Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example
National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface through elevation data collected by its Advanced Topographic Laser Altimeter System (ATLAS) since its launch in September 2018. While this mi...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 12; no. 11; p. 1824 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-06-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface through elevation data collected by its Advanced Topographic Laser Altimeter System (ATLAS) since its launch in September 2018. While this mission is primarily aimed at capturing ice measurements, ICESat-2 also provides data over vegetated areas, offering the capability to gain insights into ecosystem structure and the potential to contribute to the sustainable management of forests. This study involved an examination of the utility of ICESat-2 for estimating forest aboveground biomass (AGB). The objectives of this study were to: (1) investigate the use of canopy metrics for estimating AGB, using data extracted from an ICESat-2 transect over forests in south-east Texas; (2) compare the accuracy for estimating AGB using data from the strong beam and weak beam; and (3) upscale predicted AGB estimates using variables from Landsat multispectral imagery and land cover and canopy cover maps, to generate a 30 m spatial resolution AGB map. Methods previously developed with simulated ICESat-2 data over Sam Houston National Forest (SHNF) in southeast Texas were adapted using actual data from an adjacent ICESat-2 transect over similar vegetation conditions. Custom noise filtering and photon classification algorithms were applied to ICESat-2’s geolocated photon data (ATL03) for one beam pair, consisting of a strong and weak beam, and canopy height estimates were retrieved. Canopy height parameters were extracted from 100 m segments in the along-track direction for estimating AGB, using regression analysis. ICESat-2-derived AGB estimates were then extrapolated to develop a 30 m AGB map for the study area, using vegetation indices from Landsat 8 Operational Land Imager (OLI), National Land Cover Database (NLCD) landcover and canopy cover, with random forests (RF). The AGB estimation models used few canopy parameters and suggest the possibility for applying well-developed methods for modeling AGB with airborne light detection and ranging (lidar) data, using processed ICESat-2 data. The final regression model achieved a R2 and root mean square error (RMSE) value of 0.62 and 24.63 Mg/ha for estimating AGB and RF model evaluation with a separate test set yielded a R2 of 0.58 and RMSE of 23.89 Mg/ha. Findings provide an initial look at the ability of ICESat-2 to estimate AGB and serve as a basis for further upscaling efforts. |
---|---|
AbstractList | National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface through elevation data collected by its Advanced Topographic Laser Altimeter System (ATLAS) since its launch in September 2018. While this mission is primarily aimed at capturing ice measurements, ICESat-2 also provides data over vegetated areas, offering the capability to gain insights into ecosystem structure and the potential to contribute to the sustainable management of forests. This study involved an examination of the utility of ICESat-2 for estimating forest aboveground biomass (AGB). The objectives of this study were to: (1) investigate the use of canopy metrics for estimating AGB, using data extracted from an ICESat-2 transect over forests in south-east Texas; (2) compare the accuracy for estimating AGB using data from the strong beam and weak beam; and (3) upscale predicted AGB estimates using variables from Landsat multispectral imagery and land cover and canopy cover maps, to generate a 30 m spatial resolution AGB map. Methods previously developed with simulated ICESat-2 data over Sam Houston National Forest (SHNF) in southeast Texas were adapted using actual data from an adjacent ICESat-2 transect over similar vegetation conditions. Custom noise filtering and photon classification algorithms were applied to ICESat-2’s geolocated photon data (ATL03) for one beam pair, consisting of a strong and weak beam, and canopy height estimates were retrieved. Canopy height parameters were extracted from 100 m segments in the along-track direction for estimating AGB, using regression analysis. ICESat-2-derived AGB estimates were then extrapolated to develop a 30 m AGB map for the study area, using vegetation indices from Landsat 8 Operational Land Imager (OLI), National Land Cover Database (NLCD) landcover and canopy cover, with random forests (RF). The AGB estimation models used few canopy parameters and suggest the possibility for applying well-developed methods for modeling AGB with airborne light detection and ranging (lidar) data, using processed ICESat-2 data. The final regression model achieved a R2 and root mean square error (RMSE) value of 0.62 and 24.63 Mg/ha for estimating AGB and RF model evaluation with a separate test set yielded a R2 of 0.58 and RMSE of 23.89 Mg/ha. Findings provide an initial look at the ability of ICESat-2 to estimate AGB and serve as a basis for further upscaling efforts. |
Author | Popescu, Sorin C. Malambo, Lonesome Narine, Lana L. |
Author_xml | – sequence: 1 givenname: Lana L. orcidid: 0000-0002-6125-7649 surname: Narine fullname: Narine, Lana L. – sequence: 2 givenname: Sorin C. surname: Popescu fullname: Popescu, Sorin C. – sequence: 3 givenname: Lonesome orcidid: 0000-0002-8102-3700 surname: Malambo fullname: Malambo, Lonesome |
BookMark | eNpNkE9PwzAMxSM0JMbYhU-QM1Ih_0obbqPqYNKAA-xcuYkzddqaKQkIvj2FIcAXW8_Sz8_vlIx63yMh55xdSqnZVYhccM5LoY7IWLBCZEpoMfo3n5BpjBs2lJRcMzUmj6vY9Wu6qOpnSJmgydM6pm4HCSn0lj7Ans59wJjorPVvuA7-dZBvO7-DGG_ojM67MCzrd9jtt3hGjh1sI05_-oSs5vVLdZ8tn-4W1WyZGSllygBEqy2zwiI4bZGXBiWUzpTS5aoFY0wrcqFb1K6QYEsNCh0OnwHkbaHkhCwOXOth0-zDYDh8NB665lvwYd1ASJ3ZYnNt1XBBglYWVc5K0FBwpRmClQXX7cC6OLBM8DEGdL88zpqvYJu_YOUnAXxsgg |
CitedBy_id | crossref_primary_10_5194_gmd_16_5979_2023 crossref_primary_10_1016_j_ufug_2022_127728 crossref_primary_10_1016_j_ecolind_2022_109365 crossref_primary_10_1016_j_jag_2021_102596 crossref_primary_10_3390_f14010013 crossref_primary_10_1016_j_pce_2024_103605 crossref_primary_10_1016_j_rse_2021_112764 crossref_primary_10_1016_j_jag_2022_103175 crossref_primary_10_3390_su16051735 crossref_primary_10_1109_TGRS_2022_3233037 crossref_primary_10_1029_2021GL093799 crossref_primary_10_1007_s12524_023_01693_1 crossref_primary_10_3390_rs15061548 crossref_primary_10_1109_JSTARS_2022_3163208 crossref_primary_10_3390_f15030482 crossref_primary_10_3390_rs15133430 crossref_primary_10_1016_j_rse_2024_114249 crossref_primary_10_1007_s40725_024_00223_7 crossref_primary_10_1016_j_ophoto_2023_100053 crossref_primary_10_3390_rs13081561 crossref_primary_10_3390_rs12193122 crossref_primary_10_3390_rs12193168 crossref_primary_10_1016_j_rse_2021_112711 crossref_primary_10_17475_kastorman_1394895 crossref_primary_10_1016_j_ecolind_2023_110296 crossref_primary_10_1016_j_scitotenv_2024_173487 crossref_primary_10_1109_LGRS_2021_3107440 crossref_primary_10_3390_f14122303 crossref_primary_10_1364_OE_479449 crossref_primary_10_3390_s23218752 crossref_primary_10_3390_rs14225651 crossref_primary_10_3390_rs12203351 crossref_primary_10_1016_j_rse_2022_113242 crossref_primary_10_3390_rs13061084 crossref_primary_10_3390_rs14010142 crossref_primary_10_1016_j_rse_2022_112964 crossref_primary_10_1016_j_jag_2022_103154 crossref_primary_10_1109_LGRS_2024_3399050 crossref_primary_10_29128_geomatik_1384320 crossref_primary_10_1029_2022EA002516 crossref_primary_10_3390_f14071414 crossref_primary_10_3390_f14081537 crossref_primary_10_3390_s20247304 crossref_primary_10_1088_1755_1315_880_1_012031 crossref_primary_10_1109_LGRS_2022_3163143 crossref_primary_10_1016_j_fecs_2022_100046 crossref_primary_10_1088_2634_4505_abf820 crossref_primary_10_3390_rs14051181 crossref_primary_10_1016_j_ejrs_2022_12_009 crossref_primary_10_3390_s23073394 crossref_primary_10_1016_j_ecoinf_2023_102234 crossref_primary_10_1029_2022JG007046 crossref_primary_10_1016_j_rse_2024_114226 crossref_primary_10_1088_1748_9326_ac77a2 crossref_primary_10_3390_rs14184453 crossref_primary_10_1016_j_rse_2022_113174 crossref_primary_10_3390_rs14205158 crossref_primary_10_1109_TGRS_2023_3267823 crossref_primary_10_5814_j_issn_1674_764x_2023_03_014 crossref_primary_10_3390_rs13081581 crossref_primary_10_3390_rs13122279 |
Cites_doi | 10.1016/j.isprsjprs.2018.12.010 10.1046/j.1466-822x.2002.00303.x 10.1016/j.biombioe.2007.06.022 10.1016/j.isprsjprs.2018.09.006 10.1016/j.isprsjprs.2014.08.014 10.15287/afr.2018.1163 10.1016/j.ecolind.2016.10.001 10.1016/j.rse.2011.10.012 10.1016/j.rse.2019.01.037 10.14358/PERS.70.5.589 10.1016/j.rse.2019.111325 10.1038/s41467-019-12737-x 10.1080/01431161.2014.939780 10.3390/rs70505534 10.5589/m03-027 10.3390/rs10111832 10.3390/rs8070565 10.1029/2010GL043622 10.1109/JSTARS.2015.2478478 10.3390/s19051139 10.3390/rs8121039 10.1016/j.rse.2016.02.039 10.1016/j.srs.2020.100002 10.1016/j.rse.2018.02.019 10.3390/rs11121503 10.1109/ICACSIS.2016.7872790 10.1007/s40725-017-0052-5 10.1016/j.rse.2018.11.005 10.1016/j.rse.2016.12.029 10.1016/j.isprsjprs.2016.04.009 10.3390/rs11141721 10.1016/j.rse.2020.111779 10.1016/j.rse.2019.02.015 10.1029/2011JG001708 10.1016/j.rse.2016.10.038 10.1016/j.rse.2011.01.024 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/rs12111824 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_6d49de3a94de4508a9a71490ead3719b 10_3390_rs12111824 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS |
ID | FETCH-LOGICAL-c333t-aa2b9d0d2deaf9de18ce3a8fc83f54bacccb2529be9f73ad89a4efe824aa5b743 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:16:13 EDT 2024 Fri Nov 22 03:09:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-aa2b9d0d2deaf9de18ce3a8fc83f54bacccb2529be9f73ad89a4efe824aa5b743 |
ORCID | 0000-0002-6125-7649 0000-0002-8102-3700 |
OpenAccessLink | https://doaj.org/article/6d49de3a94de4508a9a71490ead3719b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d49de3a94de4508a9a71490ead3719b crossref_primary_10_3390_rs12111824 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Nelson (ref_32) 2017; 188 Lefsky (ref_3) 2010; 37 Wheeler (ref_40) 2017; 3 Bae (ref_35) 2019; 10 Neumann (ref_28) 2019; 233 ref_31 Markus (ref_2) 2017; 190 ref_30 ref_19 ref_17 ref_16 ref_15 Lefsky (ref_37) 2002; 11 Narine (ref_14) 2019; 224 Yang (ref_18) 2018; 146 Wulder (ref_33) 2019; 225 Jenkins (ref_22) 2003; 49 Avitabile (ref_39) 2012; 117 Dubayah (ref_41) 2020; 1 Neuenschwander (ref_10) 2019; 221 ref_25 ref_24 Popescu (ref_20) 2003; 29 ref_23 Pourrahmati (ref_8) 2015; 8 Popescu (ref_11) 2018; 208 ref_43 Hall (ref_1) 2011; 115 Popescu (ref_36) 2007; 31 ref_27 ref_26 Luo (ref_38) 2017; 73 Simard (ref_4) 2011; 116 ref_9 Yang (ref_7) 2019; 148 Duncanson (ref_42) 2020; 242 Popescu (ref_21) 2004; 70 Gwenzi (ref_12) 2016; 118 Chi (ref_5) 2015; 7 Glenn (ref_13) 2016; 185 Moussavi (ref_29) 2014; 35 Zhu (ref_34) 2015; 102 ref_6 |
References_xml | – volume: 148 start-page: 54 year: 2019 ident: ref_7 article-title: Retrieving leaf area index in discontinuous forest using ICESat/GLAS full-waveform data based on gap fraction model publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.12.010 contributor: fullname: Yang – volume: 11 start-page: 393 year: 2002 ident: ref_37 article-title: Lidar remote sensing of above-ground biomass in three biomes publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822x.2002.00303.x contributor: fullname: Lefsky – ident: ref_30 – volume: 31 start-page: 646 year: 2007 ident: ref_36 article-title: Estimating biomass of individual pine trees using airborne lidar publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2007.06.022 contributor: fullname: Popescu – volume: 146 start-page: 108 year: 2018 ident: ref_18 article-title: A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.006 contributor: fullname: Yang – volume: 102 start-page: 222 year: 2015 ident: ref_34 article-title: Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.08.014 contributor: fullname: Zhu – ident: ref_17 doi: 10.15287/afr.2018.1163 – volume: 73 start-page: 378 year: 2017 ident: ref_38 article-title: Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2016.10.001 contributor: fullname: Luo – volume: 117 start-page: 366 year: 2012 ident: ref_39 article-title: Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.012 contributor: fullname: Avitabile – ident: ref_26 – volume: 224 start-page: 1 year: 2019 ident: ref_14 article-title: Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.037 contributor: fullname: Narine – volume: 70 start-page: 589 year: 2004 ident: ref_21 article-title: Seeing the trees in the forest: Using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.70.5.589 contributor: fullname: Popescu – volume: 233 start-page: 111325 year: 2019 ident: ref_28 article-title: The Ice, Cloud, and Land Elevation Satellite—2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111325 contributor: fullname: Neumann – volume: 49 start-page: 12 year: 2003 ident: ref_22 article-title: National-scale biomass estimators for United States tree species publication-title: For. Sci. contributor: fullname: Jenkins – volume: 10 start-page: 4757 year: 2019 ident: ref_35 article-title: Radar vision in the mapping of forest biodiversity from space publication-title: Nat. Commun. doi: 10.1038/s41467-019-12737-x contributor: fullname: Bae – volume: 35 start-page: 5263 year: 2014 ident: ref_29 article-title: Applicability of an automatic surface detection approach to micropulse photon-counting lidar altimetry data: Implications for canopy height retrieval from future ICESat-2 data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.939780 contributor: fullname: Moussavi – volume: 7 start-page: 5534 year: 2015 ident: ref_5 article-title: National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China publication-title: Remote Sens. doi: 10.3390/rs70505534 contributor: fullname: Chi – volume: 29 start-page: 564 year: 2003 ident: ref_20 article-title: Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass publication-title: Can. J. Remote Sens. doi: 10.5589/m03-027 contributor: fullname: Popescu – ident: ref_43 doi: 10.3390/rs10111832 – ident: ref_6 doi: 10.3390/rs8070565 – volume: 37 start-page: 5 year: 2010 ident: ref_3 article-title: A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL043622 contributor: fullname: Lefsky – volume: 8 start-page: 5246 year: 2015 ident: ref_8 article-title: Capability of GLAS/ICESat Data to Estimate Forest Canopy Height and Volume in Mountainous Forests of Iran publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2478478 contributor: fullname: Pourrahmati – ident: ref_23 doi: 10.3390/s19051139 – ident: ref_25 – ident: ref_31 – ident: ref_27 – ident: ref_9 doi: 10.3390/rs8121039 – volume: 185 start-page: 233 year: 2016 ident: ref_13 article-title: Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.039 contributor: fullname: Glenn – volume: 1 start-page: 100002 year: 2020 ident: ref_41 article-title: The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography publication-title: Sci. Remote Sens. doi: 10.1016/j.srs.2020.100002 contributor: fullname: Dubayah – volume: 208 start-page: 154 year: 2018 ident: ref_11 article-title: Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.019 contributor: fullname: Popescu – ident: ref_16 doi: 10.3390/rs11121503 – ident: ref_24 doi: 10.1109/ICACSIS.2016.7872790 – volume: 3 start-page: 1 year: 2017 ident: ref_40 article-title: Quantifying Forest Biomass Carbon Stocks From Space publication-title: Curr. For. Rep. doi: 10.1007/s40725-017-0052-5 contributor: fullname: Wheeler – volume: 221 start-page: 247 year: 2019 ident: ref_10 article-title: The ATL08 land and vegetation product for the ICESat-2 Mission publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.005 contributor: fullname: Neuenschwander – ident: ref_19 – volume: 190 start-page: 260 year: 2017 ident: ref_2 article-title: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.029 contributor: fullname: Markus – volume: 118 start-page: 68 year: 2016 ident: ref_12 article-title: Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.04.009 contributor: fullname: Gwenzi – ident: ref_15 doi: 10.3390/rs11141721 – volume: 242 start-page: 111779 year: 2020 ident: ref_42 article-title: Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111779 contributor: fullname: Duncanson – volume: 225 start-page: 127 year: 2019 ident: ref_33 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.015 contributor: fullname: Wulder – volume: 116 start-page: 12 year: 2011 ident: ref_4 article-title: Mapping forest canopy height globally with spaceborne lidar publication-title: J. Geophys. Res. Biogeosciences doi: 10.1029/2011JG001708 contributor: fullname: Simard – volume: 188 start-page: 127 year: 2017 ident: ref_32 article-title: Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.038 contributor: fullname: Nelson – volume: 115 start-page: 2753 year: 2011 ident: ref_1 article-title: Characterizing 3D vegetation structure from space: Mission requirements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.024 contributor: fullname: Hall |
SSID | ssj0000331904 |
Score | 2.5372682 |
Snippet | National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1824 |
SubjectTerms | aboveground biomass ICESat-2 photon-counting lidar |
Title | Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example |
URI | https://doaj.org/article/6d49de3a94de4508a9a71490ead3719b |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgCyyIT1G-ZAlWq4ntJDZbW1KVgS4FiS06x47o0lZNiuDfc05CKRMLgxfLOiXvHN-72H5HyF0uwXEjBIu1ipi0QjMNMmaaBzIEKDCC-fvO42kyeVUPqZfJ2ZT68mfCGnngBrhebKW2ToCW1klkE6AhQVYfIAIiCbWpV98g3kqm6jVY4NQKZKNHKjCv761KL2aGbFr-ikBbQv11RBkdkoOWCtJ-8whHZMfNj8leW5X87fOETOr9fPo4TKdQMU6rBU3xi0SO6SjMLX2CJfWlNcuK9s3i3fkbGtg9mPkzP-U97dPRDMkdTT_AawCfkpdR-jwcs7b-AcuFEBUD4EbbwHLroEAQQpUjEKrIlSgiaSDPc8Mjro3TRSLAKkTZFQ5fESAySA3OSGe-mLtzQmMZCAm5kxqbMmglUqGLIFSBVVLaLrn9xiRbNjIXGaYHHrnsB7kuGXi4NiO8NHXdgQ7LWodlfzns4j-MXJJ97hPf-nfIFelUq7W7JrulXd_UE-ELd9W3qQ |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+ICESat-2+to+Estimate+and+Map+Forest+Aboveground+Biomass%3A+A+First+Example&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lana+L.+Narine&rft.au=Sorin+C.+Popescu&rft.au=Lonesome+Malambo&rft.date=2020-06-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=11&rft.spage=1824&rft_id=info:doi/10.3390%2Frs12111824&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6d49de3a94de4508a9a71490ead3719b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |