Highly efficient multiplex editing: one‐shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants

SUMMARY Genome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐opt...

Full description

Saved in:
Bibliographic Details
Published in:The Plant journal : for cell and molecular biology Vol. 106; no. 1; pp. 8 - 22
Main Authors: Stuttmann, Johannes, Barthel, Karen, Martin, Patrick, Ordon, Jana, Erickson, Jessica L., Herr, Rosalie, Ferik, Filiz, Kretschmer, Carola, Berner, Thomas, Keilwagen, Jens, Marillonnet, Sylvestre, Bonas, Ulla
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01-04-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract SUMMARY Genome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene‐free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2, respectively). We developed novel counter‐selection markers for N. benthamiana, most importantly Sl‐FAST2, comparable to the well‐established Arabidopsis seed fluorescence marker, and FCY‐UPP, based on the production of toxic 5‐fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY‐UPP for selection of non‐transgenic T1, we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher‐order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes. Significance Statement The limits of multiplexing in genome editing by RNA‐guided nucleases are explored, and new markers for transgene positive/negative selection are developed. This opens up new perspectives for the generation of complex genotypes by genome editing and for the use of RNA‐guided nucleases for forward genetics.
AbstractList SUMMARY Genome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene‐free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2, respectively). We developed novel counter‐selection markers for N. benthamiana, most importantly Sl‐FAST2, comparable to the well‐established Arabidopsis seed fluorescence marker, and FCY‐UPP, based on the production of toxic 5‐fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY‐UPP for selection of non‐transgenic T1, we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher‐order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes. Significance Statement The limits of multiplexing in genome editing by RNA‐guided nucleases are explored, and new markers for transgene positive/negative selection are developed. This opens up new perspectives for the generation of complex genotypes by genome editing and for the use of RNA‐guided nucleases for forward genetics.
SUMMARYGenome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene‐free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2, respectively). We developed novel counter‐selection markers for N. benthamiana, most importantly Sl‐FAST2, comparable to the well‐established Arabidopsis seed fluorescence marker, and FCY‐UPP, based on the production of toxic 5‐fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY‐UPP for selection of non‐transgenic T1, we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher‐order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.
Genome editing by RNA‐guided nucleases, such as Sp Cas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron‐optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene‐free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T 1 and T 2 , respectively). We developed novel counter‐selection markers for N. benthamiana , most importantly Sl ‐FAST2, comparable to the well‐established Arabidopsis seed fluorescence marker, and FCY‐UPP, based on the production of toxic 5‐fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY‐UPP for selection of non‐transgenic T 1 , we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana . Efficiency was significantly lower in A . thaliana , and our results indicate Cas9 availability is the limiting factor in such higher‐order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.
Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron-optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene-free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T and T , respectively). We developed novel counter-selection markers for N. benthamiana, most importantly Sl-FAST2, comparable to the well-established Arabidopsis seed fluorescence marker, and FCY-UPP, based on the production of toxic 5-fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY-UPP for selection of non-transgenic T , we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher-order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.
Author Stuttmann, Johannes
Ordon, Jana
Barthel, Karen
Herr, Rosalie
Marillonnet, Sylvestre
Martin, Patrick
Erickson, Jessica L.
Berner, Thomas
Bonas, Ulla
Ferik, Filiz
Kretschmer, Carola
Keilwagen, Jens
Author_xml – sequence: 1
  givenname: Johannes
  orcidid: 0000-0002-6207-094X
  surname: Stuttmann
  fullname: Stuttmann, Johannes
  email: johannes.stuttmann@genetik.uni-halle.de
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 2
  givenname: Karen
  surname: Barthel
  fullname: Barthel, Karen
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 3
  givenname: Patrick
  surname: Martin
  fullname: Martin, Patrick
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 4
  givenname: Jana
  surname: Ordon
  fullname: Ordon, Jana
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 5
  givenname: Jessica L.
  surname: Erickson
  fullname: Erickson, Jessica L.
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 6
  givenname: Rosalie
  surname: Herr
  fullname: Herr, Rosalie
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 7
  givenname: Filiz
  surname: Ferik
  fullname: Ferik, Filiz
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 8
  givenname: Carola
  surname: Kretschmer
  fullname: Kretschmer, Carola
  organization: Martin Luther University Halle‐Wittenberg
– sequence: 9
  givenname: Thomas
  surname: Berner
  fullname: Berner, Thomas
  organization: Julius Kühn‐Institute (JKI)
– sequence: 10
  givenname: Jens
  surname: Keilwagen
  fullname: Keilwagen, Jens
  organization: Julius Kühn‐Institute (JKI)
– sequence: 11
  givenname: Sylvestre
  surname: Marillonnet
  fullname: Marillonnet, Sylvestre
  organization: Leibniz Institute of Plant Biochemistry
– sequence: 12
  givenname: Ulla
  surname: Bonas
  fullname: Bonas, Ulla
  organization: Martin Luther University Halle‐Wittenberg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33577114$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtOHDEQhq2ICAbCIheILGXFosHV5X5MdgjxFApZgMSu5XaXZzzqsTttj2B2OUJ2HCg3yUkwDMmO2rgkf_5--d9lW847YuwziENIcxSHxSEUMK0-sAlgWWQIeL_FJmJaiqySkO-w3RAWQkCFpdxmO4hFVQHICQsXdjbv15yMsdqSi3y56qMdenrk1Nlo3ewbT2l_f_0Ocx_5jByNKlrvuDe8_vPEv1vto1VO8TY9n6vl665cxyFP18ejam3nh2BDUkflYvjEPhrVB9p_O_fY3dnp7clFdn1zfnlyfJ1pRFlltQE0LYq8rUFTKytt6g5LLaZVKUwh0r86JUsqpnVHSNSqXGBhdKFVJyUi7rGvG-8w-p8rCrFZ-NXoUmSTF4CQlxLKRB1sKD36EEYyzTDapRrXDYjmpd4m1du81pvYL2_GVbuk7j_5r88EHG2AB9vT-n1Tc_vjaqN8Bi6YiRw
CitedBy_id crossref_primary_10_1111_mpp_13375
crossref_primary_10_3389_fpls_2021_721203
crossref_primary_10_1002_ggn2_202300203
crossref_primary_10_1093_plphys_kiac481
crossref_primary_10_1111_nph_18452
crossref_primary_10_1111_pbi_14159
crossref_primary_10_1007_s11240_024_02807_4
crossref_primary_10_1007_s11248_024_00380_2
crossref_primary_10_1007_s42994_021_00052_3
crossref_primary_10_1038_s41467_024_48313_1
crossref_primary_10_1111_nph_18511
crossref_primary_10_1073_pnas_2201446119
crossref_primary_10_1093_jxb_erac194
crossref_primary_10_3389_fgeed_2021_805317
crossref_primary_10_3390_cells11050795
crossref_primary_10_1111_mpp_13378
crossref_primary_10_1016_j_copbio_2022_102857
crossref_primary_10_1016_j_copbio_2022_102858
crossref_primary_10_1093_pnasnexus_pgac305
crossref_primary_10_1186_s13007_023_01010_4
crossref_primary_10_1038_s41586_023_06500_y
crossref_primary_10_3389_fpls_2022_1051991
crossref_primary_10_1002_cpz1_882
crossref_primary_10_1242_dev_202810
crossref_primary_10_1111_mpp_13290
crossref_primary_10_1002_biot_202100698
crossref_primary_10_3389_fpls_2021_689937
crossref_primary_10_1007_s11627_021_10185_1
crossref_primary_10_1080_14620316_2022_2038699
crossref_primary_10_1111_nph_19114
crossref_primary_10_1371_journal_pone_0290097
crossref_primary_10_3389_fpls_2021_742932
crossref_primary_10_1111_tpj_15228
crossref_primary_10_1111_mpp_13169
crossref_primary_10_1126_science_adf4721
crossref_primary_10_3390_horticulturae10010057
crossref_primary_10_3390_plants10071423
crossref_primary_10_3390_ijms22063082
crossref_primary_10_1038_s41477_024_01701_3
crossref_primary_10_3390_plants11233303
crossref_primary_10_48130_seedbio_0023_0025
crossref_primary_10_3390_ijms25041975
crossref_primary_10_1016_j_cj_2024_01_010
crossref_primary_10_1016_j_tplants_2021_06_015
crossref_primary_10_1038_s41477_022_01118_w
crossref_primary_10_3389_fpls_2022_902413
Cites_doi 10.1093/bioinformatics/btp698
10.1111/nph.15659
10.1104/pp.104.900152
10.1111/tpj.14949
10.1242/dev.00689
10.1126/science.1231143
10.1093/bioinformatics/btp352
10.1186/1746-4811-2-16
10.1186/1746-4811-5-3
10.1111/j.1365-313X.2009.03998.x
10.1111/pbi.12981
10.1016/j.molp.2017.01.003
10.1111/pbi.12931
10.1534/g3.120.401110
10.1111/j.1365-313X.1993.00755.x
10.1186/1471-2148-8-280
10.1111/pbi.12468
10.1186/1471-2148-10-357
10.1046/j.1365-313X.1991.t01-7-00999.x
10.1111/pbi.12403
10.1111/j.1365-313X.2004.02099.x
10.1104/pp.15.00636
10.1371/journal.pone.0197185
10.1016/j.jgg.2018.07.011
10.1242/dev.00814
10.1111/j.1365-313X.2009.04060.x
10.1007/s00299-015-1900-z
10.1126/science.1225829
10.1093/nar/gkw398
10.1007/BF00021534
10.1046/j.1467-7652.2003.00028.x
10.1111/tpj.13319
10.1093/bioinformatics/btq461
10.1105/tpc.10.9.1439
10.1186/s12870-014-0327-y
10.1016/0092-8674(91)90523-2
10.1038/nrc1074
10.4161/psb.6.10.17344
10.1111/tpj.12197
10.1126/science.1232033
10.1111/tpj.13399
10.1038/nbt.4048
10.1371/journal.pone.0016765
10.1111/tpj.13893
10.1007/s10142-019-00665-4
10.1126/science.1144958
10.1016/j.molp.2015.04.007
10.1111/nph.13015
10.1371/journal.pone.0238592
10.1016/j.molp.2018.05.005
10.1038/s41587-019-0286-9
10.1021/sb4001504
10.1105/tpc.19.00099
10.1186/s13059-015-0846-3
10.1128/MMBR.67.1.16-37.2003
10.1186/s13059-015-0715-0
10.1038/ncomms9083
10.1016/S0014-5793(04)00148-6
10.1111/pbi.12833
10.1371/journal.pone.0204778
10.1111/tpj.14569
10.1105/tpc.111.087684
10.1016/j.copbio.2019.02.015
10.1371/journal.pone.0003647
10.1111/jipb.12152
10.1073/pnas.1420294112
10.1105/tpc.16.00922
10.1046/j.0960-7412.2001.01229.x
10.1111/j.1574-6968.1998.tb13205.x
10.1016/j.molcel.2014.04.022
10.1186/s13007-018-0330-7
10.1038/nbt.4272
ContentType Journal Article
Copyright 2021 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd.
2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
DOI 10.1111/tpj.15197
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Genetics Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 22
ExternalDocumentID 10_1111_tpj_15197
33577114
TPJ15197
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: STU642‐1/1
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
ID FETCH-LOGICAL-c3347-8f13fb302b81ceb47cf8d36c09760f50412da46e598de3eeba2035fc5cad44333
IEDL.DBID 33P
ISSN 0960-7412
IngestDate Thu Oct 10 17:05:41 EDT 2024
Thu Nov 21 23:51:05 EST 2024
Sat Nov 02 12:30:19 EDT 2024
Sat Aug 24 01:04:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Arabidopsis thaliana
RNA-guided nucleases (RGNs)
Nicotiana benthamiana
CRISPR/Cas9
multiplexing
technical advance
selection markers
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3347-8f13fb302b81ceb47cf8d36c09760f50412da46e598de3eeba2035fc5cad44333
ORCID 0000-0002-6207-094X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15197
PMID 33577114
PQID 2513126416
PQPubID 31702
PageCount 0
ParticipantIDs proquest_journals_2513126416
crossref_primary_10_1111_tpj_15197
pubmed_primary_33577114
wiley_primary_10_1111_tpj_15197_TPJ15197
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 35
2004; 561
2010; 10
1993; 23
2019; 59
2005; 138
2019; 14
2017; 89
2019; 17
2020; 15
2008; 8
2008; 3
2020; 10
2018; 45
1993; 3
2010; 61
2014; 204
2010; 26
2014; 3
2019; 20
2004; 38
2003; 3
2014; 14
2011; 23
2003; 1
1998; 10
2012; 337
1998; 167
2014; 56
1996; 8
2018; 36
2014; 54
2016; 44
2009; 25
1991; 1
2015; 6
2015; 16
2019; 31
2015; 169
2009; 60
2018; 222
2019; 37
2020; 104
2017; 29
2020; 101
2006; 2
2015; 8
2011; 6
2016; 14
2003; 130
2002; 29
1991; 67
2013; 339
2017; 58
2020
2017; 10
2015; 112
2013; 75
2019
2018
2009; 5
2018; 94
2018; 11
2007; 318
2018; 16
2018; 14
2018; 13
2003; 67
33861513 - Plant J. 2021 Apr;106(1):6-7
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
Grützner R. (e_1_2_10_27_1) 2020
e_1_2_10_44_1
e_1_2_10_42_1
Symeonidi E. (e_1_2_10_65_1) 2020
Hahn F. (e_1_2_10_28_1) 2019
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
Ding T. (e_1_2_10_19_1) 2019
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Tsutsui H. (e_1_2_10_69_1) 2017; 58
Li R. (e_1_2_10_39_1) 2020; 10
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Barthel K. (e_1_2_10_4_1) 2020
e_1_2_10_50_1
Torii K.U. (e_1_2_10_68_1) 1996; 8
Bollier N. (e_1_2_10_8_1) 2020
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 101
  start-page: 731
  year: 2020
  end-page: 741
  article-title: Tissue‐specific inactivation by cytosine deaminase/uracil phosphoribosyl transferase as a tool to study plant biology
  publication-title: The Plant Journal
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
– volume: 2
  start-page: 16
  year: 2006
  article-title: An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol
  publication-title: Plant Methods
– volume: 67
  start-page: 483
  year: 1991
  end-page: 493
  article-title: A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules
  publication-title: Cell
– volume: 16
  start-page: 280
  year: 2015
  article-title: Optimizing sgRNA structure to improve CRISPR‐Cas9 knockout efficiency
  publication-title: Genome Biology
– volume: 10
  start-page: 530
  year: 2017
  end-page: 532
  article-title: CRISPR‐P 2.0: an improved CRISPR‐Cas9 tool for genome editing in plants
  publication-title: Molecular Plant
– volume: 3
  start-page: 330
  year: 2003
  end-page: 338
  article-title: 5‐fluorouracil: mechanisms of action and clinical strategies
  publication-title: Nature Reviews Cancer
– volume: 222
  start-page: 966
  year: 2018
  end-page: 980
  article-title: Diverse NLR immune receptors activate defence via the RPW8‐NLR NRG1
  publication-title: New Phytologist
– volume: 130
  start-page: 6065
  year: 2003
  end-page: 6073
  article-title: Regulation of storage protein gene expression in Arabidopsis
  publication-title: Development (Cambridge, England)
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
– volume: 89
  start-page: 155
  year: 2017
  end-page: 168
  article-title: Generation of chromosomal deletions in dicotyledonous plants employing a user‐friendly genome editing toolkit
  publication-title: The Plant Journal
– volume: 14
  year: 2019
  article-title: Optimization of T‐DNA architecture for Cas9‐mediated mutagenesis in Arabidopsis
  publication-title: PLoS One
– volume: 5
  start-page: 3
  year: 2009
  article-title: Protocol: Streamlined sub‐protocols for floral‐dip transformation and selection of transformants in
  publication-title: Plant Methods
– volume: 36
  start-page: 179
  year: 2018
  end-page: 189
  article-title: Orthologous CRISPR‐Cas9 enzymes for combinatorial genetic screens
  publication-title: Nature Biotechnology
– volume: 3
  year: 2008
  article-title: A one pot, one step, precision cloning method with high throughput capability
  publication-title: PLoS One
– volume: 16
  start-page: 1971
  issue: 12
  year: 2018
  end-page: 1982
  article-title: Chimeric 3' flanking regions strongly enhance gene expression in plants
  publication-title: Plant Biotechnology Journal
– volume: 44
  start-page: W272
  year: 2016
  end-page: W276
  article-title: CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering
  publication-title: Nucleic Acids Research
– volume: 167
  start-page: 41
  year: 1998
  end-page: 49
  article-title: Concomitant expression of cytosine deaminase and uracil phosphoribosyltransferase improves the cytotoxicity of 5‐fluorocytosine
  publication-title: FEMS Microbiology Letters
– volume: 11
  start-page: 1210
  year: 2018
  end-page: 1213
  article-title: Programmed self‐elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene‐free rice plants
  publication-title: Molecular Plant
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  article-title: RNA‐guided human genome engineering via Cas9
  publication-title: Science (New York. N.Y.
– volume: 94
  start-page: 735
  year: 2018
  end-page: 746
  article-title: Efficient in planta gene targeting in Arabidopsis using egg cell‐specific expression of the Cas9 nuclease of
  publication-title: The Plant Journal
– volume: 13
  year: 2018
  article-title: Peripheral infrastructure vectors and an extended set of plant parts for the modular cloning system
  publication-title: PLoS One
– volume: 6
  year: 2011
  article-title: A modular cloning system for standardized assembly of multigene constructs
  publication-title: PLoS One
– volume: 14
  start-page: 65
  year: 2018
  article-title: An efficient CRISPR vector toolbox for engineering large deletions in
  publication-title: Plant Methods
– volume: 29
  start-page: 1196
  issue: 6
  year: 2017
  end-page: 1217
  article-title: A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants
  publication-title: The Plant Cell
– volume: 8
  start-page: 1274
  year: 2015
  end-page: 1284
  article-title: A Robust CRISPR/Cas9 system for convenient, high‐efficiency multiplex genome editing in monocot and dicot plants
  publication-title: Molecular Plant
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  article-title: A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 10
  start-page: 2033
  issue: 6
  year: 2020
  end-page: 2042
  article-title: Proxies of CRISPR/Cas9 activity to aid in the identification of mutagenized Arabidopsis plants
  publication-title: G3; Genes|Genomes|Genetics
– volume: 67
  start-page: 16
  issue: 1
  year: 2003
  end-page: 37
  article-title: Agrobacterium‐mediated plant transformation: the biology behind the “gene‐jockeying” tool
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 138
  start-page: 558
  year: 2005
  end-page: 559
  article-title: Dude, where's my phenotype? Dealing with redundancy in signaling networks
  publication-title: Plant Physiology
– volume: 10
  start-page: 357
  year: 2010
  article-title: Predicting genome‐wide redundancy using machine learning
  publication-title: BMC Evolutionary Biology
– volume: 60
  start-page: 919
  year: 2009
  end-page: 928
  article-title: Recombineering and stable integration of the pv. 61 hrp/hrc cluster into the genome of the soil bacterium Pf0‐1
  publication-title: Plant Journal
– volume: 45
  start-page: 681
  year: 2018
  end-page: 684
  article-title: ZFN, TALEN and CRISPR‐Cas9 mediated homology directed gene insertion in Arabidopsis: A disconnect between somatic and germinal cells
  publication-title: Journal of Genetics and Genomics
– volume: 38
  start-page: 898
  year: 2004
  end-page: 909
  article-title: Two TIR:NB:LRR genes are required to specify resistance to isolate Cala2 in Arabidopsis
  publication-title: The Plant Journal
– volume: 23
  start-page: 2788
  year: 2011
  end-page: 2803
  article-title: Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis
  publication-title: The Plant Cell
– volume: 15
  year: 2020
  article-title: Enabling one‐pot Golden Gate assemblies of unprecedented complexity using data‐optimized assembly design
  publication-title: PLoS One
– volume: 6
  start-page: 1454
  year: 2011
  end-page: 1456
  article-title: A non‐destructive screenable marker, OsFAST, for identifying transgenic rice seeds
  publication-title: Plant Signaling & Behavior
– volume: 1
  start-page: 301
  year: 2003
  end-page: 309
  article-title: Seed‐expressed fluorescent proteins as versatile tools for easy (co)transformation and high‐throughput functional genomics in Arabidopsis
  publication-title: Plant Biotechnology Journal
– volume: 59
  start-page: 93
  year: 2019
  end-page: 102
  article-title: Applications of multiplex genome editing in higher plants
  publication-title: Current Opinion in Biotechnology
– volume: 318
  start-page: 645
  year: 2007
  end-page: 648
  article-title: Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene
  publication-title: Science
– volume: 14
  start-page: 327
  year: 2014
  article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants
  publication-title: BMC Plant Biology
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 35
  start-page: 1519
  year: 2015
  end-page: 1533
  article-title: A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis
  publication-title: Plant Cell Reports
– volume: 75
  start-page: 157
  year: 2013
  end-page: 171
  article-title: GABI‐DUPLO: a collection of double mutants to overcome genetic redundancy in
  publication-title: The Plant Journal
– volume: 37
  start-page: 1294
  year: 2019
  end-page: 1301
  article-title: Simultaneous repression of multiple bacterial genes using nonrepetitive extra‐long sgRNA arrays
  publication-title: Nature Biotechnology
– volume: 29
  start-page: 439
  year: 2002
  end-page: 451
  article-title: Arabidopsis is a member of the multigene family of TIR‐NB‐LRR genes and confers downy mildew resistance through multiple signalling components
  publication-title: Plant Journal
– volume: 8
  start-page: 280
  year: 2008
  article-title: Unique genes in plants: specificities and conserved features throughout evolution
  publication-title: BMC Evolutionary Biology
– volume: 20
  start-page: 151
  year: 2019
  end-page: 162
  article-title: Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation
  publication-title: Functional and Integrative Genomics
– volume: 204
  start-page: 823
  year: 2014
  end-page: 832
  article-title: TAL effectors–pathogen strategies and plant resistance engineering
  publication-title: New Phytologist
– volume: 3
  start-page: 839
  issue: 11
  year: 2014
  end-page: 843
  article-title: A golden gate modular cloning toolbox for plants
  publication-title: ACS Synthetic Biology
– volume: 31
  start-page: 2456
  year: 2019
  end-page: 2474
  article-title: An EDS1‐SAG101 complex is essential for TNL‐mediated immunity in
  publication-title: The Plant cell
– start-page: 738021
  year: 2019
  article-title: A modular cloning toolkit for genome editing in plants
  publication-title: bioRxiv
– volume: 16
  start-page: 856
  year: 2018
  end-page: 866
  article-title: TALEN‐mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield
  publication-title: Plant Biotechnology Journal
– year: 2020
  article-title: CRISPR‐finder: A high throughput and cost effective method for identifying successfully edited individuals
  publication-title: bioRxiv
– volume: 169
  start-page: 971
  year: 2015
  end-page: 985
  article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
  publication-title: Plant Physiology
– volume: 61
  start-page: 519
  year: 2010
  end-page: 528
  article-title: A rapid and non‐destructive screenable marker, FAST, for identifying transformed seeds of
  publication-title: The Plant Journal
– year: 2020
  article-title: Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR
  publication-title: Plant Biotechnology Journal
– start-page: 839555
  year: 2019
  article-title: Reversed paired‐gRNA plasmid cloning strategy for efficient genome editing in
  publication-title: bioRxiv
– volume: 10
  start-page: 1439
  year: 1998
  end-page: 1452
  article-title: A mutation within the leucine‐rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes
  publication-title: The Plant Cell
– volume: 54
  start-page: 698
  year: 2014
  end-page: 710
  article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells
  publication-title: Molecular Cell
– volume: 130
  start-page: 4695
  year: 2003
  end-page: 4708
  article-title: The FORKED genes are essential for distal vein meeting in Arabidopsis
  publication-title: Development (Cambridge, England)
– volume: 26
  start-page: 589
  year: 2010
  end-page: 595
  article-title: Fast and accurate long‐read alignment with Burrows‐Wheeler transform
  publication-title: Bioinformatics
– year: 2020
  article-title: High‐efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns
  publication-title: Plant Communications
– volume: 8
  start-page: 735
  year: 1996
  end-page: 746
  article-title: The gene encodes a putative receptor protein kinase with extracellular leucine‐rich repeats
  publication-title: The Plant cell
– volume: 89
  start-page: 636
  year: 2017
  end-page: 648
  article-title: Discovery of rice essential genes by characterizing a CRISPR‐edited mutation of closely related rice MAP kinase genes
  publication-title: The Plant Journal
– volume: 14
  start-page: 533
  year: 2016
  end-page: 542
  article-title: Multiplexed, targeted gene editing in for glyco‐engineering and monoclonal antibody production
  publication-title: Plant Biotechnology Journal
– volume: 1
  start-page: 289
  year: 1991
  end-page: 302
  article-title: Identification and molecular mapping of a single locus determining resistance to a phytopathogenic isolate
  publication-title: The Plant Journal
– volume: 104
  start-page: 828
  year: 2020
  end-page: 838
  article-title: Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in
  publication-title: The Plant Journal
– volume: 16
  start-page: 144
  year: 2015
  article-title: Egg cell‐specific promoter‐controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation
  publication-title: Genome Biology
– volume: 112
  start-page: 3570
  year: 2015
  end-page: 3575
  article-title: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA‐processing system
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 3
  start-page: 755
  year: 1993
  end-page: 761
  article-title: Substrate‐dependent negative selection in plants using a bacterial cytosine deaminase gene
  publication-title: The Plant Journal
– volume: 56
  start-page: 343
  year: 2014
  end-page: 349
  article-title: Self‐processing of ribozyme‐flanked RNAs into guide RNAs in vitro and in vivo for CRISPR‐mediated genome editing
  publication-title: Journal of Integrative Plant Biology
– volume: 23
  start-page: 793
  year: 1993
  end-page: 799
  article-title: Cytosine deaminase as a negative selective marker for Arabidopsis
  publication-title: Plant Molecular Biology
– volume: 58
  start-page: 46
  year: 2017
  end-page: 56
  article-title: pKAMA‐ITACHI vectors for highly efficient CRISPR/Cas9‐mediated gene knockout in
  publication-title: Plant and Cell Physiology
– volume: 6
  start-page: 8083
  year: 2015
  article-title: Rapid and efficient one‐step generation of paired gRNA CRISPR‐Cas9 libraries
  publication-title: Nature Communications
– volume: 17
  start-page: 350
  year: 2019
  end-page: 361
  article-title: CRISPR/Cas9‐mediated knockout of six glycosyltransferase genes inNicotiana benthamianafor the production of recombinant proteins lacking β‐1,2‐xylose and core α‐1,3‐fucose
  publication-title: Plant Biotechnology Journal
– volume: 14
  start-page: 519
  year: 2016
  end-page: 532
  article-title: Development of germ‐line‐specific CRISPR‐Cas9 systems to improve the production of heritable gene modifications in Arabidopsis
  publication-title: Plant Biotechnology Journal
– volume: 561
  start-page: 127
  year: 2004
  end-page: 131
  article-title: Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds
  publication-title: FEBS Letters
– year: 2018
  article-title: De novo domestication of wild tomato using genome editing
  publication-title: Nature Biotechnology
– year: 2020
  article-title: One‐shot generation of duodecuple (12x) mutant Arabidopsis: Highly efficient routine editing in model species
  publication-title: bioRxiv
– ident: e_1_2_10_36_1
  doi: 10.1093/bioinformatics/btp698
– ident: e_1_2_10_9_1
  doi: 10.1111/nph.15659
– ident: e_1_2_10_14_1
  doi: 10.1104/pp.104.900152
– ident: e_1_2_10_75_1
  doi: 10.1111/tpj.14949
– ident: e_1_2_10_61_1
  doi: 10.1242/dev.00689
– ident: e_1_2_10_13_1
  doi: 10.1126/science.1231143
– ident: e_1_2_10_37_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_10_41_1
  doi: 10.1186/1746-4811-2-16
– ident: e_1_2_10_16_1
  doi: 10.1186/1746-4811-5-3
– ident: e_1_2_10_66_1
  doi: 10.1111/j.1365-313X.2009.03998.x
– ident: e_1_2_10_30_1
  doi: 10.1111/pbi.12981
– ident: e_1_2_10_40_1
  doi: 10.1016/j.molp.2017.01.003
– ident: e_1_2_10_18_1
  doi: 10.1111/pbi.12931
– volume: 10
  start-page: 2033
  issue: 6
  year: 2020
  ident: e_1_2_10_39_1
  article-title: Proxies of CRISPR/Cas9 activity to aid in the identification of mutagenized Arabidopsis plants
  publication-title: G3; Genes|Genomes|Genetics
  doi: 10.1534/g3.120.401110
  contributor:
    fullname: Li R.
– ident: e_1_2_10_62_1
  doi: 10.1111/j.1365-313X.1993.00755.x
– ident: e_1_2_10_3_1
  doi: 10.1186/1471-2148-8-280
– ident: e_1_2_10_46_1
  doi: 10.1111/pbi.12468
– ident: e_1_2_10_12_1
  doi: 10.1186/1471-2148-10-357
– ident: e_1_2_10_17_1
  doi: 10.1046/j.1365-313X.1991.t01-7-00999.x
– ident: e_1_2_10_38_1
  doi: 10.1111/pbi.12403
– volume: 58
  start-page: 46
  year: 2017
  ident: e_1_2_10_69_1
  article-title: pKAMA‐ITACHI vectors for highly efficient CRISPR/Cas9‐mediated gene knockout in Arabidopsis thaliana
  publication-title: Plant and Cell Physiology
  contributor:
    fullname: Tsutsui H.
– ident: e_1_2_10_60_1
  doi: 10.1111/j.1365-313X.2004.02099.x
– ident: e_1_2_10_43_1
  doi: 10.1104/pp.15.00636
– ident: e_1_2_10_23_1
  doi: 10.1371/journal.pone.0197185
– ident: e_1_2_10_57_1
  doi: 10.1016/j.jgg.2018.07.011
– ident: e_1_2_10_33_1
  doi: 10.1242/dev.00814
– ident: e_1_2_10_59_1
  doi: 10.1111/j.1365-313X.2009.04060.x
– ident: e_1_2_10_80_1
  doi: 10.1007/s00299-015-1900-z
– year: 2020
  ident: e_1_2_10_65_1
  article-title: CRISPR‐finder: A high throughput and cost effective method for identifying successfully edited A. thaliana individuals
  publication-title: bioRxiv
  contributor:
    fullname: Symeonidi E.
– ident: e_1_2_10_31_1
  doi: 10.1126/science.1225829
– ident: e_1_2_10_34_1
  doi: 10.1093/nar/gkw398
– ident: e_1_2_10_53_1
  doi: 10.1007/BF00021534
– ident: e_1_2_10_63_1
  doi: 10.1046/j.1467-7652.2003.00028.x
– ident: e_1_2_10_52_1
  doi: 10.1111/tpj.13319
– ident: e_1_2_10_20_1
  doi: 10.1093/bioinformatics/btq461
– start-page: 738021
  year: 2019
  ident: e_1_2_10_28_1
  article-title: A modular cloning toolkit for genome editing in plants
  publication-title: bioRxiv
  contributor:
    fullname: Hahn F.
– ident: e_1_2_10_73_1
  doi: 10.1105/tpc.10.9.1439
– ident: e_1_2_10_79_1
  doi: 10.1186/s12870-014-0327-y
– ident: e_1_2_10_50_1
  doi: 10.1016/0092-8674(91)90523-2
– start-page: 839555
  year: 2019
  ident: e_1_2_10_19_1
  article-title: Reversed paired‐gRNA plasmid cloning strategy for efficient genome editing in Escherichia coli
  publication-title: bioRxiv
  contributor:
    fullname: Ding T.
– ident: e_1_2_10_42_1
  doi: 10.1038/nrc1074
– ident: e_1_2_10_58_1
  doi: 10.4161/psb.6.10.17344
– ident: e_1_2_10_7_1
  doi: 10.1111/tpj.12197
– year: 2020
  ident: e_1_2_10_4_1
  article-title: One‐shot generation of duodecuple (12x) mutant Arabidopsis: Highly efficient routine editing in model species
  publication-title: bioRxiv
  contributor:
    fullname: Barthel K.
– ident: e_1_2_10_45_1
  doi: 10.1126/science.1232033
– year: 2020
  ident: e_1_2_10_27_1
  article-title: High‐efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns
  publication-title: Plant Communications
  contributor:
    fullname: Grützner R.
– ident: e_1_2_10_47_1
  doi: 10.1111/tpj.13399
– ident: e_1_2_10_48_1
  doi: 10.1038/nbt.4048
– ident: e_1_2_10_74_1
  doi: 10.1371/journal.pone.0016765
– ident: e_1_2_10_76_1
  doi: 10.1111/tpj.13893
– ident: e_1_2_10_51_1
  doi: 10.1007/s10142-019-00665-4
– ident: e_1_2_10_56_1
  doi: 10.1126/science.1144958
– volume: 8
  start-page: 735
  year: 1996
  ident: e_1_2_10_68_1
  article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine‐rich repeats
  publication-title: The Plant cell
  contributor:
    fullname: Torii K.U.
– ident: e_1_2_10_44_1
  doi: 10.1016/j.molp.2015.04.007
– ident: e_1_2_10_6_1
  doi: 10.1111/nph.13015
– ident: e_1_2_10_54_1
  doi: 10.1371/journal.pone.0238592
– ident: e_1_2_10_29_1
  doi: 10.1016/j.molp.2018.05.005
– ident: e_1_2_10_55_1
  doi: 10.1038/s41587-019-0286-9
– ident: e_1_2_10_22_1
  doi: 10.1021/sb4001504
– ident: e_1_2_10_24_1
  doi: 10.1105/tpc.19.00099
– ident: e_1_2_10_15_1
  doi: 10.1186/s13059-015-0846-3
– ident: e_1_2_10_26_1
  doi: 10.1128/MMBR.67.1.16-37.2003
– ident: e_1_2_10_72_1
  doi: 10.1186/s13059-015-0715-0
– ident: e_1_2_10_71_1
  doi: 10.1038/ncomms9083
– ident: e_1_2_10_5_1
  doi: 10.1016/S0014-5793(04)00148-6
– ident: e_1_2_10_32_1
  doi: 10.1111/pbi.12833
– ident: e_1_2_10_10_1
  doi: 10.1371/journal.pone.0204778
– ident: e_1_2_10_35_1
  doi: 10.1111/tpj.14569
– ident: e_1_2_10_64_1
  doi: 10.1105/tpc.111.087684
– year: 2020
  ident: e_1_2_10_8_1
  article-title: Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR
  publication-title: Plant Biotechnology Journal
  contributor:
    fullname: Bollier N.
– ident: e_1_2_10_2_1
  doi: 10.1016/j.copbio.2019.02.015
– ident: e_1_2_10_21_1
  doi: 10.1371/journal.pone.0003647
– ident: e_1_2_10_25_1
  doi: 10.1111/jipb.12152
– ident: e_1_2_10_78_1
  doi: 10.1073/pnas.1420294112
– ident: e_1_2_10_11_1
  doi: 10.1105/tpc.16.00922
– ident: e_1_2_10_70_1
  doi: 10.1046/j.0960-7412.2001.01229.x
– ident: e_1_2_10_67_1
  doi: 10.1111/j.1574-6968.1998.tb13205.x
– ident: e_1_2_10_49_1
  doi: 10.1016/j.molcel.2014.04.022
– ident: e_1_2_10_77_1
  doi: 10.1186/s13007-018-0330-7
– ident: e_1_2_10_81_1
  doi: 10.1038/nbt.4272
SSID ssj0017364
Score 2.5905743
Snippet SUMMARY Genome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent...
Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci...
Genome editing by RNA‐guided nucleases, such as Sp Cas9, has been used in numerous different plant species. However, to what extent multiple independent loci...
SUMMARYGenome editing by RNA‐guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 8
SubjectTerms 5-Fluorouracil
Arabidopsis
Arabidopsis - genetics
Arabidopsis thaliana
Arrays
Biomarkers
CRISPR-Cas Systems - genetics
CRISPR/Cas9
Editing
Fluorescence
Gene Editing
Genes
Genome, Plant - genetics
Genomes
Genotypes
Multiplexing
Mutants
Mutation
Mutation - genetics
Nicotiana - genetics
Nicotiana benthamiana
Nuclease
Plant species
Plants, Genetically Modified - genetics
RNA editing
RNA‐guided nucleases (RGNs)
selection markers
technical advance
Toolkits
Title Highly efficient multiplex editing: one‐shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.15197
https://www.ncbi.nlm.nih.gov/pubmed/33577114
https://www.proquest.com/docview/2513126416
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4qHrz4fqwvgnjwUmg6SR968rHL4kEEFbyVpEl1Qdtluwt68yd48wf5T_wlTtLtooggeAukE0ImM_NNM_lCyD4qNcp1yD2RK-7xkDMvMVrYnCdJZCIy405Mu1fRxW181rY0OUfNXZiaH2Lyw81ahvPX1sClqr4Y-bCPZm6vXaL_xSzBXd-Ay8kJQgQ1dRQidA-jZjBmFbJVPBPJ77HoB8D8jlddwOks_Guqi2R-jDPpcb0xlsiUKZbJ7EmJWPB5hVS2vOPhmRpHIIFxhzaFhU8Uo5kthT6kZWE-Xl6r-3JI7xw5tdUhLXMav79Ru4Osc5BUofi9fHRtWWjKAuw-HkjV02W_6lU4tH2puFolN5329WnXGz-_4GUAHGNXziBX4AcqZplRPMryWEOY-Yhg_FxYoi4teWhEEmsDxigZ-CDyTGRScw4Aa2SmwKluEMqlZlyGPqgEnYZmKmESpSSESqgwzlpkr1FE2q9ZNtImO8HFS93itch2o6J0bGhVivAMGII6FrbIeq22yQgAIoow32uRA6ed34dOry_PXWPz759ukbnA1re4Kp5tMjMcjMwOma70aNftxE9nbuF7
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB6ySSC9tM1fu23aiNBDLgbLI_mn9LJts2yTTQh0A7kZyZKzgXa9xBtobn2E3vpAfZM-SUfyemkIgUBuAlmy0MxovpFGnwDekVCT0sQikKUWgYgFDzJrpIt5skxlsrD-xHTwNTk5Tz8fOJqcD-1dmIYfYrHh5izDr9fOwN2G9H9WPpuSnbt7lx1YoZ-k_gIHni7OEBJsyKMIowfkN6M5r5DL41k0ve2N7kDM24jVu5z-s8cN9jk8nUNN1mt0Yx2W7GQDVj9WBAdvNqF2GR7fbpj1HBLkelibW_iDkUNz2dDvWTWxf3_-qsfVjF14fmonRlaVLP3zmzklcuuDYpqaj9V3X1YTw3hE1b0rpS9NNa0va-raPVZcb8FZ_2D0aRDMX2AICkRB7qvkWGoMI53ywmqRFGVqMC5CAjFhKR1Xl1EitjJLjUVrtYpClGUhC2WEQMRtWJ7QUF8CE8pwoeIQdUbrhuE644paKYy11HFadGGvlUQ-bYg28jZAocnL_eR1YaeVUT63tTonhIaccB2Pu_CikduiB0SZJBTydWHfi-f-rvPR6aEvvHr4p7uwNhgdD_Phl5Oj1_AkcukuPqlnB5ZnV9f2DXRqc_3Wq-U_pYrlow
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSx0xEB68lNIXrb0etTWUPvRlYbOT7EWfvB2sFjlQC31bkk2iQnv24B5B3_wJvvmD_Cf-EifZswelCAXfAtkZQiYz82Uz-QLwlYyaOZOKSDotIpEKHhXWSL_nKQpVyMqGE9O9n9nh73xn19PkbHR3YVp-iOkPN-8ZIV57Bx8Z98DJxyNyc3_tchbmBcFwT5yPOJgeIWTYckcRRI8obSYTWiFfxjMVfZyM_kGYjwFryDj9xWeN9TUsTIAm22xXxhLM2OEbeLFVExi8fAuNr-_4c8lsYJCgxMO6ysILRunM10Kvs3po766um5N6zI4DO7U3Iqsdy29vmF9CPjoopkn8RP0NbTU0jCfUvXmm9KmpR81pQ6r9U8XNO_jV3z3a3osm7y9EFaKg5OU4Oo1xonNeWS2yyuUG0yomCBM76Zm6jBKplUVuLFqrVRKjdJWslBECEd_D3JCG-hGYUIYLlcaoC4oahuuCK5JSmGqp07zqwZfOEOWopdkou-0JTV4ZJq8Hq52JyomnNSXhM-SE6njagw-t2aYaEGWW0YavB9-CdZ5WXR4N9kNj-f8_XYOXg51--eP74cEKvEp8rUuo6FmFufHZuf0Es405_xwW5T34j-RJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+multiplex+editing%3A+one%E2%80%90shot+generation+of+8%C3%97+Nicotiana+benthamiana+and+12%C3%97+Arabidopsis+mutants&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Stuttmann%2C+Johannes&rft.au=Barthel%2C+Karen&rft.au=Martin%2C+Patrick&rft.au=Ordon%2C+Jana&rft.date=2021-04-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=106&rft.issue=1&rft.spage=8&rft.epage=22&rft_id=info:doi/10.1111%2Ftpj.15197&rft.externalDBID=10.1111%252Ftpj.15197&rft.externalDocID=TPJ15197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon