Prediction of Mechanical Properties and Optimization of Friction Stir Welded 2195 Aluminum Alloy Based on BP Neural Network
Friction stir welding (FSW) is regarded as an important joining process for the next generation of aerospace aluminum alloys. However, the performance of the FSW process often suffers from low precision and a long test cycle. In order to overcome these problems, a machine learning model based on a b...
Saved in:
Published in: | Metals (Basel ) Vol. 13; no. 2; p. 267 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Friction stir welding (FSW) is regarded as an important joining process for the next generation of aerospace aluminum alloys. However, the performance of the FSW process often suffers from low precision and a long test cycle. In order to overcome these problems, a machine learning model based on a backpropagation neural network (BPNN) was developed to optimize the FSW of 2195 aluminum alloys. A four-dimensional mapping relationship between welding parameters and mechanical properties of joints was established through the analysis and mining of FSW data. The intelligent optimization of the welding process and the prediction of joint properties were realized. The weld formation characteristics at different welding parameters were analyzed to reveal the metallurgical mechanism behind the mapping relationship of the process-property obtained by the BPNN model. The results showed that the prediction accuracy of the method proposed could reach 92%. The welding parameters optimized by the BPNN model were 1810 rpm, 105 mm/min, and 3 kN for the rotational speed, welding speed, and welding pressure, respectively. Under these conditions, the tensile strength of the joint was found to be 415 MPa, which deviated from the experimental value by 3.71%. |
---|---|
AbstractList | Friction stir welding (FSW) is regarded as an important joining process for the next generation of aerospace aluminum alloys. However, the performance of the FSW process often suffers from low precision and a long test cycle. In order to overcome these problems, a machine learning model based on a backpropagation neural network (BPNN) was developed to optimize the FSW of 2195 aluminum alloys. A four-dimensional mapping relationship between welding parameters and mechanical properties of joints was established through the analysis and mining of FSW data. The intelligent optimization of the welding process and the prediction of joint properties were realized. The weld formation characteristics at different welding parameters were analyzed to reveal the metallurgical mechanism behind the mapping relationship of the process-property obtained by the BPNN model. The results showed that the prediction accuracy of the method proposed could reach 92%. The welding parameters optimized by the BPNN model were 1810 rpm, 105 mm/min, and 3 kN for the rotational speed, welding speed, and welding pressure, respectively. Under these conditions, the tensile strength of the joint was found to be 415 MPa, which deviated from the experimental value by 3.71%. |
Audience | Academic |
Author | Zhao, Fei Yu, Fanqi Zhao, Yunqiang Miao, Yugang Xie, Yingchun Lin, Zhicheng |
Author_xml | – sequence: 1 givenname: Fanqi surname: Yu fullname: Yu, Fanqi – sequence: 2 givenname: Yunqiang surname: Zhao fullname: Zhao, Yunqiang – sequence: 3 givenname: Zhicheng surname: Lin fullname: Lin, Zhicheng – sequence: 4 givenname: Yugang surname: Miao fullname: Miao, Yugang – sequence: 5 givenname: Fei surname: Zhao fullname: Zhao, Fei – sequence: 6 givenname: Yingchun surname: Xie fullname: Xie, Yingchun |
BookMark | eNpNUV1PFDEUbQwmIvLkH2jio1nsd6ePCxElQdgEjI9Np73FrjPTtdOJQf-81QVC-9Cbe885ObfnNTqY8gQIvaXkhHNDPoxQKSeMMKVfoENGtFwJTejBs_oVOp7nLWmnY4oYc4j-bAqE5GvKE84RfwH_3U3JuwFvSt5BqQlm7KaAr3c1jem3e0SelwfWTU0Ff4MhQMCMGonXwzKmaRlbMeR7fOrmNmnA0w2-gqU06Suov3L58Qa9jG6Y4fjhPUJfzz_enn1eXV5_ujhbX64857yuWKBRG9VH30VJhCPE0-B4LzWLUqnQC9L1fZRckBhpm4OD3suulwF0CIYfoYu9bshua3clja7c2-yS_d_I5c66tqgfwFJqnCKy_aGQohPQUaqEZ1yZACCoa1rv9lq7kn8uMFe7zUuZmn3LtDbNBKO8oU72qDvXRNMUcy3OtxtgTL7FFlPrr7XgtFOMdI3wfk_wJc9zgfhkkxL7L137LF3-F3l9l94 |
CitedBy_id | crossref_primary_10_3390_met13061094 crossref_primary_10_3390_met13040664 crossref_primary_10_3233_JIFS_230144 crossref_primary_10_3390_jmse12010071 crossref_primary_10_3390_met13071176 crossref_primary_10_3390_su16104161 |
Cites_doi | 10.2307/1266632 10.1016/j.msea.2021.141501 10.1016/j.matpr.2020.02.942 10.1504/IJMR.2009.026576 10.1007/s00170-019-04594-1 10.3389/fmats.2022.864187 10.1016/j.mser.2005.07.001 10.1007/s11665-022-06832-2 10.1016/j.matpr.2021.10.029 10.1179/1362171812Y.0000000035 10.1016/j.compositesa.2017.12.005 10.1016/j.pmatsci.2020.100706 10.1016/j.jfoodeng.2005.11.024 10.1007/s40194-019-00726-z 10.1177/09544089221134446 10.1038/s41524-019-0207-y 10.1007/s11665-022-06822-4 10.1161/CIRCULATIONAHA.107.654335 10.20944/preprints202211.0019.v1 10.1016/j.matpr.2019.05.176 10.1016/S1003-6326(08)60221-6 10.1016/j.matdes.2015.10.124 10.1016/j.matdes.2015.12.005 10.3390/met9050573 10.3390/met12071101 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/met13020267 |
DatabaseName | CrossRef METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database Materials Science Database Materials Science Collection Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China METADEX ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-4701 |
ExternalDocumentID | oai_doaj_org_article_119a60502645484e81164c2369dee41a A743186208 10_3390_met13020267 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PIMPY PROAC RIG TUS 8BQ 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c333t-2d1f796bfc8f504a00c1da3b572f566db408bbf5340ff14a0eaebc58b5de7dd93 |
IEDL.DBID | DOA |
ISSN | 2075-4701 |
IngestDate | Tue Oct 22 14:58:52 EDT 2024 Thu Oct 10 19:33:09 EDT 2024 Tue Nov 12 23:10:25 EST 2024 Thu Nov 21 22:18:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-2d1f796bfc8f504a00c1da3b572f566db408bbf5340ff14a0eaebc58b5de7dd93 |
OpenAccessLink | https://doaj.org/article/119a60502645484e81164c2369dee41a |
PQID | 2779534213 |
PQPubID | 2032361 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_119a60502645484e81164c2369dee41a proquest_journals_2779534213 gale_infotracacademiconefile_A743186208 crossref_primary_10_3390_met13020267 |
PublicationCentury | 2000 |
PublicationDate | 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Metals (Basel ) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Dewan (ref_11) 2016; 92 Huang (ref_8) 2018; 105 Jayaraman (ref_25) 2009; 4 ref_13 ref_10 Rathinasuriyan (ref_26) 2019; 16 Du (ref_4) 2019; 5 ref_19 Karna (ref_14) 2012; 1 Larson (ref_16) 2008; 117 Manvatkar (ref_23) 2012; 17 Mishra (ref_1) 2005; 50 Yin (ref_12) 2019; 63 Singh (ref_18) 2022; 48 Mendes (ref_2) 2016; 90 You (ref_21) 2019; 108 Lakshminarayanan (ref_24) 2009; 19 Peng (ref_9) 2021; 823 Saravanakumar (ref_3) 2022; 31 ref_28 Hill (ref_15) 1966; 8 ref_27 (ref_20) 2007; 78 Saravanakumar (ref_6) 2022; 31 Meng (ref_7) 2020; 115 ref_5 Yuvaraj (ref_17) 2020; 45 Effertz (ref_22) 2022; 9 |
References_xml | – ident: ref_28 – volume: 8 start-page: 571 year: 1966 ident: ref_15 article-title: A Review of Response Surface Methodology: A Literature Survey publication-title: Technometrics doi: 10.2307/1266632 contributor: fullname: Hill – volume: 823 start-page: 141501 year: 2021 ident: ref_9 article-title: Friction stir welding joints of 2195-T8 Al–Li alloys: Correlation of temperature evolution, microstructure and mechanical properties publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.141501 contributor: fullname: Peng – volume: 45 start-page: 919 year: 2020 ident: ref_17 article-title: Optimization of FSW tool parameters for joining dissimilar AA7075-T651 and AA6061 aluminium alloys using Taguchi Technique publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.02.942 contributor: fullname: Yuvaraj – volume: 4 start-page: 306 year: 2009 ident: ref_25 article-title: Application of RSM and ANN to predict the tensile strength of Friction Stir Welded A319 cast aluminium alloy publication-title: Int. J. Manuf. Res. doi: 10.1504/IJMR.2009.026576 contributor: fullname: Jayaraman – volume: 108 start-page: 987 year: 2019 ident: ref_21 article-title: Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-T6 aluminium alloy at high rotation speeds publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-04594-1 contributor: fullname: You – volume: 9 start-page: 864187 year: 2022 ident: ref_22 article-title: Optimization of Refill Friction Stir Spot Welded AA2024-T3 Using Machine Learning publication-title: Front. Mater. doi: 10.3389/fmats.2022.864187 contributor: fullname: Effertz – volume: 50 start-page: 1 year: 2005 ident: ref_1 article-title: Friction stir welding and processing publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2005.07.001 contributor: fullname: Mishra – volume: 31 start-page: 8459 year: 2022 ident: ref_6 article-title: Mechanical and Microstructural Characteristics of Underwater Friction Stir Welded AA5083 Armor-Grade Aluminum Alloy Joints publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-022-06832-2 contributor: fullname: Saravanakumar – volume: 48 start-page: 1718 year: 2022 ident: ref_18 article-title: Study and optimize tensile strength of FSW joints using AA5083 filler by Taguchi & Anova publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.10.029 contributor: fullname: Singh – volume: 17 start-page: 460 year: 2012 ident: ref_23 article-title: Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding publication-title: Sci. Technol. Weld. Join. doi: 10.1179/1362171812Y.0000000035 contributor: fullname: Manvatkar – volume: 105 start-page: 235 year: 2018 ident: ref_8 article-title: Friction stir welding/processing of polymers and polymer matrix composites publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.12.005 contributor: fullname: Huang – volume: 115 start-page: 100706 year: 2020 ident: ref_7 article-title: Recent progress on control strategies for inherent issues in friction stir welding publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100706 contributor: fullname: Meng – volume: 78 start-page: 836 year: 2007 ident: ref_20 article-title: Modeling and optimization I: Usability of response surface methodology publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2005.11.024 – ident: ref_27 – volume: 63 start-page: 947 year: 2019 ident: ref_12 article-title: Prediction of weld formation in 5083 aluminum alloy by twin-wire CMT welding based on deep learning publication-title: Weld. World doi: 10.1007/s40194-019-00726-z contributor: fullname: Yin – ident: ref_19 doi: 10.1177/09544089221134446 – volume: 1 start-page: 11 year: 2012 ident: ref_14 article-title: An Overview on Taguchi Method publication-title: Int. J. Eng. Math. Sci. contributor: fullname: Karna – volume: 5 start-page: 68 year: 2019 ident: ref_4 article-title: Conditions for void formation in friction stir welding from machine learning publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0207-y contributor: fullname: Du – volume: 31 start-page: 8433 year: 2022 ident: ref_3 article-title: Influence of Tool Probe Profiles on the Microstructure and Mechanical Properties of Underwater Friction Stir Welded AA5083 Material publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-022-06822-4 contributor: fullname: Saravanakumar – volume: 117 start-page: 115 year: 2008 ident: ref_16 article-title: Analysis of Variance publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.654335 contributor: fullname: Larson – ident: ref_5 doi: 10.20944/preprints202211.0019.v1 – volume: 16 start-page: 907 year: 2019 ident: ref_26 article-title: Prediction of the Average Grain Size in Submerged Friction Stir Welds of AA 6061-T6 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2019.05.176 contributor: fullname: Rathinasuriyan – volume: 19 start-page: 9 year: 2009 ident: ref_24 article-title: Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(08)60221-6 contributor: fullname: Lakshminarayanan – volume: 90 start-page: 256 year: 2016 ident: ref_2 article-title: Machines and control systems for friction stir welding: A review publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.10.124 contributor: fullname: Mendes – volume: 92 start-page: 288 year: 2016 ident: ref_11 article-title: Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.005 contributor: fullname: Dewan – ident: ref_13 doi: 10.3390/met9050573 – ident: ref_10 doi: 10.3390/met12071101 |
SSID | ssj0000826099 |
Score | 2.3377924 |
Snippet | Friction stir welding (FSW) is regarded as an important joining process for the next generation of aerospace aluminum alloys. However, the performance of the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 267 |
SubjectTerms | Alloys Aluminum aluminum alloy Aluminum alloys Aluminum base alloys Artificial neural networks Back propagation Back propagation networks Friction stir welding Heat Machine learning Mapping Mathematical models Mechanical properties Metallurgy neural network Neural networks Optimization Robots Specialty metals industry Taguchi methods Tensile strength Variance analysis Welding Welding parameters Yield stress |
Title | Prediction of Mechanical Properties and Optimization of Friction Stir Welded 2195 Aluminum Alloy Based on BP Neural Network |
URI | https://www.proquest.com/docview/2779534213 https://doaj.org/article/119a60502645484e81164c2369dee41a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaTuVQlZe6hSIfkDhF2HGcOMfdlhUXYCVatTfLj7GExGarkD0g_jwzSUDLAfXCLUocx56Jx9_Ynm8YO_HSaVcLyEoTqwzxv8u8qF2WkhEaCNCGPnXCTXX11_w8J5qcl1RfdCZsoAceBHcmZe0QcqOrUCC4LsBIBPghV2UdAQo5QCNRbjhTvQ3GjyD2GQLyFPr1Z0voaI-OEi69moJ6pv637HE_ycy_sM8jOuTToVU77AM0u2x7gzNwjz0uWtpbIXnyVeKXQKG7JGm-oHX1lghSuWsiv0ZjsByjLKnkvB3fuuluW_4H7iJEjpZE8ykaqNtmvcSLu9UDn-HEFjkWnC04cXdg1VfDYfF99nt-_uvHRTZmUMiCUqrL8ihTVZc-BZO0KJwQQUanvK7yhDgu-kIY75NWhUhJ4nNw4IM2XkeoYqzVAdtqVg18ZVy4GutEQOB0LEoojY6O4KQuoQouDxN28ixU-28gyrDoYJDs7YbsJ2xGAn8pQuzW_Q3UuR11bv-n8wk7JXVZGoNd64IbQwmwpcRmZacEi9BVE2bCjp41asfBeW_zqqqxy7lU396jNYfsE-WgH9ZljthW167hO_t4H9fH_U_5BPMD49g |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Mechanical+Properties+and+Optimization+of+Friction+Stir+Welded+2195+Aluminum+Alloy+Based+on+BP+Neural+Network&rft.jtitle=Metals+%28Basel+%29&rft.au=Yu%2C+Fanqi&rft.au=Zhao%2C+Yunqiang&rft.au=Lin%2C+Zhicheng&rft.au=Miao%2C+Yugang&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2075-4701&rft.volume=13&rft.issue=2&rft.spage=267&rft_id=info:doi/10.3390%2Fmet13020267&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon |