Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example

National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface through elevation data collected by its Advanced Topographic Laser Altimeter System (ATLAS) since its launch in September 2018. While this mi...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 12; no. 11; p. 1824
Main Authors: Narine, Lana L., Popescu, Sorin C., Malambo, Lonesome
Format: Journal Article
Language:English
Published: MDPI AG 01-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface through elevation data collected by its Advanced Topographic Laser Altimeter System (ATLAS) since its launch in September 2018. While this mission is primarily aimed at capturing ice measurements, ICESat-2 also provides data over vegetated areas, offering the capability to gain insights into ecosystem structure and the potential to contribute to the sustainable management of forests. This study involved an examination of the utility of ICESat-2 for estimating forest aboveground biomass (AGB). The objectives of this study were to: (1) investigate the use of canopy metrics for estimating AGB, using data extracted from an ICESat-2 transect over forests in south-east Texas; (2) compare the accuracy for estimating AGB using data from the strong beam and weak beam; and (3) upscale predicted AGB estimates using variables from Landsat multispectral imagery and land cover and canopy cover maps, to generate a 30 m spatial resolution AGB map. Methods previously developed with simulated ICESat-2 data over Sam Houston National Forest (SHNF) in southeast Texas were adapted using actual data from an adjacent ICESat-2 transect over similar vegetation conditions. Custom noise filtering and photon classification algorithms were applied to ICESat-2’s geolocated photon data (ATL03) for one beam pair, consisting of a strong and weak beam, and canopy height estimates were retrieved. Canopy height parameters were extracted from 100 m segments in the along-track direction for estimating AGB, using regression analysis. ICESat-2-derived AGB estimates were then extrapolated to develop a 30 m AGB map for the study area, using vegetation indices from Landsat 8 Operational Land Imager (OLI), National Land Cover Database (NLCD) landcover and canopy cover, with random forests (RF). The AGB estimation models used few canopy parameters and suggest the possibility for applying well-developed methods for modeling AGB with airborne light detection and ranging (lidar) data, using processed ICESat-2 data. The final regression model achieved a R2 and root mean square error (RMSE) value of 0.62 and 24.63 Mg/ha for estimating AGB and RF model evaluation with a separate test set yielded a R2 of 0.58 and RMSE of 23.89 Mg/ha. Findings provide an initial look at the ability of ICESat-2 to estimate AGB and serve as a basis for further upscaling efforts.
AbstractList National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface through elevation data collected by its Advanced Topographic Laser Altimeter System (ATLAS) since its launch in September 2018. While this mission is primarily aimed at capturing ice measurements, ICESat-2 also provides data over vegetated areas, offering the capability to gain insights into ecosystem structure and the potential to contribute to the sustainable management of forests. This study involved an examination of the utility of ICESat-2 for estimating forest aboveground biomass (AGB). The objectives of this study were to: (1) investigate the use of canopy metrics for estimating AGB, using data extracted from an ICESat-2 transect over forests in south-east Texas; (2) compare the accuracy for estimating AGB using data from the strong beam and weak beam; and (3) upscale predicted AGB estimates using variables from Landsat multispectral imagery and land cover and canopy cover maps, to generate a 30 m spatial resolution AGB map. Methods previously developed with simulated ICESat-2 data over Sam Houston National Forest (SHNF) in southeast Texas were adapted using actual data from an adjacent ICESat-2 transect over similar vegetation conditions. Custom noise filtering and photon classification algorithms were applied to ICESat-2’s geolocated photon data (ATL03) for one beam pair, consisting of a strong and weak beam, and canopy height estimates were retrieved. Canopy height parameters were extracted from 100 m segments in the along-track direction for estimating AGB, using regression analysis. ICESat-2-derived AGB estimates were then extrapolated to develop a 30 m AGB map for the study area, using vegetation indices from Landsat 8 Operational Land Imager (OLI), National Land Cover Database (NLCD) landcover and canopy cover, with random forests (RF). The AGB estimation models used few canopy parameters and suggest the possibility for applying well-developed methods for modeling AGB with airborne light detection and ranging (lidar) data, using processed ICESat-2 data. The final regression model achieved a R2 and root mean square error (RMSE) value of 0.62 and 24.63 Mg/ha for estimating AGB and RF model evaluation with a separate test set yielded a R2 of 0.58 and RMSE of 23.89 Mg/ha. Findings provide an initial look at the ability of ICESat-2 to estimate AGB and serve as a basis for further upscaling efforts.
Author Popescu, Sorin C.
Malambo, Lonesome
Narine, Lana L.
Author_xml – sequence: 1
  givenname: Lana L.
  orcidid: 0000-0002-6125-7649
  surname: Narine
  fullname: Narine, Lana L.
– sequence: 2
  givenname: Sorin C.
  surname: Popescu
  fullname: Popescu, Sorin C.
– sequence: 3
  givenname: Lonesome
  orcidid: 0000-0002-8102-3700
  surname: Malambo
  fullname: Malambo, Lonesome
BookMark eNpNkE9PwzAMxSM0JMbYhU-QM1Ih_0obbqPqYNKAA-xcuYkzddqaKQkIvj2FIcAXW8_Sz8_vlIx63yMh55xdSqnZVYhccM5LoY7IWLBCZEpoMfo3n5BpjBs2lJRcMzUmj6vY9Wu6qOpnSJmgydM6pm4HCSn0lj7Ans59wJjorPVvuA7-dZBvO7-DGG_ojM67MCzrd9jtt3hGjh1sI05_-oSs5vVLdZ8tn-4W1WyZGSllygBEqy2zwiI4bZGXBiWUzpTS5aoFY0wrcqFb1K6QYEsNCh0OnwHkbaHkhCwOXOth0-zDYDh8NB665lvwYd1ASJ3ZYnNt1XBBglYWVc5K0FBwpRmClQXX7cC6OLBM8DEGdL88zpqvYJu_YOUnAXxsgg
CitedBy_id crossref_primary_10_5194_gmd_16_5979_2023
crossref_primary_10_1016_j_ufug_2022_127728
crossref_primary_10_1016_j_ecolind_2022_109365
crossref_primary_10_1016_j_jag_2021_102596
crossref_primary_10_3390_f14010013
crossref_primary_10_1016_j_pce_2024_103605
crossref_primary_10_1016_j_rse_2021_112764
crossref_primary_10_1016_j_jag_2022_103175
crossref_primary_10_3390_su16051735
crossref_primary_10_1109_TGRS_2022_3233037
crossref_primary_10_1029_2021GL093799
crossref_primary_10_1007_s12524_023_01693_1
crossref_primary_10_3390_rs15061548
crossref_primary_10_1109_JSTARS_2022_3163208
crossref_primary_10_3390_f15030482
crossref_primary_10_3390_rs15133430
crossref_primary_10_1016_j_rse_2024_114249
crossref_primary_10_1007_s40725_024_00223_7
crossref_primary_10_1016_j_ophoto_2023_100053
crossref_primary_10_3390_rs13081561
crossref_primary_10_3390_rs12193122
crossref_primary_10_3390_rs12193168
crossref_primary_10_1016_j_rse_2021_112711
crossref_primary_10_17475_kastorman_1394895
crossref_primary_10_1016_j_ecolind_2023_110296
crossref_primary_10_1016_j_scitotenv_2024_173487
crossref_primary_10_1109_LGRS_2021_3107440
crossref_primary_10_3390_f14122303
crossref_primary_10_1364_OE_479449
crossref_primary_10_3390_s23218752
crossref_primary_10_3390_rs14225651
crossref_primary_10_3390_rs12203351
crossref_primary_10_1016_j_rse_2022_113242
crossref_primary_10_3390_rs13061084
crossref_primary_10_3390_rs14010142
crossref_primary_10_1016_j_rse_2022_112964
crossref_primary_10_1016_j_jag_2022_103154
crossref_primary_10_1109_LGRS_2024_3399050
crossref_primary_10_29128_geomatik_1384320
crossref_primary_10_1029_2022EA002516
crossref_primary_10_3390_f14071414
crossref_primary_10_3390_f14081537
crossref_primary_10_3390_s20247304
crossref_primary_10_1088_1755_1315_880_1_012031
crossref_primary_10_1109_LGRS_2022_3163143
crossref_primary_10_1016_j_fecs_2022_100046
crossref_primary_10_1088_2634_4505_abf820
crossref_primary_10_3390_rs14051181
crossref_primary_10_1016_j_ejrs_2022_12_009
crossref_primary_10_3390_s23073394
crossref_primary_10_1016_j_ecoinf_2023_102234
crossref_primary_10_1029_2022JG007046
crossref_primary_10_1016_j_rse_2024_114226
crossref_primary_10_1088_1748_9326_ac77a2
crossref_primary_10_3390_rs14184453
crossref_primary_10_1016_j_rse_2022_113174
crossref_primary_10_3390_rs14205158
crossref_primary_10_1109_TGRS_2023_3267823
crossref_primary_10_5814_j_issn_1674_764x_2023_03_014
crossref_primary_10_3390_rs13081581
crossref_primary_10_3390_rs13122279
Cites_doi 10.1016/j.isprsjprs.2018.12.010
10.1046/j.1466-822x.2002.00303.x
10.1016/j.biombioe.2007.06.022
10.1016/j.isprsjprs.2018.09.006
10.1016/j.isprsjprs.2014.08.014
10.15287/afr.2018.1163
10.1016/j.ecolind.2016.10.001
10.1016/j.rse.2011.10.012
10.1016/j.rse.2019.01.037
10.14358/PERS.70.5.589
10.1016/j.rse.2019.111325
10.1038/s41467-019-12737-x
10.1080/01431161.2014.939780
10.3390/rs70505534
10.5589/m03-027
10.3390/rs10111832
10.3390/rs8070565
10.1029/2010GL043622
10.1109/JSTARS.2015.2478478
10.3390/s19051139
10.3390/rs8121039
10.1016/j.rse.2016.02.039
10.1016/j.srs.2020.100002
10.1016/j.rse.2018.02.019
10.3390/rs11121503
10.1109/ICACSIS.2016.7872790
10.1007/s40725-017-0052-5
10.1016/j.rse.2018.11.005
10.1016/j.rse.2016.12.029
10.1016/j.isprsjprs.2016.04.009
10.3390/rs11141721
10.1016/j.rse.2020.111779
10.1016/j.rse.2019.02.015
10.1029/2011JG001708
10.1016/j.rse.2016.10.038
10.1016/j.rse.2011.01.024
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/rs12111824
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_6d49de3a94de4508a9a71490ead3719b
10_3390_rs12111824
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
ID FETCH-LOGICAL-c333t-aa2b9d0d2deaf9de18ce3a8fc83f54bacccb2529be9f73ad89a4efe824aa5b743
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:16:13 EDT 2024
Fri Nov 22 03:09:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-aa2b9d0d2deaf9de18ce3a8fc83f54bacccb2529be9f73ad89a4efe824aa5b743
ORCID 0000-0002-6125-7649
0000-0002-8102-3700
OpenAccessLink https://doaj.org/article/6d49de3a94de4508a9a71490ead3719b
ParticipantIDs doaj_primary_oai_doaj_org_article_6d49de3a94de4508a9a71490ead3719b
crossref_primary_10_3390_rs12111824
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nelson (ref_32) 2017; 188
Lefsky (ref_3) 2010; 37
Wheeler (ref_40) 2017; 3
Bae (ref_35) 2019; 10
Neumann (ref_28) 2019; 233
ref_31
Markus (ref_2) 2017; 190
ref_30
ref_19
ref_17
ref_16
ref_15
Lefsky (ref_37) 2002; 11
Narine (ref_14) 2019; 224
Yang (ref_18) 2018; 146
Wulder (ref_33) 2019; 225
Jenkins (ref_22) 2003; 49
Avitabile (ref_39) 2012; 117
Dubayah (ref_41) 2020; 1
Neuenschwander (ref_10) 2019; 221
ref_25
ref_24
Popescu (ref_20) 2003; 29
ref_23
Pourrahmati (ref_8) 2015; 8
Popescu (ref_11) 2018; 208
ref_43
Hall (ref_1) 2011; 115
Popescu (ref_36) 2007; 31
ref_27
ref_26
Luo (ref_38) 2017; 73
Simard (ref_4) 2011; 116
ref_9
Yang (ref_7) 2019; 148
Duncanson (ref_42) 2020; 242
Popescu (ref_21) 2004; 70
Gwenzi (ref_12) 2016; 118
Chi (ref_5) 2015; 7
Glenn (ref_13) 2016; 185
Moussavi (ref_29) 2014; 35
Zhu (ref_34) 2015; 102
ref_6
References_xml – volume: 148
  start-page: 54
  year: 2019
  ident: ref_7
  article-title: Retrieving leaf area index in discontinuous forest using ICESat/GLAS full-waveform data based on gap fraction model
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.12.010
  contributor:
    fullname: Yang
– volume: 11
  start-page: 393
  year: 2002
  ident: ref_37
  article-title: Lidar remote sensing of above-ground biomass in three biomes
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822x.2002.00303.x
  contributor:
    fullname: Lefsky
– ident: ref_30
– volume: 31
  start-page: 646
  year: 2007
  ident: ref_36
  article-title: Estimating biomass of individual pine trees using airborne lidar
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2007.06.022
  contributor:
    fullname: Popescu
– volume: 146
  start-page: 108
  year: 2018
  ident: ref_18
  article-title: A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.006
  contributor:
    fullname: Yang
– volume: 102
  start-page: 222
  year: 2015
  ident: ref_34
  article-title: Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.08.014
  contributor:
    fullname: Zhu
– ident: ref_17
  doi: 10.15287/afr.2018.1163
– volume: 73
  start-page: 378
  year: 2017
  ident: ref_38
  article-title: Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.10.001
  contributor:
    fullname: Luo
– volume: 117
  start-page: 366
  year: 2012
  ident: ref_39
  article-title: Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.012
  contributor:
    fullname: Avitabile
– ident: ref_26
– volume: 224
  start-page: 1
  year: 2019
  ident: ref_14
  article-title: Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.037
  contributor:
    fullname: Narine
– volume: 70
  start-page: 589
  year: 2004
  ident: ref_21
  article-title: Seeing the trees in the forest: Using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.70.5.589
  contributor:
    fullname: Popescu
– volume: 233
  start-page: 111325
  year: 2019
  ident: ref_28
  article-title: The Ice, Cloud, and Land Elevation Satellite—2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111325
  contributor:
    fullname: Neumann
– volume: 49
  start-page: 12
  year: 2003
  ident: ref_22
  article-title: National-scale biomass estimators for United States tree species
  publication-title: For. Sci.
  contributor:
    fullname: Jenkins
– volume: 10
  start-page: 4757
  year: 2019
  ident: ref_35
  article-title: Radar vision in the mapping of forest biodiversity from space
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12737-x
  contributor:
    fullname: Bae
– volume: 35
  start-page: 5263
  year: 2014
  ident: ref_29
  article-title: Applicability of an automatic surface detection approach to micropulse photon-counting lidar altimetry data: Implications for canopy height retrieval from future ICESat-2 data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.939780
  contributor:
    fullname: Moussavi
– volume: 7
  start-page: 5534
  year: 2015
  ident: ref_5
  article-title: National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China
  publication-title: Remote Sens.
  doi: 10.3390/rs70505534
  contributor:
    fullname: Chi
– volume: 29
  start-page: 564
  year: 2003
  ident: ref_20
  article-title: Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m03-027
  contributor:
    fullname: Popescu
– ident: ref_43
  doi: 10.3390/rs10111832
– ident: ref_6
  doi: 10.3390/rs8070565
– volume: 37
  start-page: 5
  year: 2010
  ident: ref_3
  article-title: A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL043622
  contributor:
    fullname: Lefsky
– volume: 8
  start-page: 5246
  year: 2015
  ident: ref_8
  article-title: Capability of GLAS/ICESat Data to Estimate Forest Canopy Height and Volume in Mountainous Forests of Iran
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2478478
  contributor:
    fullname: Pourrahmati
– ident: ref_23
  doi: 10.3390/s19051139
– ident: ref_25
– ident: ref_31
– ident: ref_27
– ident: ref_9
  doi: 10.3390/rs8121039
– volume: 185
  start-page: 233
  year: 2016
  ident: ref_13
  article-title: Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.039
  contributor:
    fullname: Glenn
– volume: 1
  start-page: 100002
  year: 2020
  ident: ref_41
  article-title: The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography
  publication-title: Sci. Remote Sens.
  doi: 10.1016/j.srs.2020.100002
  contributor:
    fullname: Dubayah
– volume: 208
  start-page: 154
  year: 2018
  ident: ref_11
  article-title: Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.019
  contributor:
    fullname: Popescu
– ident: ref_16
  doi: 10.3390/rs11121503
– ident: ref_24
  doi: 10.1109/ICACSIS.2016.7872790
– volume: 3
  start-page: 1
  year: 2017
  ident: ref_40
  article-title: Quantifying Forest Biomass Carbon Stocks From Space
  publication-title: Curr. For. Rep.
  doi: 10.1007/s40725-017-0052-5
  contributor:
    fullname: Wheeler
– volume: 221
  start-page: 247
  year: 2019
  ident: ref_10
  article-title: The ATL08 land and vegetation product for the ICESat-2 Mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.005
  contributor:
    fullname: Neuenschwander
– ident: ref_19
– volume: 190
  start-page: 260
  year: 2017
  ident: ref_2
  article-title: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.029
  contributor:
    fullname: Markus
– volume: 118
  start-page: 68
  year: 2016
  ident: ref_12
  article-title: Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.04.009
  contributor:
    fullname: Gwenzi
– ident: ref_15
  doi: 10.3390/rs11141721
– volume: 242
  start-page: 111779
  year: 2020
  ident: ref_42
  article-title: Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111779
  contributor:
    fullname: Duncanson
– volume: 225
  start-page: 127
  year: 2019
  ident: ref_33
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
  contributor:
    fullname: Wulder
– volume: 116
  start-page: 12
  year: 2011
  ident: ref_4
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: J. Geophys. Res. Biogeosciences
  doi: 10.1029/2011JG001708
  contributor:
    fullname: Simard
– volume: 188
  start-page: 127
  year: 2017
  ident: ref_32
  article-title: Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.038
  contributor:
    fullname: Nelson
– volume: 115
  start-page: 2753
  year: 2011
  ident: ref_1
  article-title: Characterizing 3D vegetation structure from space: Mission requirements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.024
  contributor:
    fullname: Hall
SSID ssj0000331904
Score 2.5372682
Snippet National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 1824
SubjectTerms aboveground biomass
ICESat-2
photon-counting lidar
Title Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example
URI https://doaj.org/article/6d49de3a94de4508a9a71490ead3719b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgCyyIT1G-ZAlWq4ntJDZbW1KVgS4FiS06x47o0lZNiuDfc05CKRMLgxfLOiXvHN-72H5HyF0uwXEjBIu1ipi0QjMNMmaaBzIEKDCC-fvO42kyeVUPqZfJ2ZT68mfCGnngBrhebKW2ToCW1klkE6AhQVYfIAIiCbWpV98g3kqm6jVY4NQKZKNHKjCv761KL2aGbFr-ikBbQv11RBkdkoOWCtJ-8whHZMfNj8leW5X87fOETOr9fPo4TKdQMU6rBU3xi0SO6SjMLX2CJfWlNcuK9s3i3fkbGtg9mPkzP-U97dPRDMkdTT_AawCfkpdR-jwcs7b-AcuFEBUD4EbbwHLroEAQQpUjEKrIlSgiaSDPc8Mjro3TRSLAKkTZFQ5fESAySA3OSGe-mLtzQmMZCAm5kxqbMmglUqGLIFSBVVLaLrn9xiRbNjIXGaYHHrnsB7kuGXi4NiO8NHXdgQ7LWodlfzns4j-MXJJ97hPf-nfIFelUq7W7JrulXd_UE-ELd9W3qQ
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+ICESat-2+to+Estimate+and+Map+Forest+Aboveground+Biomass%3A+A+First+Example&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lana+L.+Narine&rft.au=Sorin+C.+Popescu&rft.au=Lonesome+Malambo&rft.date=2020-06-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=11&rft.spage=1824&rft_id=info:doi/10.3390%2Frs12111824&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6d49de3a94de4508a9a71490ead3719b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon