Gap application results for adjacent electron beams treatment

Nowadays, electron beams from high-energy linear accelerators (LINAC) are widely used in a variety of radiotherapy treatments being suitable especially for superficial tumors. Since this sort of ionizing radiation has stopping power higher than photons, deeper and healthier tissues can be preserved....

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Vol. 269; no. 24; pp. 3141 - 3144
Main Authors: Sampaio, Francisco G.A., Del Lama, Lucas S., Petchevist, Paulo C.D., Moreira, Marcos V., Almeida, Adelaide de
Format: Journal Article
Language:English
Published: Elsevier B.V 15-12-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nowadays, electron beams from high-energy linear accelerators (LINAC) are widely used in a variety of radiotherapy treatments being suitable especially for superficial tumors. Since this sort of ionizing radiation has stopping power higher than photons, deeper and healthier tissues can be preserved. On the other hand, when applying adjacent electron beams, “hot” spots can be observed, due to penumbra and/or scattering, contributing to the increase of the absorbed dose in the target volume. In this sense, the objective of this work was to investigate the effects of parallel adjacent electron beams using the chemical dosimeter Fricke Xylenol Gel (FXG) and compare the experimental results with ones acquired using Monte Carlo simulation. Thus, 10 × 10, 15 × 15 and 20 × 20 cm 2 fields were irradiated with 5, 8 and 10 MeV electron beams applying different gap widths. The experimental results and the simulations indicated overdose values up to 40% from the prescribed one for the specific tumor. This demonstrates that specific gaps are necessary in the case of treatments with parallel adjacent electron beams in order to prevent overdoses in the depth of interest.
AbstractList Nowadays, electron beams from high-energy linear accelerators (LINAC) are widely used in a variety of radiotherapy treatments being suitable especially for superficial tumors. Since this sort of ionizing radiation has stopping power higher than photons, deeper and healthier tissues can be preserved. On the other hand, when applying adjacent electron beams, "hot" spots can be observed, due to penumbra and/or scattering, contributing to the increase of the absorbed dose in the target volume. In this sense, the objective of this work was to investigate the effects of parallel adjacent electron beams using the chemical dosimeter Fricke Xylenol Gel (FXG) and compare the experimental results with ones acquired using Monte Carlo simulation. Thus, 1010, 1515 and 2020cm2 fields were irradiated with 5, 8 and 10MeV electron beams applying different gap widths. The experimental results and the simulations indicated overdose values up to 40% from the prescribed one for the specific tumor. This demonstrates that specific gaps are necessary in the case of treatments with parallel adjacent electron beams in order to prevent overdoses in the depth of interest.
Nowadays, electron beams from high-energy linear accelerators (LINAC) are widely used in a variety of radiotherapy treatments being suitable especially for superficial tumors. Since this sort of ionizing radiation has stopping power higher than photons, deeper and healthier tissues can be preserved. On the other hand, when applying adjacent electron beams, “hot” spots can be observed, due to penumbra and/or scattering, contributing to the increase of the absorbed dose in the target volume. In this sense, the objective of this work was to investigate the effects of parallel adjacent electron beams using the chemical dosimeter Fricke Xylenol Gel (FXG) and compare the experimental results with ones acquired using Monte Carlo simulation. Thus, 10 × 10, 15 × 15 and 20 × 20 cm 2 fields were irradiated with 5, 8 and 10 MeV electron beams applying different gap widths. The experimental results and the simulations indicated overdose values up to 40% from the prescribed one for the specific tumor. This demonstrates that specific gaps are necessary in the case of treatments with parallel adjacent electron beams in order to prevent overdoses in the depth of interest.
Author Petchevist, Paulo C.D.
Moreira, Marcos V.
Sampaio, Francisco G.A.
Del Lama, Lucas S.
Almeida, Adelaide de
Author_xml – sequence: 1
  givenname: Francisco G.A.
  surname: Sampaio
  fullname: Sampaio, Francisco G.A.
  email: francisampaio@pg.ffclrp.usp.br
  organization: Departamento de Física – FFCLRP, Universidade de São Paulo – USP, Av. dos Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
– sequence: 2
  givenname: Lucas S.
  surname: Del Lama
  fullname: Del Lama, Lucas S.
  email: lucasdellama@yahoo.com.br
  organization: Departamento de Física – FFCLRP, Universidade de São Paulo – USP, Av. dos Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
– sequence: 3
  givenname: Paulo C.D.
  surname: Petchevist
  fullname: Petchevist, Paulo C.D.
  email: petchevist12@yahoo.com.br
  organization: Departamento de Física – FFCLRP, Universidade de São Paulo – USP, Av. dos Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
– sequence: 4
  givenname: Marcos V.
  surname: Moreira
  fullname: Moreira, Marcos V.
  email: marcos_vasques@yahoo.com.br
  organization: Departamento de Física – FFCLRP, Universidade de São Paulo – USP, Av. dos Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
– sequence: 5
  givenname: Adelaide de
  surname: Almeida
  fullname: Almeida, Adelaide de
  email: dalmeida@ffclrp.usp.br
  organization: Departamento de Física – FFCLRP, Universidade de São Paulo – USP, Av. dos Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
BookMark eNp9kElLBDEQhYOM4MzoH_DURy_dZunuJKAHGdxgwIuCt5ClGtL0ZpIR_PdmGM_Woerw3it43watpnkChK4Jrggm7W1fTX40FcWEVLiusORnaE0Ep6VsRL1C62wSZSPY5wXaxNjjPA1r1uj-WS-FXpbBW538PBUB4mFIsejmUGjXawtTKmAAm0JWDegxFimATmMWLtF5p4cIV393iz6eHt93L-X-7fl197AvLWMs5S2N4KxuDeeESta1DXWSWqdrbIwgohVGgpPAnWEEOyd5y41oO2yNpY6wLbo5_V3C_HWAmNToo4Vh0BPMh6hIy0ktaNPQbKUnqw1zjAE6tQQ_6vCjCFZHVqpXR1bqyErhWmVWOXR3CkEu8e0hqGg9TBacD7m5crP_L_4LfCd0cQ
CitedBy_id crossref_primary_10_1371_journal_pone_0065334
crossref_primary_10_1016_j_nimb_2016_12_045
crossref_primary_10_1016_j_nimb_2014_09_008
Cites_doi 10.1016/j.nimb.2008.12.012
10.1118/1.596695
10.1590/S0103-97332007000700012
10.1088/1742-6596/250/1/012098
10.1007/s10967-009-0508-6
10.1088/0031-9155/43/12/006
10.1016/0958-3947(94)00019-F
10.1093/jicru/ndh019
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/j.nimb.2011.04.097
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1872-9584
EndPage 3144
ExternalDocumentID 10_1016_j_nimb_2011_04_097
S0168583X11004484
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
3O-
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
H~9
IHE
J1W
KOM
LZ4
M41
MAGPM
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
VOH
WUQ
~02
~G-
AAXKI
AAYXX
AFJKZ
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c333t-c39b87346b771293f652d92cda40bb81868b9ed9e7db310dd9767b86f0cbc2d13
ISSN 0168-583X
IngestDate Fri Oct 25 06:23:36 EDT 2024
Thu Sep 26 16:33:38 EDT 2024
Fri Feb 23 02:22:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Adjacent electron beams
Monte Carlo method
Fricke Xylenol Gel
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-c39b87346b771293f652d92cda40bb81868b9ed9e7db310dd9767b86f0cbc2d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671482552
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1671482552
crossref_primary_10_1016_j_nimb_2011_04_097
elsevier_sciencedirect_doi_10_1016_j_nimb_2011_04_097
PublicationCentury 2000
PublicationDate 2011-12-15
PublicationDateYYYYMMDD 2011-12-15
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References F. Salvat, J.M. Fernández-Varea, J. Sempau, PENELOPE-2006, Nuclear Energy Agency (2006).
Sharma, Supe, Anantha, Subbarangaiah (b0050) 1995; 20
Mckenzie (b0025) 1998; 43
International Commission on Radiation Units and Measurements (ICRU 71), Journal of the ICRU (2004) 4.
International Atomic Energy Agency (IAEA), Technical Reports series No.398 (2000).
American Association of Physicists in Medicine (AAPM), Med. Phys., 36 (2009) 3239.
Oliveira, Calcina, Parada, De Almeida, De Almeida (b0070) 2007; 37
Sato, De Almeida, Moreira (b0060) 2009; 267
International Atomic Energy Agency (IAEA), TECDOC-1151, Viena, Austria, 2000.
International Atomic Energy Agency (IAEA), Technical Reports Series No. 277, second ed., (1997).
Pirani, De Oliveira, Petchevist, Moreira, Ila, De Almeida (b0055) 2009; 280
Alva, Sampaio, Moreira, Petchevist, De Almeida (b0010) 2010; 250
Khan (b0005) 2003
Khan, Doppke, Hogstrom (b0045) 1991; 18
10.1016/j.nimb.2011.04.097_b0065
10.1016/j.nimb.2011.04.097_b0035
10.1016/j.nimb.2011.04.097_b0015
Alva (10.1016/j.nimb.2011.04.097_b0010) 2010; 250
Khan (10.1016/j.nimb.2011.04.097_b0045) 1991; 18
Sato (10.1016/j.nimb.2011.04.097_b0060) 2009; 267
10.1016/j.nimb.2011.04.097_b0040
Pirani (10.1016/j.nimb.2011.04.097_b0055) 2009; 280
10.1016/j.nimb.2011.04.097_b0020
10.1016/j.nimb.2011.04.097_b0030
Mckenzie (10.1016/j.nimb.2011.04.097_b0025) 1998; 43
Sharma (10.1016/j.nimb.2011.04.097_b0050) 1995; 20
Khan (10.1016/j.nimb.2011.04.097_b0005) 2003
Oliveira (10.1016/j.nimb.2011.04.097_b0070) 2007; 37
References_xml – volume: 267
  start-page: 842
  year: 2009
  ident: b0060
  publication-title: Nucl. Instr. Meth. A
  contributor:
    fullname: Moreira
– year: 2003
  ident: b0005
  article-title: Physics of Radiation Therapy
  contributor:
    fullname: Khan
– volume: 280
  start-page: 259
  year: 2009
  ident: b0055
  publication-title: J. Radioanal. Nucl. Chem.
  contributor:
    fullname: De Almeida
– volume: 20
  start-page: 55
  year: 1995
  ident: b0050
  publication-title: Med. Dos.
  contributor:
    fullname: Subbarangaiah
– volume: 37
  start-page: 1141
  year: 2007
  ident: b0070
  publication-title: Braz. J. Phys.
  contributor:
    fullname: De Almeida
– volume: 250
  start-page: 012098
  year: 2010
  ident: b0010
  publication-title: J. Phys. Conf. Ser.
  contributor:
    fullname: De Almeida
– volume: 43
  start-page: 3465
  year: 1998
  ident: b0025
  publication-title: Phys. Med. Biol.
  contributor:
    fullname: Mckenzie
– volume: 18
  start-page: 73
  year: 1991
  ident: b0045
  publication-title: Med. Phys.
  contributor:
    fullname: Hogstrom
– volume: 267
  start-page: 842
  year: 2009
  ident: 10.1016/j.nimb.2011.04.097_b0060
  publication-title: Nucl. Instr. Meth. A
  doi: 10.1016/j.nimb.2008.12.012
  contributor:
    fullname: Sato
– volume: 18
  start-page: 73
  year: 1991
  ident: 10.1016/j.nimb.2011.04.097_b0045
  publication-title: Med. Phys.
  doi: 10.1118/1.596695
  contributor:
    fullname: Khan
– ident: 10.1016/j.nimb.2011.04.097_b0030
– ident: 10.1016/j.nimb.2011.04.097_b0035
– volume: 37
  start-page: 1141
  issue: 3b
  year: 2007
  ident: 10.1016/j.nimb.2011.04.097_b0070
  publication-title: Braz. J. Phys.
  doi: 10.1590/S0103-97332007000700012
  contributor:
    fullname: Oliveira
– ident: 10.1016/j.nimb.2011.04.097_b0020
– volume: 250
  start-page: 012098
  year: 2010
  ident: 10.1016/j.nimb.2011.04.097_b0010
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/250/1/012098
  contributor:
    fullname: Alva
– ident: 10.1016/j.nimb.2011.04.097_b0065
– volume: 280
  start-page: 259
  year: 2009
  ident: 10.1016/j.nimb.2011.04.097_b0055
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-009-0508-6
  contributor:
    fullname: Pirani
– ident: 10.1016/j.nimb.2011.04.097_b0040
– year: 2003
  ident: 10.1016/j.nimb.2011.04.097_b0005
  contributor:
    fullname: Khan
– volume: 43
  start-page: 3465
  year: 1998
  ident: 10.1016/j.nimb.2011.04.097_b0025
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/43/12/006
  contributor:
    fullname: Mckenzie
– volume: 20
  start-page: 55
  year: 1995
  ident: 10.1016/j.nimb.2011.04.097_b0050
  publication-title: Med. Dos.
  doi: 10.1016/0958-3947(94)00019-F
  contributor:
    fullname: Sharma
– ident: 10.1016/j.nimb.2011.04.097_b0015
  doi: 10.1093/jicru/ndh019
SSID ssj0000535
Score 2.0401812
Snippet Nowadays, electron beams from high-energy linear accelerators (LINAC) are widely used in a variety of radiotherapy treatments being suitable especially for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 3141
SubjectTerms Adjacent electron beams
Computer simulation
Electron beams
Fricke Xylenol Gel
Gaps
Hot spots
Ionizing radiation
Monte Carlo method
Monte Carlo methods
Photons
Tumors
Title Gap application results for adjacent electron beams treatment
URI https://dx.doi.org/10.1016/j.nimb.2011.04.097
https://search.proquest.com/docview/1671482552
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6chEIvpU-avlChNyFhrx4rHd3ETVraUHBafBO72hXYxFKI7P7-zmh2JZE-aAu9LLaMVvLMp9Gn1cw3jL3hVS5lnKpgmnMZxKqCay6pykAC1ZUq0fFUYb3z-VJcrLLTRbyYTJzY57Dtv3oatoGvsXL2L7zdTwob4DP4HEbwOox_5Pczee2P3kr78Di9v9q1lC2pNxKzMX3X_MZXBhUZ-mzzMVW9QKVj2WWr71BhAfNlECfUc5rSzzsn44sHp5y8NNR6_G2HG5i806O4oeoJW0kHHJkMQUKxu2bb8_olyj-uG8eoy3VbNv5ZOA97vm1w3X3bMd6P2K_NX4ZDdEcEflvbKha5v2r8k_C0__0TdiHt2iphhVLZtP7XcLzogVl3PKCyT1qJ-6EahxZHqYpsRfc2CuiZ4EGeUBs6F_E5dYex0ObxKIBHM9LhsmQAvsY_vdHQmscmrNdbZYVgUTBXDLfVPtlxieeFp0XqfFl8wI44hEWIykfz94vVh4E5JNQQ1v0PW-RF-Yi3j_QrInWLUnQ86fI-u2cfcLw5IfMBm5j6IbvzmZDyiCE-vRE-PYtPD_DpOXx6Dp9eh0-vx-dj9uXd4vLkPLAtPIIyiqIdjLnKRATBQAhkllWacJ3zUksIAgrVFDOVG50boRU8aGgN7FioLK2mpSq5nkVP2GHd1OYp83QluEqzysQlMCqdqLQEKxgRy0rKSslj5jt7FNek1FK4FMZNgdYr0HrFNC5gv2OWOJMVlmsShyzAw7_d77WzbwGBGN-uydo0-7aYpQI1dZOEP_vHuZ-zuwPWX7BDuLjNS3bQ6v0ri5Tvoa2vqQ
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gap+application+results+for+adjacent+electron+beams+treatment&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+B%2C+Beam+interactions+with+materials+and+atoms&rft.au=Sampaio%2C+Francisco+G.A.&rft.au=Del+Lama%2C+Lucas+S.&rft.au=Petchevist%2C+Paulo+C.D.&rft.au=Moreira%2C+Marcos+V.&rft.date=2011-12-15&rft.pub=Elsevier+B.V&rft.issn=0168-583X&rft.eissn=1872-9584&rft.volume=269&rft.issue=24&rft.spage=3141&rft.epage=3144&rft_id=info:doi/10.1016%2Fj.nimb.2011.04.097&rft.externalDocID=S0168583X11004484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-583X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-583X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-583X&client=summon