An Improved Deep Network-Based Scene Classification Method for Self-Driving Cars

A self-driving car is a hot research topic in the field of the intelligent transportation system, which can greatly alleviate traffic jams and improve travel efficiency. Scene classification is one of the key technologies of self-driving cars, which can provide the basis for decision-making in self-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 14
Main Authors: Ni, Jianjun, Shen, Kang, Chen, Yinan, Cao, Weidong, Yang, Simon X.
Format: Journal Article
Language:English
Published: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A self-driving car is a hot research topic in the field of the intelligent transportation system, which can greatly alleviate traffic jams and improve travel efficiency. Scene classification is one of the key technologies of self-driving cars, which can provide the basis for decision-making in self-driving cars. In recent years, deep learning-based solutions have achieved good results in the problem of scene classification. However, some problems should be further studied in the scene classification methods, such as how to deal with the similarities among different categories and the differences among the same category. To deal with these problems, an improved deep network-based scene classification method is proposed in this article. In the proposed method, an improved faster region with convolutional neural network features (RCNN) network is used to extract the features of representative objects in the scene to obtain local features, where a new residual attention block is added to the Faster RCNN network to highlight local semantics related to driving scenarios. In addition, an improved Inception module is used to extract global features, where a mixed Leaky ReLU and ELU function is presented, to reduce the possible redundancy of the convolution kernel and enhance the robustness. Then, the local features and the global features are fused to realize the scene classification. Finally, a private dataset is built from the public datasets for the specialized application of scene classification in the self-driving field, and the proposed method is tested on the proposed dataset. The experimental results show that the accuracy of the proposed method can reach 94.76%, which is higher than the state-of-the-art methods.
AbstractList A self-driving car is a hot research topic in the field of the intelligent transportation system, which can greatly alleviate traffic jams and improve travel efficiency. Scene classification is one of the key technologies of self-driving cars, which can provide the basis for decision-making in self-driving cars. In recent years, deep learning-based solutions have achieved good results in the problem of scene classification. However, some problems should be further studied in the scene classification methods, such as how to deal with the similarities among different categories and the differences among the same category. To deal with these problems, an improved deep network-based scene classification method is proposed in this article. In the proposed method, an improved faster region with convolutional neural network features (RCNN) network is used to extract the features of representative objects in the scene to obtain local features, where a new residual attention block is added to the Faster RCNN network to highlight local semantics related to driving scenarios. In addition, an improved Inception module is used to extract global features, where a mixed Leaky ReLU and ELU function is presented, to reduce the possible redundancy of the convolution kernel and enhance the robustness. Then, the local features and the global features are fused to realize the scene classification. Finally, a private dataset is built from the public datasets for the specialized application of scene classification in the self-driving field, and the proposed method is tested on the proposed dataset. The experimental results show that the accuracy of the proposed method can reach 94.76%, which is higher than the state-of-the-art methods.
Author Yang, Simon X.
Ni, Jianjun
Shen, Kang
Chen, Yinan
Cao, Weidong
Author_xml – sequence: 1
  givenname: Jianjun
  orcidid: 0000-0002-7130-8331
  surname: Ni
  fullname: Ni, Jianjun
  email: njjhhuc@gmail.com
  organization: College of Internet of Things Engineering, Hohai University, Jiangsu, Changzhou, China
– sequence: 2
  givenname: Kang
  orcidid: 0000-0002-5575-1069
  surname: Shen
  fullname: Shen, Kang
  email: shenkang_hhu@hhu.edu.cn
  organization: College of Internet of Things Engineering, Hohai University, Jiangsu, Changzhou, China
– sequence: 3
  givenname: Yinan
  orcidid: 0000-0003-2852-0078
  surname: Chen
  fullname: Chen, Yinan
  email: chenyinan96@163.com
  organization: College of Internet of Things Engineering, Hohai University, Jiangsu, Changzhou, China
– sequence: 4
  givenname: Weidong
  orcidid: 0000-0002-0394-9639
  surname: Cao
  fullname: Cao, Weidong
  email: cwd2018@hhu.edu.cn
  organization: College of Internet of Things Engineering, Hohai University, Jiangsu, Changzhou, China
– sequence: 5
  givenname: Simon X.
  orcidid: 0000-0002-6888-7993
  surname: Yang
  fullname: Yang, Simon X.
  email: syang@uoguelph.ca
  organization: Advanced Robotics and Intelligent Systems (ARIS) Laboratory, School of Engineering, University of Guelph, Guelph, ON, Canada
BookMark eNo9kF1PwjAUhhuDiYDem3jTxOthe7p16yUOP0hATcDrpttOdQgrtgPjv3cE4tVJTp73PSfPgPQa1yAh15yNOGfqbjmdj4ABjASPpQJxRvo8SdJISQk90meMZ5GKE3lBBiGsGGOpjNM-eRs3dLrZerfHik4Qt_QF2x_nv6J7E7rVosQGab42IdS2Lk1bu4bOsf10FbXO0wWubTTx9b5uPmhufLgk59asA16d5pC8Pz4s8-do9vo0zcezqBRCtJEFw5S1KRjIsEiERQWxAhAorMVUpmDBSqlklZVcJiq1XJkYCywMswWrxJDcHnu73793GFq9cjvfdCc1SCFYDCKDjmJHqvQuBI9Wb329Mf5Xc6YP3nTnTR-86ZO3LnJzjNSI-I8r2clTsfgDMTxqTQ
CODEN IEIMAO
CitedBy_id crossref_primary_10_3390_s22155856
crossref_primary_10_1109_TIM_2023_3300474
crossref_primary_10_1109_TIM_2024_3351240
crossref_primary_10_1109_JSEN_2023_3304973
crossref_primary_10_3390_rs16010149
crossref_primary_10_3390_w14081300
crossref_primary_10_1109_TVT_2023_3267500
crossref_primary_10_1007_s11042_023_15845_5
crossref_primary_10_1007_s11042_024_18199_8
crossref_primary_10_1109_TIM_2022_3200361
crossref_primary_10_3389_fnbot_2023_1143032
crossref_primary_10_1109_TETCI_2023_3234548
crossref_primary_10_3390_rs16132465
crossref_primary_10_1007_s00500_023_09278_3
crossref_primary_10_1109_ACCESS_2024_3359435
crossref_primary_10_1007_s11042_023_17235_3
crossref_primary_10_1109_TIM_2023_3244819
crossref_primary_10_1109_TIM_2022_3200434
crossref_primary_10_1109_TIM_2023_3246534
crossref_primary_10_1007_s11042_023_18100_z
crossref_primary_10_1007_s11042_024_18313_w
crossref_primary_10_1109_TIM_2023_3260282
crossref_primary_10_1109_TIM_2023_3289563
crossref_primary_10_3390_app13158623
crossref_primary_10_1109_TIM_2022_3232093
crossref_primary_10_1007_s11042_023_17625_7
crossref_primary_10_3390_app13042712
Cites_doi 10.1109/SGCF.2017.7947614
10.1049/iet-its.2018.5144
10.3390/app11125456
10.1109/CVPR.2015.7298594
10.1016/j.neucom.2021.08.104
10.3390/a14040114
10.1109/ICCV.2005.152
10.1007/s11263-019-01275-0
10.14257/ijsip.2015.8.2.28
10.1109/ACCESS.2019.2946000
10.1109/CVPR42600.2020.00889
10.1109/ICIIP47207.2019.8985925
10.1109/TIM.2019.2954722
10.1016/j.neucom.2016.11.023
10.1109/ACPEE51499.2021.9437086
10.1109/83.892448
10.1016/j.neucom.2017.09.098
10.1126/scirobotics.aav9843
10.1109/TIM.2021.3096284
10.3837/tiis.2019.04.003
10.1080/2150704X.2021.1966119
10.1155/2020/8817849
10.1109/TPAMI.2016.2577031
10.1109/TIP.2017.2675339
10.1016/j.tra.2018.05.005
10.3390/app10082749
10.1016/j.neucom.2019.10.116
10.1007/s11042-019-07933-2
10.1109/ACCESS.2021.3051085
10.1109/TIM.2016.2514780
10.1016/j.cviu.2019.102805
10.1117/1.JRS.14.044512
10.1007/s11633-018-1126-y
10.1016/j.patrec.2020.09.030
10.1109/TVT.2019.2895651
10.1109/CVPR.2017.195
10.1109/TVT.2019.2949603
10.1049/iet-its.2018.5618
10.1109/MSPEC.2016.7419800
10.1109/COMST.2018.2869360
10.1016/j.neucom.2019.01.090
10.1109/TIP.2019.2913079
10.1007/s11042-019-08239-z
10.1049/et.2017.0201
10.1109/JIOT.2020.3022353
10.1007/s10278-020-00371-9
10.1109/ACCESS.2020.3009782
10.1109/CVPR42600.2020.00271
10.1016/j.cageo.2018.12.007
10.1109/CVPR.2018.00352
10.1109/ChiCC.2014.6896712
10.1109/TIM.2019.2941292
10.1142/S0218001420540245
10.1007/s11831-018-09312-w
10.3390/info11120583
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3146923
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: ESBDL
  name: IEEE Xplore Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2022_3146923
9694594
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873086; 61903123
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20190165
  funderid: 10.13039/501100004608
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c333t-f2a09ff72a28eb53fe9249223e3ffe7672f2f6696d8c16597f19a4ebeba0fb0d3
IEDL.DBID ESBDL
ISSN 0018-9456
IngestDate Thu Oct 17 20:47:32 EDT 2024
Fri Aug 23 02:16:47 EDT 2024
Wed Jun 26 19:25:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-f2a09ff72a28eb53fe9249223e3ffe7672f2f6696d8c16597f19a4ebeba0fb0d3
ORCID 0000-0002-6888-7993
0000-0002-7130-8331
0000-0002-5575-1069
0000-0003-2852-0078
0000-0002-0394-9639
OpenAccessLink https://ieeexplore.ieee.org/document/9694594
PQID 2633042382
PQPubID 85462
PageCount 14
ParticipantIDs ieee_primary_9694594
proquest_journals_2633042382
crossref_primary_10_1109_TIM_2022_3146923
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref3
  doi: 10.1109/SGCF.2017.7947614
– ident: ref11
  doi: 10.1049/iet-its.2018.5144
– ident: ref22
  doi: 10.3390/app11125456
– ident: ref36
  doi: 10.1109/CVPR.2015.7298594
– ident: ref38
  doi: 10.1016/j.neucom.2021.08.104
– ident: ref50
  doi: 10.3390/a14040114
– ident: ref18
  doi: 10.1109/ICCV.2005.152
– ident: ref32
  doi: 10.1007/s11263-019-01275-0
– ident: ref17
  doi: 10.14257/ijsip.2015.8.2.28
– ident: ref51
  doi: 10.1109/ACCESS.2019.2946000
– ident: ref54
  doi: 10.1109/CVPR42600.2020.00889
– ident: ref49
  doi: 10.1109/ICIIP47207.2019.8985925
– ident: ref20
  doi: 10.1109/TIM.2019.2954722
– ident: ref25
  doi: 10.1016/j.neucom.2016.11.023
– ident: ref34
  doi: 10.1109/ACPEE51499.2021.9437086
– ident: ref16
  doi: 10.1109/83.892448
– ident: ref31
  doi: 10.1016/j.neucom.2017.09.098
– ident: ref4
  doi: 10.1126/scirobotics.aav9843
– ident: ref55
  doi: 10.1109/TIM.2021.3096284
– ident: ref30
  doi: 10.3837/tiis.2019.04.003
– ident: ref39
  doi: 10.1080/2150704X.2021.1966119
– ident: ref45
  doi: 10.1155/2020/8817849
– ident: ref33
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref26
  doi: 10.1109/TIP.2017.2675339
– ident: ref42
  doi: 10.1016/j.tra.2018.05.005
– ident: ref6
  doi: 10.3390/app10082749
– ident: ref13
  doi: 10.1016/j.neucom.2019.10.116
– ident: ref43
  doi: 10.1007/s11042-019-07933-2
– ident: ref48
  doi: 10.1109/ACCESS.2021.3051085
– ident: ref2
  doi: 10.1109/TIM.2016.2514780
– ident: ref19
  doi: 10.1016/j.cviu.2019.102805
– ident: ref40
  doi: 10.1117/1.JRS.14.044512
– ident: ref12
  doi: 10.1007/s11633-018-1126-y
– ident: ref29
  doi: 10.1016/j.patrec.2020.09.030
– ident: ref41
  doi: 10.1109/TVT.2019.2895651
– ident: ref37
  doi: 10.1109/CVPR.2017.195
– ident: ref10
  doi: 10.1109/TVT.2019.2949603
– ident: ref15
  doi: 10.1049/iet-its.2018.5618
– ident: ref5
  doi: 10.1109/MSPEC.2016.7419800
– ident: ref7
  doi: 10.1109/COMST.2018.2869360
– ident: ref46
  doi: 10.1016/j.neucom.2019.01.090
– ident: ref23
  doi: 10.1109/TIP.2019.2913079
– ident: ref14
  doi: 10.1007/s11042-019-08239-z
– ident: ref8
  doi: 10.1049/et.2017.0201
– ident: ref27
  doi: 10.1109/JIOT.2020.3022353
– ident: ref47
  doi: 10.1007/s10278-020-00371-9
– ident: ref24
  doi: 10.1109/ACCESS.2020.3009782
– ident: ref52
  doi: 10.1109/CVPR42600.2020.00271
– ident: ref44
  doi: 10.1016/j.cageo.2018.12.007
– ident: ref53
  doi: 10.1109/CVPR.2018.00352
– ident: ref9
  doi: 10.1109/ChiCC.2014.6896712
– ident: ref28
  doi: 10.1109/TIM.2019.2941292
– ident: ref1
  doi: 10.1142/S0218001420540245
– ident: ref21
  doi: 10.1007/s11831-018-09312-w
– ident: ref35
  doi: 10.3390/info11120583
SSID ssj0007647
Score 2.588768
Snippet A self-driving car is a hot research topic in the field of the intelligent transportation system, which can greatly alleviate traffic jams and improve travel...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Automobiles
Autonomous automobiles
Autonomous cars
Autonomous vehicles
Classification
Datasets
Decision making
Deep network
faster region with convolutional neural network features (RCNN)
Feature extraction
feature fusion
Image recognition
Intelligent transportation systems
Machine learning
Object recognition
Redundancy
Roads
scene classification
self-driving car
Semantics
Traffic congestion
Traffic jams
Transportation networks
Visualization
Title An Improved Deep Network-Based Scene Classification Method for Self-Driving Cars
URI https://ieeexplore.ieee.org/document/9694594
https://www.proquest.com/docview/2633042382
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50RdCDb3F9kYMXwWqa1LQ5rnZFQRehCt5Kmk5AkK647v93knYXRS_eSmlLyZd5fJN5AJyoNDaxQYycklWUuJR7kdKREdZW2sgqS31x8m2Rjl6yfOjb5JzNa2EQMSSf4bm_DGf59dhOfajsQiudXOpkEZZESn5zD5aGxVV-P9e8dLPtkRmTEJNnMDuW5Pri6e6ByKAQxFGJEAr5wwyFuSq_lHGwMDfr__u3DVjrPEk2aKHfhAVstmD1W3_BLVgO-Z12sg2Pg4a18QOsWY74zkZt_nd0RWasZoUlncfChEyfOxTgYg9hujQjt5YV-Oai_OPVhx_YNZHhHXi-GT5d30bdMIXISik_IycM9_FZYUSG1aV06JkXOQconcNUpcIJp5RWdWZjRTTDxdokBHFluKt4LXeh14wb3APmLMeai4onMZK_V1eJVSpFZYgLShdjH05na1u-tz0zysA1uC4Jh9LjUHY49GHbr-X8uW4Z-3A4A6PshGpSChWCLzIT-3-_dQAr_ttthOQQep8fUzyCxUk9Pe62ynEo8PsC4HG9aw
link.rule.ids 315,782,786,798,4028,27642,27932,27933,27934,54767,54942
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ohqgP3sXp1Dz4IliXJl3aPOoubLgNYRN8K2l6AoJM2eX_m6TdUPTFtz60tOTruXxfTs4BuBFxqEKFGBjBsyAyMXUmJQPFtM6k4lkSu8PJvXE8ek3aHdcm5259FgYRffEZ3rtLv5eff-ilk8oaUsioKaNNqFpWE7EKVDvjx_Zg7XljERU9MkNrxDYzWG1LUtmY9IeWDDJmOaolhIz_CEN-rsovZ-wjTHf_f992AHtlJkkeCugPYQOnR7D7rb_gEWz5-k49P4bnhykp9APMSRvxk4yK-u_g0YaxnIy19XnET8h0tUMeLjL006WJTWvJGN9N0J69OfmBtCwZPoGXbmfS6gXlMIVAc84XgWGKOn2WKZZg1uQGHfOyyQFyYzAWMTPMCCFFnuhQWJphQqkiC3GmqMlozk-hMv2Y4hkQoynmlGU0CtHme3kWaSFiFMpyQW5CrMHtam3Tz6JnRuq5BpWpxSF1OKQlDjU4dmu5vq9cxhrUV2CkpVHNUya8-MITdv73U9ew3ZsMB-mgP3q6gB33nkItqUNlMVviJWzO8-VV-dt8AW-uv1c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Deep+Network-Based+Scene+Classification+Method+for+Self-Driving+Cars&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Ni%2C+Jianjun&rft.au=Shen%2C+Kang&rft.au=Chen%2C+Yinan&rft.au=Cao%2C+Weidong&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2022.3146923&rft.externalDocID=9694594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon