Enhanced Second-Order Sliding Mode Control Technique for a Five-Phase Induction Motor
Recently, several research papers have addressed multiphase induction motor (IM) drives, owing to their several benefits compared to the three-phase motors, including increasing the torque pulsations frequency and reducing the rotor harmonic current losses. Thus, designing a robust controller to ens...
Saved in:
Published in: | International transactions on electrical energy systems Vol. 2022; pp. 1 - 19 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Hindawi
19-09-2022
Hindawi Limited Hindawi-Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, several research papers have addressed multiphase induction motor (IM) drives, owing to their several benefits compared to the three-phase motors, including increasing the torque pulsations frequency and reducing the rotor harmonic current losses. Thus, designing a robust controller to ensure the proper operation of such motors became a challenge. The present study reports the design of an effective second-order sliding mode control (SO-SMC) approach for a five-phase IM drive. The proposed control approach finds its strongest justification for the problem of using a law of nonlinear control robust to the system uncertainties of the model without affecting the system’s simplicity. The formulation of the proposed SO-SMC approach is a prescribed process to ensure the stability and proper dynamics of the five-phase IM. A detailed stability analysis is also presented for this purpose. To validate the effectiveness of the proposed controller, the five-phase IM drive is tested under different dynamic situations, including load changes and system uncertainties. The presented numerical results prove the ability of the designed SO-SMC to handle high system nonlinearities and maintain high robustness against uncertainties. |
---|---|
ISSN: | 2050-7038 2050-7038 |
DOI: | 10.1155/2022/8215525 |