IoT based optical coherence tomography retinal images classification using OCT Deep Net2
Machine learning algorithms gains prominence in health care sectors for disease diagnosis, classification and prediction. Deep learning architecture gains prominence in real time applications. This research work proposes a novel deep learning architecture, OCT Deep Net2 for the classification of opt...
Saved in:
Published in: | Measurement. Sensors Vol. 25; p. 100652 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-02-2023
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Machine learning algorithms gains prominence in health care sectors for disease diagnosis, classification and prediction. Deep learning architecture gains prominence in real time applications. This research work proposes a novel deep learning architecture, OCT Deep Net2 for the classification of optical coherence tomography images. Four class disease classification was performed in this research work and the proposed deep learning framework OCT Deep Net2 is an extension of OCT Deep Net1 comprising of 30 layers. The OCT Deep Net2 comprises of 50 layers and is termed as dense architecture, comprises of three recurrent modules. The performance validation reveals the efficiency of the OCT Deep Net2 architecture in terms of the performance metrics. Robust results were produced for batch size of 32 and 100 epochs with an accuracy of 98%. An IoT based system was implemented using Raspberry Pi B+ processor, the OCT Deep Net 2 algorithm was written in Python and executed on Google Colab. |
---|---|
AbstractList | Machine learning algorithms gains prominence in health care sectors for disease diagnosis, classification and prediction. Deep learning architecture gains prominence in real time applications. This research work proposes a novel deep learning architecture, OCT Deep Net2 for the classification of optical coherence tomography images. Four class disease classification was performed in this research work and the proposed deep learning framework OCT Deep Net2 is an extension of OCT Deep Net1 comprising of 30 layers. The OCT Deep Net2 comprises of 50 layers and is termed as dense architecture, comprises of three recurrent modules. The performance validation reveals the efficiency of the OCT Deep Net2 architecture in terms of the performance metrics. Robust results were produced for batch size of 32 and 100 epochs with an accuracy of 98%. An IoT based system was implemented using Raspberry Pi B+ processor, the OCT Deep Net 2 algorithm was written in Python and executed on Google Colab. |
ArticleNumber | 100652 |
Author | Kumar, S.N. Rajan, Ranjitha |
Author_xml | – sequence: 1 givenname: Ranjitha orcidid: 0000-0002-1546-4380 surname: Rajan fullname: Rajan, Ranjitha email: rrajan@lincoln.edu.my organization: Lincoln University College, Kota Bharu, 15050, Malaysia – sequence: 2 givenname: S.N. orcidid: 0000-0002-2530-1454 surname: Kumar fullname: Kumar, S.N. email: appu123kumar@gmail.com organization: Department of EEE, Amal Jyothi College of Engineering, Kottayam, Kerala, 686518, India |
BookMark | eNp9kN9KwzAUh4MoOOfewIu8QGeStml6I8j8NxjuZoJ3IUlPu5SuKUkV9vZmVsQrr87hJL-Pc74rdN67HhC6oWRJCeW37fIAKkC_ZISxOCI8Z2doxjjPk5IW2fmf_hItQmgJIUzELMtm6H3tdljHfIXdMFqjOmzcHjz0BvDoDq7xatgfsYfR9vHRHlQDAZtOhWDr-H-0rscfwfYN3q52-AFgwK8wsmt0UasuwOKnztHb0-Nu9ZJsts_r1f0mMWmasoRrnooCMlbkuiQGhCaizkBpVlANhmRUUCYyQYwRZVWQXKu8oiIVNC15ATydo_XErZxq5eDjgv4onbLye-B8I5WPh3UgBVfa5IxVaVFmBLgwpKaaKwpMlaBZZGUTy3gXgof6l0eJPMmWrZxky5NsOcmOsbspBvHOTwteBmNPAivrwYxxEfs_4At8f4pD |
CitedBy_id | crossref_primary_10_1007_s11082_023_05167_z |
Cites_doi | 10.13088/jiis.2016.22.2.127 10.1155/2016/1091279 10.1016/j.oret.2016.12.009 10.1136/bjophthalmol-2020-317825 10.1016/j.cell.2018.02.010 10.7150/thno.28447 10.1146/annurev-bioeng-071516-044442 10.1007/s11227-021-04181-w 10.1016/j.compbiomed.2021.104822 10.1364/BOE.8.000579 10.1016/j.acra.2009.07.004 10.1016/j.bspc.2019.101605 10.3390/diagnostics12020312 10.3390/s19092167 10.3233/JIFS-172261 10.1007/s12194-017-0406-5 10.1016/j.cmpb.2015.10.006 10.1186/s12886-020-01382-4 10.1016/j.patrec.2020.12.015 10.3892/mco.2015.521 10.1016/j.neucom.2017.12.032 10.1561/2000000039 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.measen.2022.100652 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2665-9174 |
ExternalDocumentID | oai_doaj_org_article_86abc522d37940e68c0f1b6a1e2a9eb2 10_1016_j_measen_2022_100652 S2665917422002860 |
GroupedDBID | 0SF 53G 6I. AAEDW AAFTH AALRI AAXUO AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL AAYXX ADVLN AFJKZ CITATION |
ID | FETCH-LOGICAL-c3332-6b6387e4275b90ce8b08f4eab271bec0418128480cc89d705ba5d183813967e63 |
IEDL.DBID | DOA |
ISSN | 2665-9174 |
IngestDate | Tue Oct 22 15:12:56 EDT 2024 Thu Sep 26 19:56:18 EDT 2024 Fri Feb 23 02:40:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning OCT Neural networks Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3332-6b6387e4275b90ce8b08f4eab271bec0418128480cc89d705ba5d183813967e63 |
ORCID | 0000-0002-2530-1454 0000-0002-1546-4380 |
OpenAccessLink | https://doaj.org/article/86abc522d37940e68c0f1b6a1e2a9eb2 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_86abc522d37940e68c0f1b6a1e2a9eb2 crossref_primary_10_1016_j_measen_2022_100652 elsevier_sciencedirect_doi_10_1016_j_measen_2022_100652 |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Measurement. Sensors |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Narin, Pamuk (bib15) 2020 Hussain, Anwar, Majid (bib18) 2018; 282 Helwan, El-Fakhri, Sasani, Uzun Ozsahin (bib19) 2018; 35 Hwang, Hsu, Chang, Chao, Sun, Jheng, Yarmishyn, Wu, Tsai, Wang (bib27) 2019; 9 Kermany, Goldbaum, Cai, Valentim, Liang, Baxter, McKeown, Yang, Wu, Yan (bib28) 2018; 172 (bib5) 2020; 187 Li (bib12) 2022; 106 Deng, Yu (bib4) 2014; 7 Shen, Wu, Suk (bib1) 2017; 19 Alryalat, Aldeen (bib14) 2022; 12 Karri, Chakraborty, Chatterjee (bib25) 2017; 8 Simonyan, Zisserman (bib9) May 2015 Mao, Deng (bib16) 2016; 2016 Kauer-Bonin (bib11) 2022; 141 Tsuji, Hirose, Fujimori, Hirose, Oyama, Saikawa, Mimura, Shiraishi, Kobayashi, Mizota (bib23) 2020; 20 LeCun, Jackel (bib8) 1995; 261 Lee, Baughman, Lee (bib26) 2017; 1 Valente, Cortez, Neto, Soares, de Albuquerque, Tavares (bib7) 2016; 124 Lostumbo, Wanamaker, Tsai, Suzuki, Dachman (bib3) 2010; 17 Das, Dandapat, Bora (bib22) 2019; 54 Szegedy, Liu, Jia (bib10) 2015 Suzuki (bib2) 2017; 10 Ker, Singh, Bai, Rao, Lim, Wang (bib17) May 2019; 19 Khan, Akram, Zhang, Sharif (bib20) 2021; 143 Kadry (bib13) 2022; 78 Prabhakaran, Kar, Sai Venkata, Gopi, Ponnusamy (bib24) 2020; 200 Ahn (bib6) 2016; 22 Kemal, Demirag, Ekiz, Yucel (bib21) 2015; 3 Prabhakaran (10.1016/j.measen.2022.100652_bib24) 2020; 200 Ker (10.1016/j.measen.2022.100652_bib17) 2019; 19 Hwang (10.1016/j.measen.2022.100652_bib27) 2019; 9 Li (10.1016/j.measen.2022.100652_bib12) 2022; 106 Lostumbo (10.1016/j.measen.2022.100652_bib3) 2010; 17 Kauer-Bonin (10.1016/j.measen.2022.100652_bib11) 2022; 141 (10.1016/j.measen.2022.100652_bib5) 2020; 187 Ahn (10.1016/j.measen.2022.100652_bib6) 2016; 22 Das (10.1016/j.measen.2022.100652_bib22) 2019; 54 Karri (10.1016/j.measen.2022.100652_bib25) 2017; 8 Valente (10.1016/j.measen.2022.100652_bib7) 2016; 124 LeCun (10.1016/j.measen.2022.100652_bib8) 1995; 261 Kadry (10.1016/j.measen.2022.100652_bib13) 2022; 78 Lee (10.1016/j.measen.2022.100652_bib26) 2017; 1 Kemal (10.1016/j.measen.2022.100652_bib21) 2015; 3 Hussain (10.1016/j.measen.2022.100652_bib18) 2018; 282 Deng (10.1016/j.measen.2022.100652_bib4) 2014; 7 Szegedy (10.1016/j.measen.2022.100652_bib10) 2015 Khan (10.1016/j.measen.2022.100652_bib20) 2021; 143 Shen (10.1016/j.measen.2022.100652_bib1) 2017; 19 Tsuji (10.1016/j.measen.2022.100652_bib23) 2020; 20 Suzuki (10.1016/j.measen.2022.100652_bib2) 2017; 10 Alryalat (10.1016/j.measen.2022.100652_bib14) 2022; 12 Kermany (10.1016/j.measen.2022.100652_bib28) 2018; 172 Narin (10.1016/j.measen.2022.100652_bib15) 2020 Helwan (10.1016/j.measen.2022.100652_bib19) 2018; 35 Mao (10.1016/j.measen.2022.100652_bib16) 2016; 2016 Simonyan (10.1016/j.measen.2022.100652_bib9) 2015 |
References_xml | – volume: 261 start-page: 16 year: 1995 ident: bib8 article-title: Learning algorithms for classification: a comparison on handwritten digit recognition publication-title: Neural Network.: the statistical mechanics perspective contributor: fullname: Jackel – volume: 7 start-page: 197 year: 2014 end-page: 387 ident: bib4 article-title: Deep learning: methods and applications publication-title: Foundations and Trends® in Signal Processing contributor: fullname: Yu – start-page: 1 year: 2015 end-page: 9 ident: bib10 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition contributor: fullname: Jia – volume: 78 start-page: 7321 year: 2022 end-page: 7340 ident: bib13 article-title: Automated detection of age-related macular degeneration using a pre-trained deep-learning scheme publication-title: J. Supercomput. contributor: fullname: Kadry – volume: 22 start-page: 127 year: 2016 end-page: 142 ident: bib6 article-title: Deep learning architectures and applications publication-title: Journal of Intelligence and Information Systems contributor: fullname: Ahn – volume: 8 start-page: 579 year: 2017 end-page: 592 ident: bib25 article-title: Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration publication-title: Biomed. Opt Express contributor: fullname: Chatterjee – volume: 124 start-page: 91 year: 2016 end-page: 107 ident: bib7 article-title: Automatic 3D pulmonary nodule detection in CT images: a survey publication-title: Comput. Methods Progr. Biomed. contributor: fullname: Tavares – volume: 141 year: 2022 ident: bib11 article-title: Modular deep neural networks for automatic quality control of retinal optical coherence tomography scans publication-title: Comput. Biol. Med. contributor: fullname: Kauer-Bonin – volume: 12 start-page: 312 year: 2022 ident: bib14 article-title: Deep learning prediction of response to anti-vegf among diabetic macular edema patients: treatment response analyzer system (tras) publication-title: Diagnostics contributor: fullname: Aldeen – volume: 143 start-page: 58 year: 2021 end-page: 66 ident: bib20 article-title: Attributes based skin lesion detection and recognition: a mask RCNN and transfer learning-based deep learning framework publication-title: Pattern Recogn. Lett. contributor: fullname: Sharif – volume: 200 year: 2020 ident: bib24 article-title: OctNET: a lightweight CNN for retinal disease classification from optical coherence tomography images publication-title: Comput. Methods Progr. Biomed. contributor: fullname: Ponnusamy – volume: 54 year: 2019 ident: bib22 article-title: Multi-scale deep feature fusion for automated classification of macular pathologies from OCT images publication-title: Biomed. Signal Process Control contributor: fullname: Bora – volume: 19 start-page: 2167 year: May 2019 ident: bib17 article-title: Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans publication-title: Sensors contributor: fullname: Wang – volume: 17 start-page: 39 year: 2010 end-page: 47 ident: bib3 article-title: Comparison of 2D and 3D views for evaluation of flat lesions in CT colonography publication-title: Acad. Radiol. contributor: fullname: Dachman – volume: 172 start-page: 1122 year: 2018 end-page: 1131 ident: bib28 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell contributor: fullname: Yan – volume: 106 start-page: 633 year: 2022 end-page: 639 ident: bib12 article-title: Development and validation of a deep learning system to screen vision-threatening conditions in high myopia using optical coherence tomography images publication-title: Br. J. Ophthalmol. contributor: fullname: Li – volume: 282 start-page: 248 year: 2018 end-page: 261 ident: bib18 article-title: Segmentation of glioma tumors in brain using deep convolutional neural network publication-title: Neurocomputing contributor: fullname: Majid – volume: 1 start-page: 322 year: 2017 end-page: 327 ident: bib26 article-title: Deep learning is effective for classifying normal versus age-related macular degeneration oct images publication-title: Ophthalmol. Retina contributor: fullname: Lee – year: May 2015 ident: bib9 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proceedings of the International Conference on Learning Representations, San Deigo, CA, USA contributor: fullname: Zisserman – volume: 9 start-page: 232 year: 2019 ident: bib27 article-title: Artificial intelligence-based decision-making for age-related macular degeneration publication-title: Theranostics contributor: fullname: Wang – volume: 2016 year: 2016 ident: bib16 article-title: Lung nodule image classification based on local difference pattern and combined classifier publication-title: Comput. Math. Methods Med. contributor: fullname: Deng – year: 2020 ident: bib15 article-title: Automatic Detection of Coronavirus Disease (Covid-19) Using Xray Images and Deep Convolutional Neural Networks contributor: fullname: Pamuk – volume: 10 start-page: 257 year: 2017 end-page: 273 ident: bib2 article-title: Overview of deep learning in medical imaging publication-title: Radiological physics and technology contributor: fullname: Suzuki – volume: 20 start-page: 114 year: 2020 ident: bib23 article-title: Classification of optical coherence tomography images using a capsule network publication-title: BMC Ophthalmol. contributor: fullname: Mizota – volume: 19 start-page: 221 year: 2017 ident: bib1 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. contributor: fullname: Suk – volume: 187 year: 2020 ident: bib5 article-title: Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networksKnowl publication-title: -Based Syst. – volume: 35 start-page: 2215 year: 2018 end-page: 2228 ident: bib19 article-title: Deep networks in identifying CT brain hemorrhage publication-title: J. Intell. Fuzzy Syst. contributor: fullname: Uzun Ozsahin – volume: 3 start-page: 629 year: 2015 end-page: 632 ident: bib21 article-title: Antithyroid peroxidase antibody positivity is associated with lower incidence of metastasis in breast cancer publication-title: Molecular and clinical oncology contributor: fullname: Yucel – volume: 22 start-page: 127 issue: 2 year: 2016 ident: 10.1016/j.measen.2022.100652_bib6 article-title: Deep learning architectures and applications publication-title: Journal of Intelligence and Information Systems doi: 10.13088/jiis.2016.22.2.127 contributor: fullname: Ahn – volume: 2016 year: 2016 ident: 10.1016/j.measen.2022.100652_bib16 article-title: Lung nodule image classification based on local difference pattern and combined classifier publication-title: Comput. Math. Methods Med. doi: 10.1155/2016/1091279 contributor: fullname: Mao – volume: 1 start-page: 322 issue: 4 year: 2017 ident: 10.1016/j.measen.2022.100652_bib26 article-title: Deep learning is effective for classifying normal versus age-related macular degeneration oct images publication-title: Ophthalmol. Retina doi: 10.1016/j.oret.2016.12.009 contributor: fullname: Lee – volume: 106 start-page: 633 issue: 5 year: 2022 ident: 10.1016/j.measen.2022.100652_bib12 article-title: Development and validation of a deep learning system to screen vision-threatening conditions in high myopia using optical coherence tomography images publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2020-317825 contributor: fullname: Li – year: 2020 ident: 10.1016/j.measen.2022.100652_bib15 contributor: fullname: Narin – volume: 172 start-page: 1122 issue: 5 year: 2018 ident: 10.1016/j.measen.2022.100652_bib28 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell doi: 10.1016/j.cell.2018.02.010 contributor: fullname: Kermany – year: 2015 ident: 10.1016/j.measen.2022.100652_bib9 article-title: Very deep convolutional networks for large-scale image recognition contributor: fullname: Simonyan – volume: 9 start-page: 232 issue: 1 year: 2019 ident: 10.1016/j.measen.2022.100652_bib27 article-title: Artificial intelligence-based decision-making for age-related macular degeneration publication-title: Theranostics doi: 10.7150/thno.28447 contributor: fullname: Hwang – volume: 19 start-page: 221 year: 2017 ident: 10.1016/j.measen.2022.100652_bib1 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 contributor: fullname: Shen – volume: 78 start-page: 7321 issue: 5 year: 2022 ident: 10.1016/j.measen.2022.100652_bib13 article-title: Automated detection of age-related macular degeneration using a pre-trained deep-learning scheme publication-title: J. Supercomput. doi: 10.1007/s11227-021-04181-w contributor: fullname: Kadry – volume: 141 year: 2022 ident: 10.1016/j.measen.2022.100652_bib11 article-title: Modular deep neural networks for automatic quality control of retinal optical coherence tomography scans publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104822 contributor: fullname: Kauer-Bonin – volume: 8 start-page: 579 issue: 2 year: 2017 ident: 10.1016/j.measen.2022.100652_bib25 article-title: Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration publication-title: Biomed. Opt Express doi: 10.1364/BOE.8.000579 contributor: fullname: Karri – volume: 17 start-page: 39 issue: 1 year: 2010 ident: 10.1016/j.measen.2022.100652_bib3 article-title: Comparison of 2D and 3D views for evaluation of flat lesions in CT colonography publication-title: Acad. Radiol. doi: 10.1016/j.acra.2009.07.004 contributor: fullname: Lostumbo – start-page: 1 year: 2015 ident: 10.1016/j.measen.2022.100652_bib10 article-title: Going deeper with convolutions contributor: fullname: Szegedy – volume: 54 year: 2019 ident: 10.1016/j.measen.2022.100652_bib22 article-title: Multi-scale deep feature fusion for automated classification of macular pathologies from OCT images publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2019.101605 contributor: fullname: Das – volume: 261 start-page: 16 year: 1995 ident: 10.1016/j.measen.2022.100652_bib8 article-title: Learning algorithms for classification: a comparison on handwritten digit recognition publication-title: Neural Network.: the statistical mechanics perspective contributor: fullname: LeCun – volume: 12 start-page: 312 issue: 2 year: 2022 ident: 10.1016/j.measen.2022.100652_bib14 article-title: Deep learning prediction of response to anti-vegf among diabetic macular edema patients: treatment response analyzer system (tras) publication-title: Diagnostics doi: 10.3390/diagnostics12020312 contributor: fullname: Alryalat – volume: 200 year: 2020 ident: 10.1016/j.measen.2022.100652_bib24 article-title: OctNET: a lightweight CNN for retinal disease classification from optical coherence tomography images publication-title: Comput. Methods Progr. Biomed. contributor: fullname: Prabhakaran – volume: 19 start-page: 2167 issue: 9 year: 2019 ident: 10.1016/j.measen.2022.100652_bib17 article-title: Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans publication-title: Sensors doi: 10.3390/s19092167 contributor: fullname: Ker – volume: 35 start-page: 2215 issue: 2 year: 2018 ident: 10.1016/j.measen.2022.100652_bib19 article-title: Deep networks in identifying CT brain hemorrhage publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-172261 contributor: fullname: Helwan – volume: 10 start-page: 257 issue: 3 year: 2017 ident: 10.1016/j.measen.2022.100652_bib2 article-title: Overview of deep learning in medical imaging publication-title: Radiological physics and technology doi: 10.1007/s12194-017-0406-5 contributor: fullname: Suzuki – volume: 124 start-page: 91 issue: 1 year: 2016 ident: 10.1016/j.measen.2022.100652_bib7 article-title: Automatic 3D pulmonary nodule detection in CT images: a survey publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2015.10.006 contributor: fullname: Valente – volume: 20 start-page: 114 year: 2020 ident: 10.1016/j.measen.2022.100652_bib23 article-title: Classification of optical coherence tomography images using a capsule network publication-title: BMC Ophthalmol. doi: 10.1186/s12886-020-01382-4 contributor: fullname: Tsuji – volume: 143 start-page: 58 year: 2021 ident: 10.1016/j.measen.2022.100652_bib20 article-title: Attributes based skin lesion detection and recognition: a mask RCNN and transfer learning-based deep learning framework publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2020.12.015 contributor: fullname: Khan – volume: 3 start-page: 629 issue: 3 year: 2015 ident: 10.1016/j.measen.2022.100652_bib21 article-title: Antithyroid peroxidase antibody positivity is associated with lower incidence of metastasis in breast cancer publication-title: Molecular and clinical oncology doi: 10.3892/mco.2015.521 contributor: fullname: Kemal – volume: 282 start-page: 248 year: 2018 ident: 10.1016/j.measen.2022.100652_bib18 article-title: Segmentation of glioma tumors in brain using deep convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.032 contributor: fullname: Hussain – volume: 7 start-page: 197 year: 2014 ident: 10.1016/j.measen.2022.100652_bib4 article-title: Deep learning: methods and applications publication-title: Foundations and Trends® in Signal Processing doi: 10.1561/2000000039 contributor: fullname: Deng – volume: 187 year: 2020 ident: 10.1016/j.measen.2022.100652_bib5 article-title: Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networksKnowl publication-title: -Based Syst. |
SSID | ssj0002810124 |
Score | 2.2611732 |
Snippet | Machine learning algorithms gains prominence in health care sectors for disease diagnosis, classification and prediction. Deep learning architecture gains... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 100652 |
SubjectTerms | Deep learning Machine learning Neural networks OCT |
Title | IoT based optical coherence tomography retinal images classification using OCT Deep Net2 |
URI | https://dx.doi.org/10.1016/j.measen.2022.100652 https://doaj.org/article/86abc522d37940e68c0f1b6a1e2a9eb2 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWAiQWBAFFe8sBq4TqOHyMUECxloEhskR83PKQ2FbT_j2-cVGWBhTVK4uhc2-fGPj6XkIsolQsghqyAWDDpwTJrSss0JDYQssRehksXT3r8Ym5u0SZnVeoLNWHZHjgDd2mU8yElCbFIPYeDMoHXQ6_cEISz6bewnX25WfuZ-miXjNC3CreUU5NYjFDL_txcK-6a4t4H2p8KgToBVYofvNTa96_R0xrl3O2SnS5XpFf5G_fIBsz2yctDM6HIPZE283YhmobmLR_ao4tm2llQUzydiE-_T9OM8UUDZskoC2ojQVHu_kofRxN6AzCnY1iIA_J8dzsZ3bOuPAILRVEIpnwaOxqk0KW3PIDx3NQSnBd6mCLDJZK3kYaHYGzUvPSujGkEm5T0KQ2qOCRbs2YGR4SKUFoX6ii9sbJ2YINyEYLnNRSghB4Q1oNTzbMLRtXLwz6qDGaFYFYZzAG5RgRX96KHdXshRbbqIlv9FdkB0T3-VZcOZJpPr3r_tfnj_2j-hGxjafms0D4lW4vPJZyRza-4PG_72jdxbtaO |
link.rule.ids | 315,782,786,866,2108,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IoT+based+optical+coherence+tomography+retinal+images+classification+using+OCT+Deep+Net2&rft.jtitle=Measurement.+Sensors&rft.au=Rajan%2C+Ranjitha&rft.au=Kumar%2C+S.N.&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=2665-9174&rft.eissn=2665-9174&rft.volume=25&rft_id=info:doi/10.1016%2Fj.measen.2022.100652&rft.externalDocID=S2665917422002860 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9174&client=summon |