Wind mapping using the mesoscale WRF model in a tropical region of Brazil
This study details an evaluation of the onshore and offshore wind speed field in the state of Bahia, northeastern Brazil, using the WRF (Weather Research and Forecasting) mesoscale model, version 4.0. The simulations were run for a period of five years—between 2015 and 2020—with a horizontal resolut...
Saved in:
Published in: | Energy (Oxford) Vol. 240; p. 122491 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-02-2022
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study details an evaluation of the onshore and offshore wind speed field in the state of Bahia, northeastern Brazil, using the WRF (Weather Research and Forecasting) mesoscale model, version 4.0. The simulations were run for a period of five years—between 2015 and 2020—with a horizontal resolution of 3 km, and were compared with data from 41 automatic surface stations for the onshore case. For the offshore case, data from a surface station located in the Abrolhos Archipelago were used. The winter period presents higher values of wind speed for the onshore region (9–14 m/s), and the northern and southwestern regions of the state stand out for the generation of wind energy. In the offshore case, spring presents the highest averages for wind speed (7–8 m/s), followed by the summer season, highlighting the maritime coast in the extreme south of the state (7–10 m/s). Furthermore, the nocturnal wind regime is more intense than the daytime one, indicating a great complementarity with solar energy. The year 2017 had the highest average values of wind speed in the region, being considered one of the warmest years without the influence of the El Nino phenomenon recorded globally since 1850. The hourly averages of onshore and offshore winds for the state of Bahia demonstrated the great wind potential of the region, with high and medium speeds at altitude, which were in accordance with the minimum attractiveness thresholds for investments in wind energy generation.
•A comparative approach to surface wind condition assessment.•Long-time analysis of spatial and temporal variations of the onshore and offshore winds.•Annual, seasonal, and daily cycle distributions of wind fields. |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2021.122491 |