Probability of entering an orthant by correlated fractional Brownian motion with drift: exact asymptotics

For { B H ( t ) = ( B H , 1 ( t ) , … , B H , d ( t ) ) ⊤ , t ≥ 0 } , where { B H , i ( t ) , t ≥ 0 } , 1 ≤ i ≤ d are mutually independent fractional Brownian motions, we obtain the exact asymptotics of P ( ∃ t ≥ 0 : A B H ( t ) - μ t > ν u ) , u → ∞ , where A is a non-singular d × d matrix and μ...

Full description

Saved in:
Bibliographic Details
Published in:Extremes (Boston) Vol. 27; no. 4; pp. 613 - 641
Main Authors: Dȩbicki, Krzysztof, Ji, Lanpeng, Novikov, Svyatoslav
Format: Journal Article
Language:English
Published: New York Springer US 01-12-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For { B H ( t ) = ( B H , 1 ( t ) , … , B H , d ( t ) ) ⊤ , t ≥ 0 } , where { B H , i ( t ) , t ≥ 0 } , 1 ≤ i ≤ d are mutually independent fractional Brownian motions, we obtain the exact asymptotics of P ( ∃ t ≥ 0 : A B H ( t ) - μ t > ν u ) , u → ∞ , where A is a non-singular d × d matrix and μ = ( μ 1 , … , μ d ) ⊤ ∈ R d , ν = ( ν 1 , … , ν d ) ⊤ ∈ R d are such that there exists some 1 ≤ i ≤ d such that μ i > 0 , ν i > 0 .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1386-1999
1572-915X
DOI:10.1007/s10687-024-00489-x