Prediction of Mechanical Properties and Optimization of Friction Stir Welded 2195 Aluminum Alloy Based on BP Neural Network

Friction stir welding (FSW) is regarded as an important joining process for the next generation of aerospace aluminum alloys. However, the performance of the FSW process often suffers from low precision and a long test cycle. In order to overcome these problems, a machine learning model based on a b...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) Vol. 13; no. 2; p. 267
Main Authors: Yu, Fanqi, Zhao, Yunqiang, Lin, Zhicheng, Miao, Yugang, Zhao, Fei, Xie, Yingchun
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Friction stir welding (FSW) is regarded as an important joining process for the next generation of aerospace aluminum alloys. However, the performance of the FSW process often suffers from low precision and a long test cycle. In order to overcome these problems, a machine learning model based on a backpropagation neural network (BPNN) was developed to optimize the FSW of 2195 aluminum alloys. A four-dimensional mapping relationship between welding parameters and mechanical properties of joints was established through the analysis and mining of FSW data. The intelligent optimization of the welding process and the prediction of joint properties were realized. The weld formation characteristics at different welding parameters were analyzed to reveal the metallurgical mechanism behind the mapping relationship of the process-property obtained by the BPNN model. The results showed that the prediction accuracy of the method proposed could reach 92%. The welding parameters optimized by the BPNN model were 1810 rpm, 105 mm/min, and 3 kN for the rotational speed, welding speed, and welding pressure, respectively. Under these conditions, the tensile strength of the joint was found to be 415 MPa, which deviated from the experimental value by 3.71%.
AbstractList Friction stir welding (FSW) is regarded as an important joining process for the next generation of aerospace aluminum alloys. However, the performance of the FSW process often suffers from low precision and a long test cycle. In order to overcome these problems, a machine learning model based on a backpropagation neural network (BPNN) was developed to optimize the FSW of 2195 aluminum alloys. A four-dimensional mapping relationship between welding parameters and mechanical properties of joints was established through the analysis and mining of FSW data. The intelligent optimization of the welding process and the prediction of joint properties were realized. The weld formation characteristics at different welding parameters were analyzed to reveal the metallurgical mechanism behind the mapping relationship of the process-property obtained by the BPNN model. The results showed that the prediction accuracy of the method proposed could reach 92%. The welding parameters optimized by the BPNN model were 1810 rpm, 105 mm/min, and 3 kN for the rotational speed, welding speed, and welding pressure, respectively. Under these conditions, the tensile strength of the joint was found to be 415 MPa, which deviated from the experimental value by 3.71%.
Audience Academic
Author Zhao, Fei
Yu, Fanqi
Zhao, Yunqiang
Miao, Yugang
Xie, Yingchun
Lin, Zhicheng
Author_xml – sequence: 1
  givenname: Fanqi
  surname: Yu
  fullname: Yu, Fanqi
– sequence: 2
  givenname: Yunqiang
  surname: Zhao
  fullname: Zhao, Yunqiang
– sequence: 3
  givenname: Zhicheng
  surname: Lin
  fullname: Lin, Zhicheng
– sequence: 4
  givenname: Yugang
  surname: Miao
  fullname: Miao, Yugang
– sequence: 5
  givenname: Fei
  surname: Zhao
  fullname: Zhao, Fei
– sequence: 6
  givenname: Yingchun
  surname: Xie
  fullname: Xie, Yingchun
BookMark eNpNUV1PFDEUbQwmIvLkH2jio1nsd6ePCxElQdgEjI9Np73FrjPTtdOJQf-81QVC-9Cbe885ObfnNTqY8gQIvaXkhHNDPoxQKSeMMKVfoENGtFwJTejBs_oVOp7nLWmnY4oYc4j-bAqE5GvKE84RfwH_3U3JuwFvSt5BqQlm7KaAr3c1jem3e0SelwfWTU0Ff4MhQMCMGonXwzKmaRlbMeR7fOrmNmnA0w2-gqU06Suov3L58Qa9jG6Y4fjhPUJfzz_enn1eXV5_ujhbX64857yuWKBRG9VH30VJhCPE0-B4LzWLUqnQC9L1fZRckBhpm4OD3suulwF0CIYfoYu9bshua3clja7c2-yS_d_I5c66tqgfwFJqnCKy_aGQohPQUaqEZ1yZACCoa1rv9lq7kn8uMFe7zUuZmn3LtDbNBKO8oU72qDvXRNMUcy3OtxtgTL7FFlPrr7XgtFOMdI3wfk_wJc9zgfhkkxL7L137LF3-F3l9l94
CitedBy_id crossref_primary_10_3390_met13061094
crossref_primary_10_3390_met13040664
crossref_primary_10_3233_JIFS_230144
crossref_primary_10_3390_jmse12010071
crossref_primary_10_3390_met13071176
crossref_primary_10_3390_su16104161
Cites_doi 10.2307/1266632
10.1016/j.msea.2021.141501
10.1016/j.matpr.2020.02.942
10.1504/IJMR.2009.026576
10.1007/s00170-019-04594-1
10.3389/fmats.2022.864187
10.1016/j.mser.2005.07.001
10.1007/s11665-022-06832-2
10.1016/j.matpr.2021.10.029
10.1179/1362171812Y.0000000035
10.1016/j.compositesa.2017.12.005
10.1016/j.pmatsci.2020.100706
10.1016/j.jfoodeng.2005.11.024
10.1007/s40194-019-00726-z
10.1177/09544089221134446
10.1038/s41524-019-0207-y
10.1007/s11665-022-06822-4
10.1161/CIRCULATIONAHA.107.654335
10.20944/preprints202211.0019.v1
10.1016/j.matpr.2019.05.176
10.1016/S1003-6326(08)60221-6
10.1016/j.matdes.2015.10.124
10.1016/j.matdes.2015.12.005
10.3390/met9050573
10.3390/met12071101
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/met13020267
DatabaseName CrossRef
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
Materials Science Database
Materials Science Collection
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
METADEX
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-4701
ExternalDocumentID oai_doaj_org_article_119a60502645484e81164c2369dee41a
A743186208
10_3390_met13020267
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PIMPY
PROAC
RIG
TUS
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c333t-2d1f796bfc8f504a00c1da3b572f566db408bbf5340ff14a0eaebc58b5de7dd93
IEDL.DBID DOA
ISSN 2075-4701
IngestDate Tue Oct 22 14:58:52 EDT 2024
Thu Oct 10 19:33:09 EDT 2024
Tue Nov 12 23:10:25 EST 2024
Thu Nov 21 22:18:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-2d1f796bfc8f504a00c1da3b572f566db408bbf5340ff14a0eaebc58b5de7dd93
OpenAccessLink https://doaj.org/article/119a60502645484e81164c2369dee41a
PQID 2779534213
PQPubID 2032361
ParticipantIDs doaj_primary_oai_doaj_org_article_119a60502645484e81164c2369dee41a
proquest_journals_2779534213
gale_infotracacademiconefile_A743186208
crossref_primary_10_3390_met13020267
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Metals (Basel )
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dewan (ref_11) 2016; 92
Huang (ref_8) 2018; 105
Jayaraman (ref_25) 2009; 4
ref_13
ref_10
Rathinasuriyan (ref_26) 2019; 16
Du (ref_4) 2019; 5
ref_19
Karna (ref_14) 2012; 1
Larson (ref_16) 2008; 117
Manvatkar (ref_23) 2012; 17
Mishra (ref_1) 2005; 50
Yin (ref_12) 2019; 63
Singh (ref_18) 2022; 48
Mendes (ref_2) 2016; 90
You (ref_21) 2019; 108
Lakshminarayanan (ref_24) 2009; 19
Peng (ref_9) 2021; 823
Saravanakumar (ref_3) 2022; 31
ref_28
Hill (ref_15) 1966; 8
ref_27
(ref_20) 2007; 78
Saravanakumar (ref_6) 2022; 31
Meng (ref_7) 2020; 115
ref_5
Yuvaraj (ref_17) 2020; 45
Effertz (ref_22) 2022; 9
References_xml – ident: ref_28
– volume: 8
  start-page: 571
  year: 1966
  ident: ref_15
  article-title: A Review of Response Surface Methodology: A Literature Survey
  publication-title: Technometrics
  doi: 10.2307/1266632
  contributor:
    fullname: Hill
– volume: 823
  start-page: 141501
  year: 2021
  ident: ref_9
  article-title: Friction stir welding joints of 2195-T8 Al–Li alloys: Correlation of temperature evolution, microstructure and mechanical properties
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.141501
  contributor:
    fullname: Peng
– volume: 45
  start-page: 919
  year: 2020
  ident: ref_17
  article-title: Optimization of FSW tool parameters for joining dissimilar AA7075-T651 and AA6061 aluminium alloys using Taguchi Technique
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.02.942
  contributor:
    fullname: Yuvaraj
– volume: 4
  start-page: 306
  year: 2009
  ident: ref_25
  article-title: Application of RSM and ANN to predict the tensile strength of Friction Stir Welded A319 cast aluminium alloy
  publication-title: Int. J. Manuf. Res.
  doi: 10.1504/IJMR.2009.026576
  contributor:
    fullname: Jayaraman
– volume: 108
  start-page: 987
  year: 2019
  ident: ref_21
  article-title: Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-T6 aluminium alloy at high rotation speeds
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-04594-1
  contributor:
    fullname: You
– volume: 9
  start-page: 864187
  year: 2022
  ident: ref_22
  article-title: Optimization of Refill Friction Stir Spot Welded AA2024-T3 Using Machine Learning
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2022.864187
  contributor:
    fullname: Effertz
– volume: 50
  start-page: 1
  year: 2005
  ident: ref_1
  article-title: Friction stir welding and processing
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2005.07.001
  contributor:
    fullname: Mishra
– volume: 31
  start-page: 8459
  year: 2022
  ident: ref_6
  article-title: Mechanical and Microstructural Characteristics of Underwater Friction Stir Welded AA5083 Armor-Grade Aluminum Alloy Joints
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-022-06832-2
  contributor:
    fullname: Saravanakumar
– volume: 48
  start-page: 1718
  year: 2022
  ident: ref_18
  article-title: Study and optimize tensile strength of FSW joints using AA5083 filler by Taguchi & Anova
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.10.029
  contributor:
    fullname: Singh
– volume: 17
  start-page: 460
  year: 2012
  ident: ref_23
  article-title: Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/1362171812Y.0000000035
  contributor:
    fullname: Manvatkar
– volume: 105
  start-page: 235
  year: 2018
  ident: ref_8
  article-title: Friction stir welding/processing of polymers and polymer matrix composites
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2017.12.005
  contributor:
    fullname: Huang
– volume: 115
  start-page: 100706
  year: 2020
  ident: ref_7
  article-title: Recent progress on control strategies for inherent issues in friction stir welding
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100706
  contributor:
    fullname: Meng
– volume: 78
  start-page: 836
  year: 2007
  ident: ref_20
  article-title: Modeling and optimization I: Usability of response surface methodology
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2005.11.024
– ident: ref_27
– volume: 63
  start-page: 947
  year: 2019
  ident: ref_12
  article-title: Prediction of weld formation in 5083 aluminum alloy by twin-wire CMT welding based on deep learning
  publication-title: Weld. World
  doi: 10.1007/s40194-019-00726-z
  contributor:
    fullname: Yin
– ident: ref_19
  doi: 10.1177/09544089221134446
– volume: 1
  start-page: 11
  year: 2012
  ident: ref_14
  article-title: An Overview on Taguchi Method
  publication-title: Int. J. Eng. Math. Sci.
  contributor:
    fullname: Karna
– volume: 5
  start-page: 68
  year: 2019
  ident: ref_4
  article-title: Conditions for void formation in friction stir welding from machine learning
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0207-y
  contributor:
    fullname: Du
– volume: 31
  start-page: 8433
  year: 2022
  ident: ref_3
  article-title: Influence of Tool Probe Profiles on the Microstructure and Mechanical Properties of Underwater Friction Stir Welded AA5083 Material
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-022-06822-4
  contributor:
    fullname: Saravanakumar
– volume: 117
  start-page: 115
  year: 2008
  ident: ref_16
  article-title: Analysis of Variance
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.654335
  contributor:
    fullname: Larson
– ident: ref_5
  doi: 10.20944/preprints202211.0019.v1
– volume: 16
  start-page: 907
  year: 2019
  ident: ref_26
  article-title: Prediction of the Average Grain Size in Submerged Friction Stir Welds of AA 6061-T6
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2019.05.176
  contributor:
    fullname: Rathinasuriyan
– volume: 19
  start-page: 9
  year: 2009
  ident: ref_24
  article-title: Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(08)60221-6
  contributor:
    fullname: Lakshminarayanan
– volume: 90
  start-page: 256
  year: 2016
  ident: ref_2
  article-title: Machines and control systems for friction stir welding: A review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.10.124
  contributor:
    fullname: Mendes
– volume: 92
  start-page: 288
  year: 2016
  ident: ref_11
  article-title: Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.12.005
  contributor:
    fullname: Dewan
– ident: ref_13
  doi: 10.3390/met9050573
– ident: ref_10
  doi: 10.3390/met12071101
SSID ssj0000826099
Score 2.3377924
Snippet Friction stir welding (FSW) is regarded as an important joining process for the next generation of aerospace aluminum alloys. However, the performance of the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 267
SubjectTerms Alloys
Aluminum
aluminum alloy
Aluminum alloys
Aluminum base alloys
Artificial neural networks
Back propagation
Back propagation networks
Friction stir welding
Heat
Machine learning
Mapping
Mathematical models
Mechanical properties
Metallurgy
neural network
Neural networks
Optimization
Robots
Specialty metals industry
Taguchi methods
Tensile strength
Variance analysis
Welding
Welding parameters
Yield stress
Title Prediction of Mechanical Properties and Optimization of Friction Stir Welded 2195 Aluminum Alloy Based on BP Neural Network
URI https://www.proquest.com/docview/2779534213
https://doaj.org/article/119a60502645484e81164c2369dee41a
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaTuVQlZe6hSIfkDhF2HGcOMfdlhUXYCVatTfLj7GExGarkD0g_jwzSUDLAfXCLUocx56Jx9_Ynm8YO_HSaVcLyEoTqwzxv8u8qF2WkhEaCNCGPnXCTXX11_w8J5qcl1RfdCZsoAceBHcmZe0QcqOrUCC4LsBIBPghV2UdAQo5QCNRbjhTvQ3GjyD2GQLyFPr1Z0voaI-OEi69moJ6pv637HE_ycy_sM8jOuTToVU77AM0u2x7gzNwjz0uWtpbIXnyVeKXQKG7JGm-oHX1lghSuWsiv0ZjsByjLKnkvB3fuuluW_4H7iJEjpZE8ykaqNtmvcSLu9UDn-HEFjkWnC04cXdg1VfDYfF99nt-_uvHRTZmUMiCUqrL8ihTVZc-BZO0KJwQQUanvK7yhDgu-kIY75NWhUhJ4nNw4IM2XkeoYqzVAdtqVg18ZVy4GutEQOB0LEoojY6O4KQuoQouDxN28ixU-28gyrDoYJDs7YbsJ2xGAn8pQuzW_Q3UuR11bv-n8wk7JXVZGoNd64IbQwmwpcRmZacEi9BVE2bCjp41asfBeW_zqqqxy7lU396jNYfsE-WgH9ZljthW167hO_t4H9fH_U_5BPMD49g
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Mechanical+Properties+and+Optimization+of+Friction+Stir+Welded+2195+Aluminum+Alloy+Based+on+BP+Neural+Network&rft.jtitle=Metals+%28Basel+%29&rft.au=Yu%2C+Fanqi&rft.au=Zhao%2C+Yunqiang&rft.au=Lin%2C+Zhicheng&rft.au=Miao%2C+Yugang&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2075-4701&rft.volume=13&rft.issue=2&rft.spage=267&rft_id=info:doi/10.3390%2Fmet13020267&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon