Probability of entering an orthant by correlated fractional Brownian motion with drift: exact asymptotics
For { B H ( t ) = ( B H , 1 ( t ) , … , B H , d ( t ) ) ⊤ , t ≥ 0 } , where { B H , i ( t ) , t ≥ 0 } , 1 ≤ i ≤ d are mutually independent fractional Brownian motions, we obtain the exact asymptotics of P ( ∃ t ≥ 0 : A B H ( t ) - μ t > ν u ) , u → ∞ , where A is a non-singular d × d matrix and μ...
Saved in:
Published in: | Extremes (Boston) Vol. 27; no. 4; pp. 613 - 641 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-12-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For
{
B
H
(
t
)
=
(
B
H
,
1
(
t
)
,
…
,
B
H
,
d
(
t
)
)
⊤
,
t
≥
0
}
, where
{
B
H
,
i
(
t
)
,
t
≥
0
}
,
1
≤
i
≤
d
are mutually independent fractional Brownian motions, we obtain the exact asymptotics of
P
(
∃
t
≥
0
:
A
B
H
(
t
)
-
μ
t
>
ν
u
)
,
u
→
∞
,
where
A
is a non-singular
d
×
d
matrix and
μ
=
(
μ
1
,
…
,
μ
d
)
⊤
∈
R
d
,
ν
=
(
ν
1
,
…
,
ν
d
)
⊤
∈
R
d
are such that there exists some
1
≤
i
≤
d
such that
μ
i
>
0
,
ν
i
>
0
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1386-1999 1572-915X |
DOI: | 10.1007/s10687-024-00489-x |