
  contributor:
    fullname: Kim
– volume: 20
  start-page: 1143
  year: 2011
  end-page: 1155
  ident: bb0075
  article-title: Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques
  publication-title: Autom. Constr.
  contributor:
    fullname: Peña-Mora
– volume: 21
  start-page: 238
  year: 2007
  end-page: 246
  ident: bb0065
  article-title: Using hue, saturation, and value color space for hydraulic excavator idle time analysis
  publication-title: J. Comput. Civ. Eng.
  contributor:
    fullname: Kim
– volume: 24
  start-page: 199
  year: 2009
  end-page: 211
  ident: bb0105
  article-title: A methodology for object identification and tracking in construction based on spatial modeling and image matching techniques
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  contributor:
    fullname: Kim
– volume: 37
  start-page: 139
  year: 2018
  end-page: 149
  ident: bb0015
  article-title: Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach
  publication-title: Adv. Eng. Inform.
  contributor:
    fullname: Luo
– volume: 138
  start-page: 341
  year: 2011
  end-page: 351
  ident: bb0005
  article-title: Image-based safety assessment: automated spatial safety risk identification of earthmoving and surface mining activities
  publication-title: J. Constr. Eng. Manag.
  contributor:
    fullname: Caldas
– volume: 71
  start-page: 271
  year: 2016
  end-page: 282
  ident: bb0210
  article-title: Data-driven scene parsing method for recognizing construction site objects in the whole image
  publication-title: Autom. Constr.
  contributor:
    fullname: Kim
– volume: 28
  start-page: 37
  year: 2014
  end-page: 49
  ident: bb0190
  article-title: Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections
  publication-title: Adv. Eng. Inform.
  contributor:
    fullname: Golparvar-Fard
– volume: 74
  start-page: 78
  year: 2017
  end-page: 94
  ident: bb0205
  article-title: Automated computer vision-based detection of components of under-construction indoor partitions
  publication-title: Autom. Constr.
  contributor:
    fullname: Davari
– volume: 30
  year: 2015
  ident: bb0020
  article-title: Vision-based object-centric safety assessment using fuzzy inference: monitoring struck-by accidents with moving objects
  publication-title: J. Comput. Civ. Eng.
  contributor:
    fullname: Kim
– volume: 33
  start-page: 1110
  year: 2018
  end-page: 1126
  ident: bb0110
  article-title: Computer-aided optimization of surveillance cameras placement on construction sites
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  contributor:
    fullname: Wang
– volume: 4
  year: 2018
  ident: bb0180
  article-title: Frame augmentation for imbalanced object detection datasets
  publication-title: Journal of Computational Vision and Imaging Systems
  contributor:
    fullname: Miller
– volume: 33
  start-page: 731
  year: 2018
  end-page: 747
  ident: bb0150
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  contributor:
    fullname: Büyüköztürk
– volume: 21
  start-page: 161
  year: 2012
  end-page: 171
  ident: bb0090
  article-title: Imaged-based verification of as-built documentation of operational buildings
  publication-title: Autom. Constr.
  contributor:
    fullname: Becerik-Gerber
– volume: 27
  start-page: 652
  issue: 4
  year: 2013
  ident: 10.1016/j.autcon.2020.103198_bb0115
  article-title: Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2013.09.001
  contributor:
    fullname: Golparvar-Fard
– volume: 29
  issue: 1
  year: 2012
  ident: 10.1016/j.autcon.2020.103198_bb0050
  article-title: Automated progress monitoring using unordered daily construction photographs and IFC-based building information models
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000205
  contributor:
    fullname: Golparvar-Fard
– volume: 31
  issue: 5
  year: 2017
  ident: 10.1016/j.autcon.2020.103198_bb0120
  article-title: Adaptive detector and tracker on construction sites using functional integration and online learning
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000677
  contributor:
    fullname: Kim
– volume: 4
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.autcon.2020.103198_bb0155
  article-title: Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): a review of related works
  publication-title: Visualization in Engineering
  doi: 10.1186/s40327-015-0029-z
  contributor:
    fullname: Ham
– volume: 20
  start-page: 1143
  issue: 8
  year: 2011
  ident: 10.1016/j.autcon.2020.103198_bb0075
  article-title: Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2011.04.016
  contributor:
    fullname: Golparvar-Fard
– volume: 24
  start-page: 252
  issue: 3
  year: 2009
  ident: 10.1016/j.autcon.2020.103198_bb0055
  article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000027
  contributor:
    fullname: Gong
– volume: 53
  start-page: 44
  year: 2015
  ident: 10.1016/j.autcon.2020.103198_bb0200
  article-title: Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.02.007
  contributor:
    fullname: Han
– volume: 84
  start-page: 70
  year: 2017
  ident: 10.1016/j.autcon.2020.103198_bb0165
  article-title: UAV-based automatic generation of high-resolution panorama at a construction site with a focus on preprocessing for image stitching
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.08.031
  contributor:
    fullname: Bang
– volume: 21
  start-page: 161
  year: 2012
  ident: 10.1016/j.autcon.2020.103198_bb0090
  article-title: Imaged-based verification of as-built documentation of operational buildings
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2011.05.023
  contributor:
    fullname: Klein
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.autcon.2020.103198_bb0125
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
  contributor:
    fullname: Russakovsky
– volume: 39
  start-page: 1062
  issue: 9
  year: 2012
  ident: 10.1016/j.autcon.2020.103198_bb0070
  article-title: Using digital photogrammetry for pipe-works progress tracking
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/l2012-055
  contributor:
    fullname: Ahmed
– volume: 99
  start-page: 168
  year: 2019
  ident: 10.1016/j.autcon.2020.103198_bb0170
  article-title: Remote proximity monitoring between mobile construction resources using camera-mounted UAVs
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.12.014
  contributor:
    fullname: Kim
– volume: 25
  start-page: 713
  issue: 4
  year: 2011
  ident: 10.1016/j.autcon.2020.103198_bb0185
  article-title: Automated vision tracking of project related entities
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2011.01.003
  contributor:
    fullname: Brilakis
– year: 2016
  ident: 10.1016/j.autcon.2020.103198_bb0280
  article-title: Places: an image database for deep scene understanding
  contributor:
    fullname: Zhou
– start-page: 1097
  year: 2012
  ident: 10.1016/j.autcon.2020.103198_bb0220
  article-title: Imagenet classification with deep convolutional neural networks
  contributor:
    fullname: Krizhevsky
– volume: 71
  start-page: 271
  year: 2016
  ident: 10.1016/j.autcon.2020.103198_bb0210
  article-title: Data-driven scene parsing method for recognizing construction site objects in the whole image
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.08.018
  contributor:
    fullname: Kim
– year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0135
  article-title: The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale
  contributor:
    fullname: Kuznetsova
– volume: 4
  issue: 1
  year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0180
  article-title: Frame augmentation for imbalanced object detection datasets
  publication-title: Journal of Computational Vision and Imaging Systems
  contributor:
    fullname: Elasal
– volume: 37
  start-page: 139
  year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0015
  article-title: Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.05.003
  contributor:
    fullname: Fang
– year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0275
  article-title: A style-based generator architecture for generative adversarial networks
  contributor:
    fullname: Karras
– volume: 99
  start-page: 27
  year: 2019
  ident: 10.1016/j.autcon.2020.103198_bb0230
  article-title: Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.11.033
  contributor:
    fullname: Son
– volume: 141
  issue: 9
  year: 2015
  ident: 10.1016/j.autcon.2020.103198_bb0030
  article-title: Hardhat-wearing detection for enhancing on-site safety of construction workers
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0000974
  contributor:
    fullname: Park
– volume: 35
  start-page: 44
  year: 2013
  ident: 10.1016/j.autcon.2020.103198_bb0085
  article-title: 4D CAD model updating using image processing-based construction progress monitoring
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.03.005
  contributor:
    fullname: Kim
– start-page: 740
  year: 2014
  ident: 10.1016/j.autcon.2020.103198_bb0130
  article-title: Microsoft COCO: Common objects in context
  contributor:
    fullname: Lin
– start-page: 2672
  year: 2014
  ident: 10.1016/j.autcon.2020.103198_bb0260
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Proces. Syst.
  contributor:
    fullname: Goodfellow
– volume: 33
  start-page: 1110
  issue: 12
  year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0110
  article-title: Computer-aided optimization of surveillance cameras placement on construction sites
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12385
  contributor:
    fullname: Yang
– year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0250
  article-title: Data augmentation by pairing samples for images classification
  contributor:
    fullname: Inoue
– volume: 138
  start-page: 341
  issue: 3
  year: 2011
  ident: 10.1016/j.autcon.2020.103198_bb0005
  article-title: Image-based safety assessment: automated spatial safety risk identification of earthmoving and surface mining activities
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0000438
  contributor:
    fullname: Chi
– volume: 72
  start-page: 294
  issue: 3
  year: 2016
  ident: 10.1016/j.autcon.2020.103198_bb0160
  article-title: Detecting and tracking vehicles in traffic by unmanned aerial vehicles
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.05.008
  contributor:
    fullname: Wang
– start-page: 119
  year: 2015
  ident: 10.1016/j.autcon.2020.103198_bb0080
  article-title: A formalism for utilization of autonomous vision-based systems and integrated project models for construction progress monitoring
  contributor:
    fullname: Han
– ident: 10.1016/j.autcon.2020.103198_bb0175
  doi: 10.22260/ISARC2017/0116
– volume: 321
  start-page: 321
  year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0270
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
  contributor:
    fullname: Frid-Adar
– volume: 32
  start-page: 107
  issue: 2
  year: 2017
  ident: 10.1016/j.autcon.2020.103198_bb0045
  article-title: Fusion of photogrammetry and video analysis for productivity assessment of earthwork processes
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12235
  contributor:
    fullname: Bügler
– volume: 21
  start-page: 238
  issue: 4
  year: 2007
  ident: 10.1016/j.autcon.2020.103198_bb0065
  article-title: Using hue, saturation, and value color space for hydraulic excavator idle time analysis
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2007)21:4(238)
  contributor:
    fullname: Zou
– volume: 33
  start-page: 731
  issue: 9
  year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0150
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12334
  contributor:
    fullname: Cha
– volume: 32
  start-page: 805
  issue: 10
  year: 2017
  ident: 10.1016/j.autcon.2020.103198_bb0140
  article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12297
  contributor:
    fullname: Zhang
– volume: 28
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.autcon.2020.103198_bb0195
  article-title: Classification of major construction materials in construction environments using ensemble classifiers
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2013.10.001
  contributor:
    fullname: Son
– volume: 91
  start-page: 53
  year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0010
  article-title: Falls from heights: a computer vision-based approach for safety harness detection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.02.018
  contributor:
    fullname: Fang
– volume: 26
  start-page: 368
  issue: 5
  year: 2011
  ident: 10.1016/j.autcon.2020.103198_bb0100
  article-title: Automated object identification using optical video cameras on construction sites
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2010.00690.x
  contributor:
    fullname: Chi
– year: 2017
  ident: 10.1016/j.autcon.2020.103198_bb0265
  article-title: Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs)
  contributor:
    fullname: Bi
– volume: 29
  start-page: 239
  issue: 2
  year: 2015
  ident: 10.1016/j.autcon.2020.103198_bb0035
  article-title: Computer vision techniques for construction safety and health monitoring
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2015.02.001
  contributor:
    fullname: Seo
– volume: 104
  start-page: 255
  year: 2019
  ident: 10.1016/j.autcon.2020.103198_bb0235
  article-title: Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.03.025
  contributor:
    fullname: Kim
– ident: 10.1016/j.autcon.2020.103198_bb0245
  doi: 10.1109/ICCV.2017.146
– volume: 74
  start-page: 78
  year: 2017
  ident: 10.1016/j.autcon.2020.103198_bb0205
  article-title: Automated computer vision-based detection of components of under-construction indoor partitions
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.11.009
  contributor:
    fullname: Hamledari
– volume: 28
  start-page: 37
  issue: 1
  year: 2014
  ident: 10.1016/j.autcon.2020.103198_bb0190
  article-title: Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2013.11.002
  contributor:
    fullname: Dimitrov
– volume: 24
  start-page: 199
  issue: 3
  year: 2009
  ident: 10.1016/j.autcon.2020.103198_bb0105
  article-title: A methodology for object identification and tracking in construction based on spatial modeling and image matching techniques
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2008.00580.x
  contributor:
    fullname: Chi
– volume: 92
  start-page: 188
  year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0060
  article-title: Analyzing context and productivity of tunnel earthmoving processes using imaging and simulation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.04.002
  contributor:
    fullname: Kim
– volume: 34
  start-page: 1
  issue: 8
  year: 2019
  ident: 10.1016/j.autcon.2020.103198_bb0145
  article-title: Encoder–decoder network for pixel-level road crack detection in black-box images
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12440
  contributor:
    fullname: Bang
– ident: 10.1016/j.autcon.2020.103198_bb0240
  doi: 10.1109/ICPR.2018.8545614
– volume: 83
  start-page: 390
  year: 2017
  ident: 10.1016/j.autcon.2020.103198_bb0025
  article-title: Image-based construction hazard avoidance system using augmented reality in wearable device
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.06.014
  contributor:
    fullname: Kim
– volume: 24
  start-page: 568
  issue: 7
  year: 2018
  ident: 10.1016/j.autcon.2020.103198_bb0215
  article-title: Enhancing action recognition of construction workers using data-driven scene parsing
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/jcem.2018.6133
  contributor:
    fullname: Yang
– year: 2016
  ident: 10.1016/j.autcon.2020.103198_bb0255
  article-title: Understanding data augmentation for classification: when to warp?
  contributor:
    fullname: Wong
– volume: 31
  start-page: 65
  issue: 1
  year: 2016
  ident: 10.1016/j.autcon.2020.103198_bb0040
  article-title: A spatial-context-based approach for automated spatial change analysis of piece-wise linear building elements
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12174
  contributor:
    fullname: Tang
– volume: 30
  issue: 4
  year: 2015
  ident: 10.1016/j.autcon.2020.103198_bb0020
  article-title: Vision-based object-centric safety assessment using fuzzy inference: monitoring struck-by accidents with moving objects
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000562
  contributor:
    fullname: Kim
– year: 2019
  ident: 10.1016/j.autcon.2020.103198_bb0285
  article-title: VGG image annotator (VIA)
  contributor:
    fullname: Dutta
– volume: 32
  issue: 2
  year: 2017
  ident: 10.1016/j.autcon.2020.103198_bb0225
  article-title: Detecting construction equipment using a region-based fully convolutional network and transfer learning
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000731
  contributor:
    fullname: Kim
– volume: 14
  start-page: 145
  issue: 2
  year: 2014
  ident: 10.1016/j.autcon.2020.103198_bb0095
  article-title: Tracking of secondary and temporary objects in structural concrete work
  publication-title: Constr. Innov.
  doi: 10.1108/CI-12-2012-0063
  contributor:
    fullname: Turkan
SSID ssj0007069
Score 2.5603876
Snippet The paper proposes an image augmentation method to construct a large-size dataset for improving construction resource detection. The method consists of three...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 103198
SubjectTerms Artificial neural networks
Augmentation
Construction resource detection
Construction sites
Data augmentation
Datasets
GAN
Generative adversarial networks
Image acquisition
Image reconstruction
Object recognition
On-site management
UAV
Unmanned aerial vehicles
Title Image augmentation to improve construction resource detection using generative adversarial networks, cut-and-paste, and image transformation techniques
URI https://dx.doi.org/10.1016/j.autcon.2020.103198
https://www.proquest.com/docview/2437187549
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWm0wWwQFBALRTkBbvW0iRxYmc5gkEtC4Q0RXQXObYzmqJJKpJ8C7_L9StJO0I8JDZWZE3iKOeMc-7NfSD0diF4UuWxJjGtOKEShhKENYnjqowSkarM-iEv1uzTNX-_oqvZLHQgHOf-K9IwB1ibzNm_QHu4KEzAMWAOI6AO4x_hfrkzUTii3-x8VlFt5OXW-g5sZPpQMfbsu3fdnyndaTfVW9fBxtaitkFFwjRsboXt7VG7kHGLvOw7ImpFbkXrGuzZjxB27W6ihc3qoUpsOxXCy75r_A9sJPx4W6Nv1XuydVNvlG7GlCKhvwXNLbeDTfDZR32vm912Elpg-f61gWehpx4OMGdDNKx3u-2l3jj_ZZyRlC_cJ3Htdm_OwFzgrv3XsL27dNG9V4XzWtyYQCHjeTALmwoEkWuKfa8I99osZ1YDvWsKFiUH6DCGrS2do8Pl5er64_D2Z4vM1Xf0txfSNW1M4f5av5JD94SBVTtXT9Bjb6bgpePXUzTT9RF6ELLY2yP0aFLI8hn6YVmHp6zDXYM96_AUXhxYhwfWYcs6PLIOT1iHA-vO8R3OnWM4xJZx-C7j8Mi45-jLh9XVuwviW34QmSS0I2DssjKiQgnFFEsE1yCRjYmuUsUqoXKV5Qlf6IiXalHFPJJlpEQqNaMKhCdLXqB53dT6GOFUwOl5BfqTSZpQKUqQ2jJNdSwlFZk8QSQ8-eLWVXYpQsjjTeGQKgxShUPqBLEAT-HVqVOdBTDqN2eeBjQLv1O0hSkECnxNaf7yny_8Cj0c_y-naA5I6tfooFX9G0_Ln-vfx3E
link.rule.ids 315,782,786,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+augmentation+to+improve+construction+resource+detection+using+generative+adversarial+networks%2C+cut-and-paste%2C+and+image+transformation+techniques&rft.jtitle=Automation+in+construction&rft.au=Bang%2C+Seongdeok&rft.au=Baek%2C+Francis&rft.au=Park%2C+Somin&rft.au=Kim%2C+Wontae&rft.date=2020-07-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=115&rft_id=info:doi/10.1016%2Fj.autcon.2020.103198&rft.externalDocID=S0926580519311653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon