Highly efficient multiplex editing: one‐shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants
SUMMARY Genome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐opt...
Saved in:
Published in: | The Plant journal : for cell and molecular biology Vol. 106; no. 1; pp. 8 - 22 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Blackwell Publishing Ltd
01-04-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | SUMMARY
Genome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene‐free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2, respectively). We developed novel counter‐selection markers for N. benthamiana, most importantly Sl‐FAST2, comparable to the well‐established Arabidopsis seed fluorescence marker, and FCY‐UPP, based on the production of toxic 5‐fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY‐UPP for selection of non‐transgenic T1, we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher‐order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.
Significance Statement
The limits of multiplexing in genome editing by RNA‐guided nucleases are explored, and new markers for transgene positive/negative selection are developed. This opens up new perspectives for the generation of complex genotypes by genome editing and for the use of RNA‐guided nucleases for forward genetics. |
---|---|
AbstractList | SUMMARY
Genome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene‐free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2, respectively). We developed novel counter‐selection markers for N. benthamiana, most importantly Sl‐FAST2, comparable to the well‐established Arabidopsis seed fluorescence marker, and FCY‐UPP, based on the production of toxic 5‐fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY‐UPP for selection of non‐transgenic T1, we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher‐order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.
Significance Statement
The limits of multiplexing in genome editing by RNA‐guided nucleases are explored, and new markers for transgene positive/negative selection are developed. This opens up new perspectives for the generation of complex genotypes by genome editing and for the use of RNA‐guided nucleases for forward genetics. SUMMARYGenome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene‐free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2, respectively). We developed novel counter‐selection markers for N. benthamiana, most importantly Sl‐FAST2, comparable to the well‐established Arabidopsis seed fluorescence marker, and FCY‐UPP, based on the production of toxic 5‐fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY‐UPP for selection of non‐transgenic T1, we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher‐order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes. Genome editing by RNA‐guided nucleases, such as Sp Cas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene‐free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T 1 and T 2 , respectively). We developed novel counter‐selection markers for N. benthamiana , most importantly Sl ‐FAST2, comparable to the well‐established Arabidopsis seed fluorescence marker, and FCY‐UPP, based on the production of toxic 5‐fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY‐UPP for selection of non‐transgenic T 1 , we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana . Efficiency was significantly lower in A . thaliana , and our results indicate Cas9 availability is the limiting factor in such higher‐order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes. Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron-optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene-free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T and T , respectively). We developed novel counter-selection markers for N. benthamiana, most importantly Sl-FAST2, comparable to the well-established Arabidopsis seed fluorescence marker, and FCY-UPP, based on the production of toxic 5-fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY-UPP for selection of non-transgenic T , we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher-order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes. |
Author | Stuttmann, Johannes Ordon, Jana Barthel, Karen Herr, Rosalie Marillonnet, Sylvestre Martin, Patrick Erickson, Jessica L. Berner, Thomas Bonas, Ulla Ferik, Filiz Kretschmer, Carola Keilwagen, Jens |
Author_xml | – sequence: 1 givenname: Johannes orcidid: 0000-0002-6207-094X surname: Stuttmann fullname: Stuttmann, Johannes email: johannes.stuttmann@genetik.uni-halle.de organization: Martin Luther University Halle‐Wittenberg – sequence: 2 givenname: Karen surname: Barthel fullname: Barthel, Karen organization: Martin Luther University Halle‐Wittenberg – sequence: 3 givenname: Patrick surname: Martin fullname: Martin, Patrick organization: Martin Luther University Halle‐Wittenberg – sequence: 4 givenname: Jana surname: Ordon fullname: Ordon, Jana organization: Martin Luther University Halle‐Wittenberg – sequence: 5 givenname: Jessica L. surname: Erickson fullname: Erickson, Jessica L. organization: Martin Luther University Halle‐Wittenberg – sequence: 6 givenname: Rosalie surname: Herr fullname: Herr, Rosalie organization: Martin Luther University Halle‐Wittenberg – sequence: 7 givenname: Filiz surname: Ferik fullname: Ferik, Filiz organization: Martin Luther University Halle‐Wittenberg – sequence: 8 givenname: Carola surname: Kretschmer fullname: Kretschmer, Carola organization: Martin Luther University Halle‐Wittenberg – sequence: 9 givenname: Thomas surname: Berner fullname: Berner, Thomas organization: Julius Kühn‐Institute (JKI) – sequence: 10 givenname: Jens surname: Keilwagen fullname: Keilwagen, Jens organization: Julius Kühn‐Institute (JKI) – sequence: 11 givenname: Sylvestre surname: Marillonnet fullname: Marillonnet, Sylvestre organization: Leibniz Institute of Plant Biochemistry – sequence: 12 givenname: Ulla surname: Bonas fullname: Bonas, Ulla organization: Martin Luther University Halle‐Wittenberg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33577114$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtOHDEQhq2ICAbCIheILGXFosHV5X5MdgjxFApZgMSu5XaXZzzqsTttj2B2OUJ2HCg3yUkwDMmO2rgkf_5--d9lW847YuwziENIcxSHxSEUMK0-sAlgWWQIeL_FJmJaiqySkO-w3RAWQkCFpdxmO4hFVQHICQsXdjbv15yMsdqSi3y56qMdenrk1Nlo3ewbT2l_f_0Ocx_5jByNKlrvuDe8_vPEv1vto1VO8TY9n6vl665cxyFP18ejam3nh2BDUkflYvjEPhrVB9p_O_fY3dnp7clFdn1zfnlyfJ1pRFlltQE0LYq8rUFTKytt6g5LLaZVKUwh0r86JUsqpnVHSNSqXGBhdKFVJyUi7rGvG-8w-p8rCrFZ-NXoUmSTF4CQlxLKRB1sKD36EEYyzTDapRrXDYjmpd4m1du81pvYL2_GVbuk7j_5r88EHG2AB9vT-n1Tc_vjaqN8Bi6YiRw |
CitedBy_id | crossref_primary_10_1111_mpp_13375 crossref_primary_10_3389_fpls_2021_721203 crossref_primary_10_1002_ggn2_202300203 crossref_primary_10_1093_plphys_kiac481 crossref_primary_10_1111_nph_18452 crossref_primary_10_1111_pbi_14159 crossref_primary_10_1007_s11240_024_02807_4 crossref_primary_10_1007_s11248_024_00380_2 crossref_primary_10_1007_s42994_021_00052_3 crossref_primary_10_1038_s41467_024_48313_1 crossref_primary_10_1111_nph_18511 crossref_primary_10_1073_pnas_2201446119 crossref_primary_10_1093_jxb_erac194 crossref_primary_10_3389_fgeed_2021_805317 crossref_primary_10_3390_cells11050795 crossref_primary_10_1111_mpp_13378 crossref_primary_10_1016_j_copbio_2022_102857 crossref_primary_10_1016_j_copbio_2022_102858 crossref_primary_10_1093_pnasnexus_pgac305 crossref_primary_10_1186_s13007_023_01010_4 crossref_primary_10_1038_s41586_023_06500_y crossref_primary_10_3389_fpls_2022_1051991 crossref_primary_10_1002_cpz1_882 crossref_primary_10_1242_dev_202810 crossref_primary_10_1111_mpp_13290 crossref_primary_10_1002_biot_202100698 crossref_primary_10_3389_fpls_2021_689937 crossref_primary_10_1007_s11627_021_10185_1 crossref_primary_10_1080_14620316_2022_2038699 crossref_primary_10_1111_nph_19114 crossref_primary_10_1371_journal_pone_0290097 crossref_primary_10_3389_fpls_2021_742932 crossref_primary_10_1111_tpj_15228 crossref_primary_10_1111_mpp_13169 crossref_primary_10_1126_science_adf4721 crossref_primary_10_3390_horticulturae10010057 crossref_primary_10_3390_plants10071423 crossref_primary_10_3390_ijms22063082 crossref_primary_10_1038_s41477_024_01701_3 crossref_primary_10_3390_plants11233303 crossref_primary_10_48130_seedbio_0023_0025 crossref_primary_10_3390_ijms25041975 crossref_primary_10_1016_j_cj_2024_01_010 crossref_primary_10_1016_j_tplants_2021_06_015 crossref_primary_10_1038_s41477_022_01118_w crossref_primary_10_3389_fpls_2022_902413 |
Cites_doi | 10.1093/bioinformatics/btp698 10.1111/nph.15659 10.1104/pp.104.900152 10.1111/tpj.14949 10.1242/dev.00689 10.1126/science.1231143 10.1093/bioinformatics/btp352 10.1186/1746-4811-2-16 10.1186/1746-4811-5-3 10.1111/j.1365-313X.2009.03998.x 10.1111/pbi.12981 10.1016/j.molp.2017.01.003 10.1111/pbi.12931 10.1534/g3.120.401110 10.1111/j.1365-313X.1993.00755.x 10.1186/1471-2148-8-280 10.1111/pbi.12468 10.1186/1471-2148-10-357 10.1046/j.1365-313X.1991.t01-7-00999.x 10.1111/pbi.12403 10.1111/j.1365-313X.2004.02099.x 10.1104/pp.15.00636 10.1371/journal.pone.0197185 10.1016/j.jgg.2018.07.011 10.1242/dev.00814 10.1111/j.1365-313X.2009.04060.x 10.1007/s00299-015-1900-z 10.1126/science.1225829 10.1093/nar/gkw398 10.1007/BF00021534 10.1046/j.1467-7652.2003.00028.x 10.1111/tpj.13319 10.1093/bioinformatics/btq461 10.1105/tpc.10.9.1439 10.1186/s12870-014-0327-y 10.1016/0092-8674(91)90523-2 10.1038/nrc1074 10.4161/psb.6.10.17344 10.1111/tpj.12197 10.1126/science.1232033 10.1111/tpj.13399 10.1038/nbt.4048 10.1371/journal.pone.0016765 10.1111/tpj.13893 10.1007/s10142-019-00665-4 10.1126/science.1144958 10.1016/j.molp.2015.04.007 10.1111/nph.13015 10.1371/journal.pone.0238592 10.1016/j.molp.2018.05.005 10.1038/s41587-019-0286-9 10.1021/sb4001504 10.1105/tpc.19.00099 10.1186/s13059-015-0846-3 10.1128/MMBR.67.1.16-37.2003 10.1186/s13059-015-0715-0 10.1038/ncomms9083 10.1016/S0014-5793(04)00148-6 10.1111/pbi.12833 10.1371/journal.pone.0204778 10.1111/tpj.14569 10.1105/tpc.111.087684 10.1016/j.copbio.2019.02.015 10.1371/journal.pone.0003647 10.1111/jipb.12152 10.1073/pnas.1420294112 10.1105/tpc.16.00922 10.1046/j.0960-7412.2001.01229.x 10.1111/j.1574-6968.1998.tb13205.x 10.1016/j.molcel.2014.04.022 10.1186/s13007-018-0330-7 10.1038/nbt.4272 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd. 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 |
DOI | 10.1111/tpj.15197 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 22 |
ExternalDocumentID | 10_1111_tpj_15197 33577114 TPJ15197 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: STU642‐1/1 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 |
ID | FETCH-LOGICAL-c3347-8f13fb302b81ceb47cf8d36c09760f50412da46e598de3eeba2035fc5cad44333 |
IEDL.DBID | 33P |
ISSN | 0960-7412 |
IngestDate | Thu Oct 10 17:05:41 EDT 2024 Thu Nov 21 23:51:05 EST 2024 Sat Nov 02 12:30:19 EDT 2024 Sat Aug 24 01:04:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Arabidopsis thaliana RNA-guided nucleases (RGNs) Nicotiana benthamiana CRISPR/Cas9 multiplexing technical advance selection markers |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3347-8f13fb302b81ceb47cf8d36c09760f50412da46e598de3eeba2035fc5cad44333 |
ORCID | 0000-0002-6207-094X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15197 |
PMID | 33577114 |
PQID | 2513126416 |
PQPubID | 31702 |
PageCount | 0 |
ParticipantIDs | proquest_journals_2513126416 crossref_primary_10_1111_tpj_15197 pubmed_primary_33577114 wiley_primary_10_1111_tpj_15197_TPJ15197 |
PublicationCentury | 2000 |
PublicationDate | April 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2015; 35 2004; 561 2010; 10 1993; 23 2019; 59 2005; 138 2019; 14 2017; 89 2019; 17 2020; 15 2008; 8 2008; 3 2020; 10 2018; 45 1993; 3 2010; 61 2014; 204 2010; 26 2014; 3 2019; 20 2004; 38 2003; 3 2014; 14 2011; 23 2003; 1 1998; 10 2012; 337 1998; 167 2014; 56 1996; 8 2018; 36 2014; 54 2016; 44 2009; 25 1991; 1 2015; 6 2015; 16 2019; 31 2015; 169 2009; 60 2018; 222 2019; 37 2020; 104 2017; 29 2020; 101 2006; 2 2015; 8 2011; 6 2016; 14 2003; 130 2002; 29 1991; 67 2013; 339 2017; 58 2020 2017; 10 2015; 112 2013; 75 2019 2018 2009; 5 2018; 94 2018; 11 2007; 318 2018; 16 2018; 14 2018; 13 2003; 67 33861513 - Plant J. 2021 Apr;106(1):6-7 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 Grützner R. (e_1_2_10_27_1) 2020 e_1_2_10_44_1 e_1_2_10_42_1 Symeonidi E. (e_1_2_10_65_1) 2020 Hahn F. (e_1_2_10_28_1) 2019 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 Ding T. (e_1_2_10_19_1) 2019 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Tsutsui H. (e_1_2_10_69_1) 2017; 58 Li R. (e_1_2_10_39_1) 2020; 10 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Barthel K. (e_1_2_10_4_1) 2020 e_1_2_10_50_1 Torii K.U. (e_1_2_10_68_1) 1996; 8 Bollier N. (e_1_2_10_8_1) 2020 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 101 start-page: 731 year: 2020 end-page: 741 article-title: Tissue‐specific inactivation by cytosine deaminase/uracil phosphoribosyl transferase as a tool to study plant biology publication-title: The Plant Journal – volume: 25 start-page: 2078 year: 2009 end-page: 2079 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics – volume: 2 start-page: 16 year: 2006 article-title: An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol publication-title: Plant Methods – volume: 67 start-page: 483 year: 1991 end-page: 493 article-title: A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules publication-title: Cell – volume: 16 start-page: 280 year: 2015 article-title: Optimizing sgRNA structure to improve CRISPR‐Cas9 knockout efficiency publication-title: Genome Biology – volume: 10 start-page: 530 year: 2017 end-page: 532 article-title: CRISPR‐P 2.0: an improved CRISPR‐Cas9 tool for genome editing in plants publication-title: Molecular Plant – volume: 3 start-page: 330 year: 2003 end-page: 338 article-title: 5‐fluorouracil: mechanisms of action and clinical strategies publication-title: Nature Reviews Cancer – volume: 222 start-page: 966 year: 2018 end-page: 980 article-title: Diverse NLR immune receptors activate defence via the RPW8‐NLR NRG1 publication-title: New Phytologist – volume: 130 start-page: 6065 year: 2003 end-page: 6073 article-title: Regulation of storage protein gene expression in Arabidopsis publication-title: Development (Cambridge, England) – volume: 26 start-page: 2460 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 89 start-page: 155 year: 2017 end-page: 168 article-title: Generation of chromosomal deletions in dicotyledonous plants employing a user‐friendly genome editing toolkit publication-title: The Plant Journal – volume: 14 year: 2019 article-title: Optimization of T‐DNA architecture for Cas9‐mediated mutagenesis in Arabidopsis publication-title: PLoS One – volume: 5 start-page: 3 year: 2009 article-title: Protocol: Streamlined sub‐protocols for floral‐dip transformation and selection of transformants in publication-title: Plant Methods – volume: 36 start-page: 179 year: 2018 end-page: 189 article-title: Orthologous CRISPR‐Cas9 enzymes for combinatorial genetic screens publication-title: Nature Biotechnology – volume: 3 year: 2008 article-title: A one pot, one step, precision cloning method with high throughput capability publication-title: PLoS One – volume: 16 start-page: 1971 issue: 12 year: 2018 end-page: 1982 article-title: Chimeric 3' flanking regions strongly enhance gene expression in plants publication-title: Plant Biotechnology Journal – volume: 44 start-page: W272 year: 2016 end-page: W276 article-title: CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering publication-title: Nucleic Acids Research – volume: 167 start-page: 41 year: 1998 end-page: 49 article-title: Concomitant expression of cytosine deaminase and uracil phosphoribosyltransferase improves the cytotoxicity of 5‐fluorocytosine publication-title: FEMS Microbiology Letters – volume: 11 start-page: 1210 year: 2018 end-page: 1213 article-title: Programmed self‐elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene‐free rice plants publication-title: Molecular Plant – volume: 339 start-page: 823 year: 2013 end-page: 826 article-title: RNA‐guided human genome engineering via Cas9 publication-title: Science (New York. N.Y. – volume: 94 start-page: 735 year: 2018 end-page: 746 article-title: Efficient in planta gene targeting in Arabidopsis using egg cell‐specific expression of the Cas9 nuclease of publication-title: The Plant Journal – volume: 13 year: 2018 article-title: Peripheral infrastructure vectors and an extended set of plant parts for the modular cloning system publication-title: PLoS One – volume: 6 year: 2011 article-title: A modular cloning system for standardized assembly of multigene constructs publication-title: PLoS One – volume: 14 start-page: 65 year: 2018 article-title: An efficient CRISPR vector toolbox for engineering large deletions in publication-title: Plant Methods – volume: 29 start-page: 1196 issue: 6 year: 2017 end-page: 1217 article-title: A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants publication-title: The Plant Cell – volume: 8 start-page: 1274 year: 2015 end-page: 1284 article-title: A Robust CRISPR/Cas9 system for convenient, high‐efficiency multiplex genome editing in monocot and dicot plants publication-title: Molecular Plant – volume: 337 start-page: 816 year: 2012 end-page: 821 article-title: A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 10 start-page: 2033 issue: 6 year: 2020 end-page: 2042 article-title: Proxies of CRISPR/Cas9 activity to aid in the identification of mutagenized Arabidopsis plants publication-title: G3; Genes|Genomes|Genetics – volume: 67 start-page: 16 issue: 1 year: 2003 end-page: 37 article-title: Agrobacterium‐mediated plant transformation: the biology behind the “gene‐jockeying” tool publication-title: Microbiology and Molecular Biology Reviews – volume: 138 start-page: 558 year: 2005 end-page: 559 article-title: Dude, where's my phenotype? Dealing with redundancy in signaling networks publication-title: Plant Physiology – volume: 10 start-page: 357 year: 2010 article-title: Predicting genome‐wide redundancy using machine learning publication-title: BMC Evolutionary Biology – volume: 60 start-page: 919 year: 2009 end-page: 928 article-title: Recombineering and stable integration of the pv. 61 hrp/hrc cluster into the genome of the soil bacterium Pf0‐1 publication-title: Plant Journal – volume: 45 start-page: 681 year: 2018 end-page: 684 article-title: ZFN, TALEN and CRISPR‐Cas9 mediated homology directed gene insertion in Arabidopsis: A disconnect between somatic and germinal cells publication-title: Journal of Genetics and Genomics – volume: 38 start-page: 898 year: 2004 end-page: 909 article-title: Two TIR:NB:LRR genes are required to specify resistance to isolate Cala2 in Arabidopsis publication-title: The Plant Journal – volume: 23 start-page: 2788 year: 2011 end-page: 2803 article-title: Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis publication-title: The Plant Cell – volume: 15 year: 2020 article-title: Enabling one‐pot Golden Gate assemblies of unprecedented complexity using data‐optimized assembly design publication-title: PLoS One – volume: 6 start-page: 1454 year: 2011 end-page: 1456 article-title: A non‐destructive screenable marker, OsFAST, for identifying transgenic rice seeds publication-title: Plant Signaling & Behavior – volume: 1 start-page: 301 year: 2003 end-page: 309 article-title: Seed‐expressed fluorescent proteins as versatile tools for easy (co)transformation and high‐throughput functional genomics in Arabidopsis publication-title: Plant Biotechnology Journal – volume: 59 start-page: 93 year: 2019 end-page: 102 article-title: Applications of multiplex genome editing in higher plants publication-title: Current Opinion in Biotechnology – volume: 318 start-page: 645 year: 2007 end-page: 648 article-title: Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene publication-title: Science – volume: 14 start-page: 327 year: 2014 article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants publication-title: BMC Plant Biology – volume: 339 start-page: 819 year: 2013 end-page: 823 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 35 start-page: 1519 year: 2015 end-page: 1533 article-title: A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis publication-title: Plant Cell Reports – volume: 75 start-page: 157 year: 2013 end-page: 171 article-title: GABI‐DUPLO: a collection of double mutants to overcome genetic redundancy in publication-title: The Plant Journal – volume: 37 start-page: 1294 year: 2019 end-page: 1301 article-title: Simultaneous repression of multiple bacterial genes using nonrepetitive extra‐long sgRNA arrays publication-title: Nature Biotechnology – volume: 29 start-page: 439 year: 2002 end-page: 451 article-title: Arabidopsis is a member of the multigene family of TIR‐NB‐LRR genes and confers downy mildew resistance through multiple signalling components publication-title: Plant Journal – volume: 8 start-page: 280 year: 2008 article-title: Unique genes in plants: specificities and conserved features throughout evolution publication-title: BMC Evolutionary Biology – volume: 20 start-page: 151 year: 2019 end-page: 162 article-title: Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation publication-title: Functional and Integrative Genomics – volume: 204 start-page: 823 year: 2014 end-page: 832 article-title: TAL effectors–pathogen strategies and plant resistance engineering publication-title: New Phytologist – volume: 3 start-page: 839 issue: 11 year: 2014 end-page: 843 article-title: A golden gate modular cloning toolbox for plants publication-title: ACS Synthetic Biology – volume: 31 start-page: 2456 year: 2019 end-page: 2474 article-title: An EDS1‐SAG101 complex is essential for TNL‐mediated immunity in publication-title: The Plant cell – start-page: 738021 year: 2019 article-title: A modular cloning toolkit for genome editing in plants publication-title: bioRxiv – volume: 16 start-page: 856 year: 2018 end-page: 866 article-title: TALEN‐mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield publication-title: Plant Biotechnology Journal – year: 2020 article-title: CRISPR‐finder: A high throughput and cost effective method for identifying successfully edited individuals publication-title: bioRxiv – volume: 169 start-page: 971 year: 2015 end-page: 985 article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation publication-title: Plant Physiology – volume: 61 start-page: 519 year: 2010 end-page: 528 article-title: A rapid and non‐destructive screenable marker, FAST, for identifying transformed seeds of publication-title: The Plant Journal – year: 2020 article-title: Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR publication-title: Plant Biotechnology Journal – start-page: 839555 year: 2019 article-title: Reversed paired‐gRNA plasmid cloning strategy for efficient genome editing in publication-title: bioRxiv – volume: 10 start-page: 1439 year: 1998 end-page: 1452 article-title: A mutation within the leucine‐rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes publication-title: The Plant Cell – volume: 54 start-page: 698 year: 2014 end-page: 710 article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells publication-title: Molecular Cell – volume: 130 start-page: 4695 year: 2003 end-page: 4708 article-title: The FORKED genes are essential for distal vein meeting in Arabidopsis publication-title: Development (Cambridge, England) – volume: 26 start-page: 589 year: 2010 end-page: 595 article-title: Fast and accurate long‐read alignment with Burrows‐Wheeler transform publication-title: Bioinformatics – year: 2020 article-title: High‐efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns publication-title: Plant Communications – volume: 8 start-page: 735 year: 1996 end-page: 746 article-title: The gene encodes a putative receptor protein kinase with extracellular leucine‐rich repeats publication-title: The Plant cell – volume: 89 start-page: 636 year: 2017 end-page: 648 article-title: Discovery of rice essential genes by characterizing a CRISPR‐edited mutation of closely related rice MAP kinase genes publication-title: The Plant Journal – volume: 14 start-page: 533 year: 2016 end-page: 542 article-title: Multiplexed, targeted gene editing in for glyco‐engineering and monoclonal antibody production publication-title: Plant Biotechnology Journal – volume: 1 start-page: 289 year: 1991 end-page: 302 article-title: Identification and molecular mapping of a single locus determining resistance to a phytopathogenic isolate publication-title: The Plant Journal – volume: 104 start-page: 828 year: 2020 end-page: 838 article-title: Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in publication-title: The Plant Journal – volume: 16 start-page: 144 year: 2015 article-title: Egg cell‐specific promoter‐controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation publication-title: Genome Biology – volume: 112 start-page: 3570 year: 2015 end-page: 3575 article-title: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA‐processing system publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 3 start-page: 755 year: 1993 end-page: 761 article-title: Substrate‐dependent negative selection in plants using a bacterial cytosine deaminase gene publication-title: The Plant Journal – volume: 56 start-page: 343 year: 2014 end-page: 349 article-title: Self‐processing of ribozyme‐flanked RNAs into guide RNAs in vitro and in vivo for CRISPR‐mediated genome editing publication-title: Journal of Integrative Plant Biology – volume: 23 start-page: 793 year: 1993 end-page: 799 article-title: Cytosine deaminase as a negative selective marker for Arabidopsis publication-title: Plant Molecular Biology – volume: 58 start-page: 46 year: 2017 end-page: 56 article-title: pKAMA‐ITACHI vectors for highly efficient CRISPR/Cas9‐mediated gene knockout in publication-title: Plant and Cell Physiology – volume: 6 start-page: 8083 year: 2015 article-title: Rapid and efficient one‐step generation of paired gRNA CRISPR‐Cas9 libraries publication-title: Nature Communications – volume: 17 start-page: 350 year: 2019 end-page: 361 article-title: CRISPR/Cas9‐mediated knockout of six glycosyltransferase genes inNicotiana benthamianafor the production of recombinant proteins lacking β‐1,2‐xylose and core α‐1,3‐fucose publication-title: Plant Biotechnology Journal – volume: 14 start-page: 519 year: 2016 end-page: 532 article-title: Development of germ‐line‐specific CRISPR‐Cas9 systems to improve the production of heritable gene modifications in Arabidopsis publication-title: Plant Biotechnology Journal – volume: 561 start-page: 127 year: 2004 end-page: 131 article-title: Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds publication-title: FEBS Letters – year: 2018 article-title: De novo domestication of wild tomato using genome editing publication-title: Nature Biotechnology – year: 2020 article-title: One‐shot generation of duodecuple (12x) mutant Arabidopsis: Highly efficient routine editing in model species publication-title: bioRxiv – ident: e_1_2_10_36_1 doi: 10.1093/bioinformatics/btp698 – ident: e_1_2_10_9_1 doi: 10.1111/nph.15659 – ident: e_1_2_10_14_1 doi: 10.1104/pp.104.900152 – ident: e_1_2_10_75_1 doi: 10.1111/tpj.14949 – ident: e_1_2_10_61_1 doi: 10.1242/dev.00689 – ident: e_1_2_10_13_1 doi: 10.1126/science.1231143 – ident: e_1_2_10_37_1 doi: 10.1093/bioinformatics/btp352 – ident: e_1_2_10_41_1 doi: 10.1186/1746-4811-2-16 – ident: e_1_2_10_16_1 doi: 10.1186/1746-4811-5-3 – ident: e_1_2_10_66_1 doi: 10.1111/j.1365-313X.2009.03998.x – ident: e_1_2_10_30_1 doi: 10.1111/pbi.12981 – ident: e_1_2_10_40_1 doi: 10.1016/j.molp.2017.01.003 – ident: e_1_2_10_18_1 doi: 10.1111/pbi.12931 – volume: 10 start-page: 2033 issue: 6 year: 2020 ident: e_1_2_10_39_1 article-title: Proxies of CRISPR/Cas9 activity to aid in the identification of mutagenized Arabidopsis plants publication-title: G3; Genes|Genomes|Genetics doi: 10.1534/g3.120.401110 contributor: fullname: Li R. – ident: e_1_2_10_62_1 doi: 10.1111/j.1365-313X.1993.00755.x – ident: e_1_2_10_3_1 doi: 10.1186/1471-2148-8-280 – ident: e_1_2_10_46_1 doi: 10.1111/pbi.12468 – ident: e_1_2_10_12_1 doi: 10.1186/1471-2148-10-357 – ident: e_1_2_10_17_1 doi: 10.1046/j.1365-313X.1991.t01-7-00999.x – ident: e_1_2_10_38_1 doi: 10.1111/pbi.12403 – volume: 58 start-page: 46 year: 2017 ident: e_1_2_10_69_1 article-title: pKAMA‐ITACHI vectors for highly efficient CRISPR/Cas9‐mediated gene knockout in Arabidopsis thaliana publication-title: Plant and Cell Physiology contributor: fullname: Tsutsui H. – ident: e_1_2_10_60_1 doi: 10.1111/j.1365-313X.2004.02099.x – ident: e_1_2_10_43_1 doi: 10.1104/pp.15.00636 – ident: e_1_2_10_23_1 doi: 10.1371/journal.pone.0197185 – ident: e_1_2_10_57_1 doi: 10.1016/j.jgg.2018.07.011 – ident: e_1_2_10_33_1 doi: 10.1242/dev.00814 – ident: e_1_2_10_59_1 doi: 10.1111/j.1365-313X.2009.04060.x – ident: e_1_2_10_80_1 doi: 10.1007/s00299-015-1900-z – year: 2020 ident: e_1_2_10_65_1 article-title: CRISPR‐finder: A high throughput and cost effective method for identifying successfully edited A. thaliana individuals publication-title: bioRxiv contributor: fullname: Symeonidi E. – ident: e_1_2_10_31_1 doi: 10.1126/science.1225829 – ident: e_1_2_10_34_1 doi: 10.1093/nar/gkw398 – ident: e_1_2_10_53_1 doi: 10.1007/BF00021534 – ident: e_1_2_10_63_1 doi: 10.1046/j.1467-7652.2003.00028.x – ident: e_1_2_10_52_1 doi: 10.1111/tpj.13319 – ident: e_1_2_10_20_1 doi: 10.1093/bioinformatics/btq461 – start-page: 738021 year: 2019 ident: e_1_2_10_28_1 article-title: A modular cloning toolkit for genome editing in plants publication-title: bioRxiv contributor: fullname: Hahn F. – ident: e_1_2_10_73_1 doi: 10.1105/tpc.10.9.1439 – ident: e_1_2_10_79_1 doi: 10.1186/s12870-014-0327-y – ident: e_1_2_10_50_1 doi: 10.1016/0092-8674(91)90523-2 – start-page: 839555 year: 2019 ident: e_1_2_10_19_1 article-title: Reversed paired‐gRNA plasmid cloning strategy for efficient genome editing in Escherichia coli publication-title: bioRxiv contributor: fullname: Ding T. – ident: e_1_2_10_42_1 doi: 10.1038/nrc1074 – ident: e_1_2_10_58_1 doi: 10.4161/psb.6.10.17344 – ident: e_1_2_10_7_1 doi: 10.1111/tpj.12197 – year: 2020 ident: e_1_2_10_4_1 article-title: One‐shot generation of duodecuple (12x) mutant Arabidopsis: Highly efficient routine editing in model species publication-title: bioRxiv contributor: fullname: Barthel K. – ident: e_1_2_10_45_1 doi: 10.1126/science.1232033 – year: 2020 ident: e_1_2_10_27_1 article-title: High‐efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns publication-title: Plant Communications contributor: fullname: Grützner R. – ident: e_1_2_10_47_1 doi: 10.1111/tpj.13399 – ident: e_1_2_10_48_1 doi: 10.1038/nbt.4048 – ident: e_1_2_10_74_1 doi: 10.1371/journal.pone.0016765 – ident: e_1_2_10_76_1 doi: 10.1111/tpj.13893 – ident: e_1_2_10_51_1 doi: 10.1007/s10142-019-00665-4 – ident: e_1_2_10_56_1 doi: 10.1126/science.1144958 – volume: 8 start-page: 735 year: 1996 ident: e_1_2_10_68_1 article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine‐rich repeats publication-title: The Plant cell contributor: fullname: Torii K.U. – ident: e_1_2_10_44_1 doi: 10.1016/j.molp.2015.04.007 – ident: e_1_2_10_6_1 doi: 10.1111/nph.13015 – ident: e_1_2_10_54_1 doi: 10.1371/journal.pone.0238592 – ident: e_1_2_10_29_1 doi: 10.1016/j.molp.2018.05.005 – ident: e_1_2_10_55_1 doi: 10.1038/s41587-019-0286-9 – ident: e_1_2_10_22_1 doi: 10.1021/sb4001504 – ident: e_1_2_10_24_1 doi: 10.1105/tpc.19.00099 – ident: e_1_2_10_15_1 doi: 10.1186/s13059-015-0846-3 – ident: e_1_2_10_26_1 doi: 10.1128/MMBR.67.1.16-37.2003 – ident: e_1_2_10_72_1 doi: 10.1186/s13059-015-0715-0 – ident: e_1_2_10_71_1 doi: 10.1038/ncomms9083 – ident: e_1_2_10_5_1 doi: 10.1016/S0014-5793(04)00148-6 – ident: e_1_2_10_32_1 doi: 10.1111/pbi.12833 – ident: e_1_2_10_10_1 doi: 10.1371/journal.pone.0204778 – ident: e_1_2_10_35_1 doi: 10.1111/tpj.14569 – ident: e_1_2_10_64_1 doi: 10.1105/tpc.111.087684 – year: 2020 ident: e_1_2_10_8_1 article-title: Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR publication-title: Plant Biotechnology Journal contributor: fullname: Bollier N. – ident: e_1_2_10_2_1 doi: 10.1016/j.copbio.2019.02.015 – ident: e_1_2_10_21_1 doi: 10.1371/journal.pone.0003647 – ident: e_1_2_10_25_1 doi: 10.1111/jipb.12152 – ident: e_1_2_10_78_1 doi: 10.1073/pnas.1420294112 – ident: e_1_2_10_11_1 doi: 10.1105/tpc.16.00922 – ident: e_1_2_10_70_1 doi: 10.1046/j.0960-7412.2001.01229.x – ident: e_1_2_10_67_1 doi: 10.1111/j.1574-6968.1998.tb13205.x – ident: e_1_2_10_49_1 doi: 10.1016/j.molcel.2014.04.022 – ident: e_1_2_10_77_1 doi: 10.1186/s13007-018-0330-7 – ident: e_1_2_10_81_1 doi: 10.1038/nbt.4272 |
SSID | ssj0017364 |
Score | 2.5905743 |
Snippet | SUMMARY
Genome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent... Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci... Genome editing by RNA‐guided nucleases, such as Sp Cas9, has been used in numerous different plant species. However, to what extent multiple independent loci... SUMMARYGenome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 8 |
SubjectTerms | 5-Fluorouracil Arabidopsis Arabidopsis - genetics Arabidopsis thaliana Arrays Biomarkers CRISPR-Cas Systems - genetics CRISPR/Cas9 Editing Fluorescence Gene Editing Genes Genome, Plant - genetics Genomes Genotypes Multiplexing Mutants Mutation Mutation - genetics Nicotiana - genetics Nicotiana benthamiana Nuclease Plant species Plants, Genetically Modified - genetics RNA editing RNA‐guided nucleases (RGNs) selection markers technical advance Toolkits |
Title | Highly efficient multiplex editing: one‐shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15197 https://www.ncbi.nlm.nih.gov/pubmed/33577114 https://www.proquest.com/docview/2513126416 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4qHrz4fqwvgnjwUmg6SR968rHL4kEEFbyVpEl1Qdtluwt68yd48wf5T_wlTtLtooggeAukE0ImM_NNM_lCyD4qNcp1yD2RK-7xkDMvMVrYnCdJZCIy405Mu1fRxW181rY0OUfNXZiaH2Lyw81ahvPX1sClqr4Y-bCPZm6vXaL_xSzBXd-Ay8kJQgQ1dRQidA-jZjBmFbJVPBPJ77HoB8D8jlddwOks_Guqi2R-jDPpcb0xlsiUKZbJ7EmJWPB5hVS2vOPhmRpHIIFxhzaFhU8Uo5kthT6kZWE-Xl6r-3JI7xw5tdUhLXMav79Ru4Osc5BUofi9fHRtWWjKAuw-HkjV02W_6lU4tH2puFolN5329WnXGz-_4GUAHGNXziBX4AcqZplRPMryWEOY-Yhg_FxYoi4teWhEEmsDxigZ-CDyTGRScw4Aa2SmwKluEMqlZlyGPqgEnYZmKmESpSSESqgwzlpkr1FE2q9ZNtImO8HFS93itch2o6J0bGhVivAMGII6FrbIeq22yQgAIoow32uRA6ed34dOry_PXWPz759ukbnA1re4Kp5tMjMcjMwOma70aNftxE9nbuF7 |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB6ySSC9tM1fu23aiNBDLgbLI_mn9LJts2yTTQh0A7kZyZKzgXa9xBtobn2E3vpAfZM-SUfyemkIgUBuAlmy0MxovpFGnwDekVCT0sQikKUWgYgFDzJrpIt5skxlsrD-xHTwNTk5Tz8fOJqcD-1dmIYfYrHh5izDr9fOwN2G9H9WPpuSnbt7lx1YoZ-k_gIHni7OEBJsyKMIowfkN6M5r5DL41k0ve2N7kDM24jVu5z-s8cN9jk8nUNN1mt0Yx2W7GQDVj9WBAdvNqF2GR7fbpj1HBLkelibW_iDkUNz2dDvWTWxf3_-qsfVjF14fmonRlaVLP3zmzklcuuDYpqaj9V3X1YTw3hE1b0rpS9NNa0va-raPVZcb8FZ_2D0aRDMX2AICkRB7qvkWGoMI53ywmqRFGVqMC5CAjFhKR1Xl1EitjJLjUVrtYpClGUhC2WEQMRtWJ7QUF8CE8pwoeIQdUbrhuE644paKYy11HFadGGvlUQ-bYg28jZAocnL_eR1YaeVUT63tTonhIaccB2Pu_CikduiB0SZJBTydWHfi-f-rvPR6aEvvHr4p7uwNhgdD_Phl5Oj1_AkcukuPqlnB5ZnV9f2DXRqc_3Wq-U_pYrlow |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSx0xEB68lNIXrb0etTWUPvRlYbOT7EWfvB2sFjlQC31bkk2iQnv24B5B3_wJvvmD_Cf-EifZswelCAXfAtkZQiYz82Uz-QLwlYyaOZOKSDotIpEKHhXWSL_nKQpVyMqGE9O9n9nh73xn19PkbHR3YVp-iOkPN-8ZIV57Bx8Z98DJxyNyc3_tchbmBcFwT5yPOJgeIWTYckcRRI8obSYTWiFfxjMVfZyM_kGYjwFryDj9xWeN9TUsTIAm22xXxhLM2OEbeLFVExi8fAuNr-_4c8lsYJCgxMO6ysILRunM10Kvs3po766um5N6zI4DO7U3Iqsdy29vmF9CPjoopkn8RP0NbTU0jCfUvXmm9KmpR81pQ6r9U8XNO_jV3z3a3osm7y9EFaKg5OU4Oo1xonNeWS2yyuUG0yomCBM76Zm6jBKplUVuLFqrVRKjdJWslBECEd_D3JCG-hGYUIYLlcaoC4oahuuCK5JSmGqp07zqwZfOEOWopdkou-0JTV4ZJq8Hq52JyomnNSXhM-SE6njagw-t2aYaEGWW0YavB9-CdZ5WXR4N9kNj-f8_XYOXg51--eP74cEKvEp8rUuo6FmFufHZuf0Es405_xwW5T34j-RJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+multiplex+editing%3A+one%E2%80%90shot+generation+of+8%C3%97+Nicotiana+benthamiana+and+12%C3%97+Arabidopsis+mutants&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Stuttmann%2C+Johannes&rft.au=Barthel%2C+Karen&rft.au=Martin%2C+Patrick&rft.au=Ordon%2C+Jana&rft.date=2021-04-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=106&rft.issue=1&rft.spage=8&rft.epage=22&rft_id=info:doi/10.1111%2Ftpj.15197&rft.externalDBID=10.1111%252Ftpj.15197&rft.externalDocID=TPJ15197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |