Elucidating the performance of hexamethylene tetra-amine interlinked bimetallic NiCo-MOF for efficient electrochemical hydrogen and oxygen evolution

Bimetallic metal-organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nano...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances Vol. 14; no. 2; pp. 13837 - 13849
Main Authors: Zahid, Rida, Abdul Karim, Muhammad Ramzan, Khan, Fahd Sikandar, Marwat, Mohsin Ali
Format: Journal Article
Language:English
Published: England Royal Society of Chemistry 25-04-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bimetallic metal-organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nanostructure as a potent bifunctional electrocatalyst with superior performance for overall water splitting in alkaline environments. The structural, morphological, and electrochemical properties of the as-synthesized bifunctional catalyst were examined thoroughly before analyzing its behavior towards electrochemical water splitting. The HMT-based NiCo-MOF demonstrated small overpotential values of 274 mV and 330 mV in reaching a maximum current density of 30 mA cm −2 for hydrogen and oxygen evolution mechanisms, respectively. The Tafel parameter also showed favorable HER/OER reaction kinetics, with slopes of 78 mV dec −1 and 86 mV dec −1 determined during the electrochemical evaluation. Remarkably, the NiCo-HMT electrode exhibited a double-layer capacitance of 4 mF cm 2 for hydrogen evolution and 23 mF cm −2 for oxygen evolution, while maintaining remarkable stability even after continuous operation for 20 hours. This research offers a valuable blueprint for implementing a cost-effective and durable MOF-based bifunctional catalytic system that has proven to be effective for complete water splitting. Decomposition of water under higher current densities is crucial for effective long-term generation and commercial consumption of hydrogen. This study investigates the electrocatalytic water splitting capabilities of hexamethylene tetra-amine-linked NiCo-MOF, synthesized via hydrothermal approach. It reveals low overpotentials of 274 mV and 330 mV with Tafel slopes of 78 mV dec −1 and 86 mV dec −1 towards HER and OER respectively.
AbstractList Bimetallic metal-organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nanostructure as a potent bifunctional electrocatalyst with superior performance for overall water splitting in alkaline environments. The structural, morphological, and electrochemical properties of the as-synthesized bifunctional catalyst were examined thoroughly before analyzing its behavior towards electrochemical water splitting. The HMT-based NiCo-MOF demonstrated small overpotential values of 274 mV and 330 mV in reaching a maximum current density of 30 mA cm −2 for hydrogen and oxygen evolution mechanisms, respectively. The Tafel parameter also showed favorable HER/OER reaction kinetics, with slopes of 78 mV dec −1 and 86 mV dec −1 determined during the electrochemical evaluation. Remarkably, the NiCo-HMT electrode exhibited a double-layer capacitance of 4 mF cm 2 for hydrogen evolution and 23 mF cm −2 for oxygen evolution, while maintaining remarkable stability even after continuous operation for 20 hours. This research offers a valuable blueprint for implementing a cost-effective and durable MOF-based bifunctional catalytic system that has proven to be effective for complete water splitting. Decomposition of water under higher current densities is crucial for effective long-term generation and commercial consumption of hydrogen. This study investigates the electrocatalytic water splitting capabilities of hexamethylene tetra-amine-linked NiCo-MOF, synthesized via hydrothermal approach. It reveals low overpotentials of 274 mV and 330 mV with Tafel slopes of 78 mV dec −1 and 86 mV dec −1 towards HER and OER respectively.
Bimetallic metal-organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nanostructure as a potent bifunctional electrocatalyst with superior performance for overall water splitting in alkaline environments. The structural, morphological, and electrochemical properties of the as-synthesized bifunctional catalyst were examined thoroughly before analyzing its behavior towards electrochemical water splitting. The HMT-based NiCo-MOF demonstrated small overpotential values of 274 mV and 330 mV in reaching a maximum current density of 30 mA cm for hydrogen and oxygen evolution mechanisms, respectively. The Tafel parameter also showed favorable HER/OER reaction kinetics, with slopes of 78 mV dec and 86 mV dec determined during the electrochemical evaluation. Remarkably, the NiCo-HMT electrode exhibited a double-layer capacitance of 4 mF cm for hydrogen evolution and 23 mF cm for oxygen evolution, while maintaining remarkable stability even after continuous operation for 20 hours. This research offers a valuable blueprint for implementing a cost-effective and durable MOF-based bifunctional catalytic system that has proven to be effective for complete water splitting. Decomposition of water under higher current densities is crucial for effective long-term generation and commercial consumption of hydrogen.
Bimetallic metal–organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nanostructure as a potent bifunctional electrocatalyst with superior performance for overall water splitting in alkaline environments. The structural, morphological, and electrochemical properties of the as-synthesized bifunctional catalyst were examined thoroughly before analyzing its behavior towards electrochemical water splitting. The HMT-based NiCo-MOF demonstrated small overpotential values of 274 mV and 330 mV in reaching a maximum current density of 30 mA cm−2 for hydrogen and oxygen evolution mechanisms, respectively. The Tafel parameter also showed favorable HER/OER reaction kinetics, with slopes of 78 mV dec−1 and 86 mV dec−1 determined during the electrochemical evaluation. Remarkably, the NiCo-HMT electrode exhibited a double-layer capacitance of 4 mF cm−2 for hydrogen evolution and 23 mF cm−2 for oxygen evolution, while maintaining remarkable stability even after continuous operation for 20 hours. This research offers a valuable blueprint for implementing a cost-effective and durable MOF-based bifunctional catalytic system that has proven to be effective for complete water splitting. Decomposition of water under higher current densities is crucial for effective long-term generation and commercial consumption of hydrogen.
Bimetallic metal-organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nanostructure as a potent bifunctional electrocatalyst with superior performance for overall water splitting in alkaline environments. The structural, morphological, and electrochemical properties of the as-synthesized bifunctional catalyst were examined thoroughly before analyzing its behavior towards electrochemical water splitting. The HMT-based NiCo-MOF demonstrated small overpotential values of 274 mV and 330 mV in reaching a maximum current density of 30 mA cm-2 for hydrogen and oxygen evolution mechanisms, respectively. The Tafel parameter also showed favorable HER/OER reaction kinetics, with slopes of 78 mV dec-1 and 86 mV dec-1 determined during the electrochemical evaluation. Remarkably, the NiCo-HMT electrode exhibited a double-layer capacitance of 4 mF cm-2 for hydrogen evolution and 23 mF cm-2 for oxygen evolution, while maintaining remarkable stability even after continuous operation for 20 hours. This research offers a valuable blueprint for implementing a cost-effective and durable MOF-based bifunctional catalytic system that has proven to be effective for complete water splitting. Decomposition of water under higher current densities is crucial for effective long-term generation and commercial consumption of hydrogen.
Bimetallic metal–organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nanostructure as a potent bifunctional electrocatalyst with superior performance for overall water splitting in alkaline environments. The structural, morphological, and electrochemical properties of the as-synthesized bifunctional catalyst were examined thoroughly before analyzing its behavior towards electrochemical water splitting. The HMT-based NiCo-MOF demonstrated small overpotential values of 274 mV and 330 mV in reaching a maximum current density of 30 mA cm −2 for hydrogen and oxygen evolution mechanisms, respectively. The Tafel parameter also showed favorable HER/OER reaction kinetics, with slopes of 78 mV dec −1 and 86 mV dec −1 determined during the electrochemical evaluation. Remarkably, the NiCo-HMT electrode exhibited a double-layer capacitance of 4 mF cm −2 for hydrogen evolution and 23 mF cm −2 for oxygen evolution, while maintaining remarkable stability even after continuous operation for 20 hours. This research offers a valuable blueprint for implementing a cost-effective and durable MOF-based bifunctional catalytic system that has proven to be effective for complete water splitting. Decomposition of water under higher current densities is crucial for effective long-term generation and commercial consumption of hydrogen.
Author Abdul Karim, Muhammad Ramzan
Marwat, Mohsin Ali
Zahid, Rida
Khan, Fahd Sikandar
AuthorAffiliation Faculty of Engineering Sciences
Faculty of Materials and Chemical Engineering
Ghulam Ishaq Khan Institute of Engineering Sciences and Technology
AuthorAffiliation_xml – name: Ghulam Ishaq Khan Institute of Engineering Sciences and Technology
– name: Faculty of Materials and Chemical Engineering
– name: Faculty of Engineering Sciences
Author_xml – sequence: 1
  givenname: Rida
  surname: Zahid
  fullname: Zahid, Rida
– sequence: 2
  givenname: Muhammad Ramzan
  surname: Abdul Karim
  fullname: Abdul Karim, Muhammad Ramzan
– sequence: 3
  givenname: Fahd Sikandar
  surname: Khan
  fullname: Khan, Fahd Sikandar
– sequence: 4
  givenname: Mohsin Ali
  surname: Marwat
  fullname: Marwat, Mohsin Ali
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38681836$$D View this record in MEDLINE/PubMed
BookMark eNpd0UtrHSEUB3ApCc2j2XTfImQTAtPqOOPMLMPNE5IGSrseHD1mTBy9USfkfo9-4JrevKgIHvR3DsJ_B2047wChz5R8o4R131UVBCGsIvID2i5JxYuS8G7jXb2F9mK8JXnxmpacfkRbrOUtbRnfRn9O7CyNEsm4G5xGwEsI2odJOAnYazzCo5ggjSsLDnCCFEQhJpNr4xIEa9wdKDyYbIS1RuIfZuGLq-tTnKdg0NpIAy5hsCBT8HKEyUhh8bhSwd-Aw8Ip7B9XTyU8eDsn490ntKmFjbD3fO6i36cnvxbnxeX12cXi6LKQjJWpYE2jhoYOQ00pUNmKvIdSCV2VdUsUgM43pdaScpBARZfbGqaYJJx0LRdsFx2s5y6Dv58hpn4yUYK1woGfY89I1VYda-sm0_3_6K2fg8u_y6pmlHQZZnW4VjL4GAPofhnMJMKqp6R_iqs_rn4e_YtrkfHX55HzMIF6pS_hZPBlDUKUr69vebO_ln2erA
Cites_doi 10.1016/S1872-5813(21)60072-5
10.1039/C9TA07669G
10.1021/acsami.7b02987
10.1021/jz2016507
10.1039/C5TA09261B
10.1039/C7NR06186B
10.1039/C6EE02265K
10.1021/acscatal.7b02575
10.3390/nano13030581
10.1016/j.electacta.2018.12.053
10.1016/j.nanoen.2013.03.006
10.1016/j.jcis.2020.05.098
10.1016/j.ica.2015.09.028
10.1039/C5NR06626C
10.1002/smm2.1064
10.1016/j.cej.2017.10.074
10.1002/adma.201503270
10.1016/j.rechem.2023.101037
10.1016/j.nanoen.2018.05.019
10.1016/j.jhazmat.2023.130979
10.1002/adfm.202210837
10.1016/j.ijhydene.2020.11.041
10.1002/anie.201612635
10.1002/chem.201901939
10.1016/j.elecom.2017.12.001
10.1002/smll.201800367
10.1021/acs.jpclett.2c03336
10.1016/j.ccr.2022.214949
10.1021/acssuschemeng.7b04808
10.1039/D0CY00567C
10.1149/2162-8777/ac44f8
10.1016/j.ijhydene.2021.10.136
10.1016/j.scriptamat.2004.05.007
10.1002/aenm.201501492
10.1016/j.compositesb.2020.107767
10.1016/j.apcatb.2016.10.055
10.1038/nmat4766
10.1016/j.carbon.2018.12.032
10.1039/C6TA09052D
10.3390/nano10081597
10.3389/fchem.2020.00426
10.1007/s12274-016-1112-z
10.1016/j.jpowsour.2017.02.017
10.1016/j.nanoen.2020.105355
10.1016/j.apcatb.2019.118531
10.1002/adma.201705431
10.1039/D0NA00112K
10.1002/aenm.201602579
10.1016/j.electacta.2017.01.006
10.1002/aenm.201600087
10.1021/acsnano.6b01247
10.1021/am405858v
10.1021/acsami.6b00207
10.1007/s11426-018-9405-3
10.1039/C9TA06686A
10.1021/acs.langmuir.2c03458
10.1016/j.ijhydene.2021.10.248
10.1016/j.carbpol.2017.01.091
10.1021/acsaem.0c02417
10.1002/aoc.3430
10.1038/nmat3700
10.1246/bcsj.20170418
10.1039/C7CC09105B
10.1039/C6TA09976A
10.1016/j.jallcom.2020.156583
10.1039/C8CC06918B
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2024
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1039/d4ra00340c
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 13849
ExternalDocumentID 10_1039_D4RA00340C
38681836
d4ra00340c
Genre Journal Article
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAIWI
AARTK
AAXHV
ABGFH
ABPDG
ACGFS
ADBBV
ADMRA
AENEX
AFPKN
AFVBQ
AGRSR
AGSTE
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
HZ~
H~N
J3I
M~E
O9-
OK1
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAHBH
AAJAE
AAWGC
ABEMK
ABXOH
AEFDR
AESAV
AFLYV
AGEGJ
AHGCF
APEMP
H13
NPM
PGMZT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c332t-377db71bb511e1c8ac8ab2daf42580deefac82ffc16ece1a9c3373d3c060986a3
ISSN 2046-2069
IngestDate Sat Oct 26 05:30:43 EDT 2024
Thu Oct 10 15:48:51 EDT 2024
Fri Aug 23 00:54:25 EDT 2024
Sat Nov 02 11:58:11 EDT 2024
Sat May 11 04:13:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-377db71bb511e1c8ac8ab2daf42580deefac82ffc16ece1a9c3373d3c060986a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3061-3687
OpenAccessLink https://doi.org/10.1039/d4ra00340c
PMID 38681836
PQID 3053109493
PQPubID 2047525
PageCount 13
ParticipantIDs proquest_journals_3053109493
pubmed_primary_38681836
proquest_miscellaneous_3048493857
rsc_primary_d4ra00340c
crossref_primary_10_1039_D4RA00340C
PublicationCentury 2000
PublicationDate 2024-04-25
PublicationDateYYYYMMDD 2024-04-25
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chen (D4RA00340C/cit1/1) 2019; 7
Zhou (D4RA00340C/cit23/1) 2023; 477
Yan (D4RA00340C/cit38/1) 2018; 334
Abbasi (D4RA00340C/cit44/1) 2016; 439
Ray (D4RA00340C/cit39/1) 2018; 6
Liu (D4RA00340C/cit67/1) 2020; 8
Abdul Karim (D4RA00340C/cit57/1) 2022; 11
Yaqoob (D4RA00340C/cit34/1) 2021; 850
Khalid (D4RA00340C/cit66/1) 2018; 54
Yan (D4RA00340C/cit22/1) 2023; 33
Li (D4RA00340C/cit15/1) 2018; 14
Lemoine (D4RA00340C/cit32/1) 2021; 4
Peng (D4RA00340C/cit64/1) 2021; 49
Lee (D4RA00340C/cit68/1) 2012; 3
Sun (D4RA00340C/cit6/1) 2016; 6
Lü (D4RA00340C/cit24/1) 2014; 6
Wang (D4RA00340C/cit62/1) 2017; 347
Zubair (D4RA00340C/cit13/1) 2022; 47
Thangasamy (D4RA00340C/cit63/1) 2020; 2
Banerjee (D4RA00340C/cit26/1) 2013; 2
Sheberla (D4RA00340C/cit25/1) 2017; 16
Kang (D4RA00340C/cit20/1) 2023; 39
Yu (D4RA00340C/cit31/1) 2016; 6
Li (D4RA00340C/cit28/1) 2019; 145
Xie (D4RA00340C/cit2/1) 2018; 54
Gao (D4RA00340C/cit10/1) 2020; 78
Liu (D4RA00340C/cit51/1) 2018; 50
Shaker (D4RA00340C/cit12/1) 2022; 47
Long (D4RA00340C/cit17/1) 2017; 203
Yang (D4RA00340C/cit41/1) 2020; 10
Ullah (D4RA00340C/cit61/1) 2019; 298
Yaseen (D4RA00340C/cit60/1) 2021; 46
Wang (D4RA00340C/cit48/1) 2017; 9
Liu (D4RA00340C/cit5/1) 2017; 10
Yan (D4RA00340C/cit53/1) 2017; 5
Yuan (D4RA00340C/cit52/1) 2016; 30
Iqbal (D4RA00340C/cit35/1) 2019; 25
He (D4RA00340C/cit30/1) 2017; 56
Cheng (D4RA00340C/cit56/1) 2023; 13
Vikraman (D4RA00340C/cit4/1) 2020; 264
Xue (D4RA00340C/cit37/1) 2019; 7
Ungár (D4RA00340C/cit45/1) 2004; 51
Song (D4RA00340C/cit36/1) 2017; 7
Zhang (D4RA00340C/cit47/1) 2019; 62
Cui (D4RA00340C/cit40/1) 2020; 578
Kadja (D4RA00340C/cit7/1) 2023; 6
Hussain (D4RA00340C/cit8/1) 2020; 10
Liu (D4RA00340C/cit33/1) 2021; 2
Lu (D4RA00340C/cit18/1) 2016; 28
Rajendran (D4RA00340C/cit21/1) 2023; 449
Trzesniowski (D4RA00340C/cit58/1) 2023; 14
Jabeen (D4RA00340C/cit43/1) 2016; 8
Zhang (D4RA00340C/cit3/1) 2018; 86
Li (D4RA00340C/cit19/1) 2017; 5
Fan (D4RA00340C/cit46/1) 2012; 3
Kumaraguru (D4RA00340C/cit54/1) 2020; 185
Ferrero (D4RA00340C/cit11/1) 2016; 10
El Oudiani (D4RA00340C/cit49/1) 2017; 164
Zuhri (D4RA00340C/cit42/1) 2021; 44
Li (D4RA00340C/cit9/1) 2016; 9
Zhang (D4RA00340C/cit29/1) 2018; 30
Omar (D4RA00340C/cit59/1) 2017; 227
Mei (D4RA00340C/cit27/1) 2018; 91
Wang (D4RA00340C/cit65/1) 2017; 9
Li (D4RA00340C/cit14/1) 2017; 7
Voiry (D4RA00340C/cit50/1) 2013; 12
Han (D4RA00340C/cit55/1) 2016; 8
Du (D4RA00340C/cit16/1) 2016; 4
References_xml – volume: 49
  start-page: 1354
  issue: 9
  year: 2021
  ident: D4RA00340C/cit64/1
  publication-title: J. Fuel Chem. Technol.
  doi: 10.1016/S1872-5813(21)60072-5
  contributor:
    fullname: Peng
– volume: 7
  start-page: 22507
  issue: 39
  year: 2019
  ident: D4RA00340C/cit1/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07669G
  contributor:
    fullname: Chen
– volume: 9
  start-page: 15510
  issue: 18
  year: 2017
  ident: D4RA00340C/cit48/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02987
  contributor:
    fullname: Wang
– volume: 3
  start-page: 399
  issue: 3
  year: 2012
  ident: D4RA00340C/cit68/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2016507
  contributor:
    fullname: Lee
– volume: 4
  start-page: 1579
  issue: 5
  year: 2016
  ident: D4RA00340C/cit16/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09261B
  contributor:
    fullname: Du
– volume: 9
  start-page: 17349
  issue: 44
  year: 2017
  ident: D4RA00340C/cit65/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR06186B
  contributor:
    fullname: Wang
– volume: 10
  start-page: 402
  issue: 2
  year: 2017
  ident: D4RA00340C/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02265K
  contributor:
    fullname: Liu
– volume: 7
  start-page: 8549
  issue: 12
  year: 2017
  ident: D4RA00340C/cit36/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02575
  contributor:
    fullname: Song
– volume: 13
  start-page: 581
  issue: 3
  year: 2023
  ident: D4RA00340C/cit56/1
  publication-title: Nanomaterials
  doi: 10.3390/nano13030581
  contributor:
    fullname: Cheng
– volume: 298
  start-page: 163
  year: 2019
  ident: D4RA00340C/cit61/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.053
  contributor:
    fullname: Ullah
– volume: 2
  start-page: 890
  issue: 5
  year: 2013
  ident: D4RA00340C/cit26/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.03.006
  contributor:
    fullname: Banerjee
– volume: 578
  start-page: 10
  year: 2020
  ident: D4RA00340C/cit40/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.05.098
  contributor:
    fullname: Cui
– volume: 439
  start-page: 18
  year: 2016
  ident: D4RA00340C/cit44/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2015.09.028
  contributor:
    fullname: Abbasi
– volume: 8
  start-page: 1033
  issue: 2
  year: 2016
  ident: D4RA00340C/cit55/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR06626C
  contributor:
    fullname: Han
– volume: 2
  start-page: 488
  issue: 4
  year: 2021
  ident: D4RA00340C/cit33/1
  publication-title: SmartMat
  doi: 10.1002/smm2.1064
  contributor:
    fullname: Liu
– volume: 334
  start-page: 922
  year: 2018
  ident: D4RA00340C/cit38/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.074
  contributor:
    fullname: Yan
– volume: 28
  start-page: 1917
  issue: 10
  year: 2016
  ident: D4RA00340C/cit18/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503270
  contributor:
    fullname: Lu
– volume: 6
  start-page: 101037
  year: 2023
  ident: D4RA00340C/cit7/1
  publication-title: Results Chem.
  doi: 10.1016/j.rechem.2023.101037
  contributor:
    fullname: Kadja
– volume: 50
  start-page: 176
  year: 2018
  ident: D4RA00340C/cit51/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.019
  contributor:
    fullname: Liu
– volume: 449
  start-page: 130979
  year: 2023
  ident: D4RA00340C/cit21/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.130979
  contributor:
    fullname: Rajendran
– volume: 33
  start-page: 2210837
  issue: 5
  year: 2023
  ident: D4RA00340C/cit22/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210837
  contributor:
    fullname: Yan
– volume: 46
  start-page: 5234
  issue: 7
  year: 2021
  ident: D4RA00340C/cit60/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.11.041
  contributor:
    fullname: Yaseen
– volume: 56
  start-page: 3897
  issue: 14
  year: 2017
  ident: D4RA00340C/cit30/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201612635
  contributor:
    fullname: He
– volume: 25
  start-page: 10490
  issue: 44
  year: 2019
  ident: D4RA00340C/cit35/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201901939
  contributor:
    fullname: Iqbal
– volume: 86
  start-page: 108
  year: 2018
  ident: D4RA00340C/cit3/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.12.001
  contributor:
    fullname: Zhang
– volume: 14
  start-page: e1800367
  issue: 19
  year: 2018
  ident: D4RA00340C/cit15/1
  publication-title: Small
  doi: 10.1002/smll.201800367
  contributor:
    fullname: Li
– volume: 14
  start-page: 545
  issue: 2
  year: 2023
  ident: D4RA00340C/cit58/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c03336
  contributor:
    fullname: Trzesniowski
– volume: 477
  start-page: 214949
  year: 2023
  ident: D4RA00340C/cit23/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214949
  contributor:
    fullname: Zhou
– volume: 6
  start-page: 6146
  issue: 5
  year: 2018
  ident: D4RA00340C/cit39/1
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04808
  contributor:
    fullname: Ray
– volume: 10
  start-page: 3897
  issue: 12
  year: 2020
  ident: D4RA00340C/cit41/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY00567C
  contributor:
    fullname: Yang
– volume: 3
  start-page: 45
  year: 2012
  ident: D4RA00340C/cit46/1
  publication-title: Fourier Transform: Mater. Anal.
  contributor:
    fullname: Fan
– volume: 11
  start-page: 011001
  issue: 1
  year: 2022
  ident: D4RA00340C/cit57/1
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2162-8777/ac44f8
  contributor:
    fullname: Abdul Karim
– volume: 47
  start-page: 1579
  issue: 3
  year: 2022
  ident: D4RA00340C/cit12/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.10.136
  contributor:
    fullname: Shaker
– volume: 51
  start-page: 777
  issue: 8
  year: 2004
  ident: D4RA00340C/cit45/1
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2004.05.007
  contributor:
    fullname: Ungár
– volume: 44
  start-page: 3385
  year: 2021
  ident: D4RA00340C/cit42/1
  publication-title: Mater. Today: Proc.
  contributor:
    fullname: Zuhri
– volume: 6
  start-page: 1501492
  issue: 2
  year: 2016
  ident: D4RA00340C/cit31/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501492
  contributor:
    fullname: Yu
– volume: 185
  start-page: 107767
  year: 2020
  ident: D4RA00340C/cit54/1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2020.107767
  contributor:
    fullname: Kumaraguru
– volume: 203
  start-page: 541
  year: 2017
  ident: D4RA00340C/cit17/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.10.055
  contributor:
    fullname: Long
– volume: 16
  start-page: 220
  issue: 2
  year: 2017
  ident: D4RA00340C/cit25/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4766
  contributor:
    fullname: Sheberla
– volume: 145
  start-page: 694
  year: 2019
  ident: D4RA00340C/cit28/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.12.032
  contributor:
    fullname: Li
– volume: 5
  start-page: 765
  issue: 2
  year: 2017
  ident: D4RA00340C/cit53/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09052D
  contributor:
    fullname: Yan
– volume: 10
  start-page: 1597
  issue: 8
  year: 2020
  ident: D4RA00340C/cit8/1
  publication-title: Nanomaterials
  doi: 10.3390/nano10081597
  contributor:
    fullname: Hussain
– volume: 8
  start-page: 426
  year: 2020
  ident: D4RA00340C/cit67/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00426
  contributor:
    fullname: Liu
– volume: 9
  start-page: 2251
  issue: 8
  year: 2016
  ident: D4RA00340C/cit9/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1112-z
  contributor:
    fullname: Li
– volume: 347
  start-page: 220
  year: 2017
  ident: D4RA00340C/cit62/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.02.017
  contributor:
    fullname: Wang
– volume: 78
  start-page: 105355
  year: 2020
  ident: D4RA00340C/cit10/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105355
  contributor:
    fullname: Gao
– volume: 264
  start-page: 118531
  year: 2020
  ident: D4RA00340C/cit4/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118531
  contributor:
    fullname: Vikraman
– volume: 30
  start-page: 1705431
  issue: 10
  year: 2018
  ident: D4RA00340C/cit29/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705431
  contributor:
    fullname: Zhang
– volume: 2
  start-page: 2073
  issue: 5
  year: 2020
  ident: D4RA00340C/cit63/1
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00112K
  contributor:
    fullname: Thangasamy
– volume: 7
  start-page: 1602579
  issue: 17
  year: 2017
  ident: D4RA00340C/cit14/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602579
  contributor:
    fullname: Li
– volume: 227
  start-page: 41
  year: 2017
  ident: D4RA00340C/cit59/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.006
  contributor:
    fullname: Omar
– volume: 6
  start-page: 1600087
  issue: 13
  year: 2016
  ident: D4RA00340C/cit6/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600087
  contributor:
    fullname: Sun
– volume: 10
  start-page: 5922
  issue: 6
  year: 2016
  ident: D4RA00340C/cit11/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01247
  contributor:
    fullname: Ferrero
– volume: 6
  start-page: 4186
  issue: 6
  year: 2014
  ident: D4RA00340C/cit24/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405858v
  contributor:
    fullname:
– volume: 8
  start-page: 6093
  issue: 9
  year: 2016
  ident: D4RA00340C/cit43/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00207
  contributor:
    fullname: Jabeen
– volume: 62
  start-page: 549
  year: 2019
  ident: D4RA00340C/cit47/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-018-9405-3
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 23091
  issue: 40
  year: 2019
  ident: D4RA00340C/cit37/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06686A
  contributor:
    fullname: Xue
– volume: 39
  start-page: 2871
  issue: 8
  year: 2023
  ident: D4RA00340C/cit20/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.2c03458
  contributor:
    fullname: Kang
– volume: 47
  start-page: 2794
  issue: 5
  year: 2022
  ident: D4RA00340C/cit13/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.10.248
  contributor:
    fullname: Zubair
– volume: 164
  start-page: 242
  year: 2017
  ident: D4RA00340C/cit49/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.01.091
  contributor:
    fullname: El Oudiani
– volume: 4
  start-page: 1173
  issue: 2
  year: 2021
  ident: D4RA00340C/cit32/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02417
  contributor:
    fullname: Lemoine
– volume: 30
  start-page: 289
  issue: 5
  year: 2016
  ident: D4RA00340C/cit52/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.3430
  contributor:
    fullname: Yuan
– volume: 12
  start-page: 850
  issue: 9
  year: 2013
  ident: D4RA00340C/cit50/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3700
  contributor:
    fullname: Voiry
– volume: 91
  start-page: 554
  issue: 4
  year: 2018
  ident: D4RA00340C/cit27/1
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20170418
  contributor:
    fullname: Mei
– volume: 54
  start-page: 2300
  issue: 18
  year: 2018
  ident: D4RA00340C/cit2/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC09105B
  contributor:
    fullname: Xie
– volume: 5
  start-page: 5413
  issue: 11
  year: 2017
  ident: D4RA00340C/cit19/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09976A
  contributor:
    fullname: Li
– volume: 850
  start-page: 156583
  year: 2021
  ident: D4RA00340C/cit34/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.156583
  contributor:
    fullname: Yaqoob
– volume: 54
  start-page: 11048
  issue: 78
  year: 2018
  ident: D4RA00340C/cit66/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06918B
  contributor:
    fullname: Khalid
SSID ssj0000651261
Score 2.4488926
Snippet Bimetallic metal-organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of...
Bimetallic metal–organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 13837
SubjectTerms Bimetals
Chemical synthesis
Current density
Electrocatalysts
Electrochemical analysis
Hydrogen
Hydrogen evolution
Intermetallic compounds
Metal-organic frameworks
Oxygen evolution reactions
Reaction kinetics
Tafel slopes
Water splitting
Title Elucidating the performance of hexamethylene tetra-amine interlinked bimetallic NiCo-MOF for efficient electrochemical hydrogen and oxygen evolution
URI https://www.ncbi.nlm.nih.gov/pubmed/38681836
https://www.proquest.com/docview/3053109493
https://search.proquest.com/docview/3048493857
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb5swELbS7mF7mfarW7qu8rS9RWiACeDHKE20hy6V0lSq9oKMbQRqEqaErM3-jv3BOxsM7ipN28OkCBEHDPF9-M7H3XcIfcwiBka-BxLIhsQBjc8cGvqxE2WKbiwSquCxcl1cRrPr-GwSTHo9U8e1a_uvkoY2kLXKnP0HabedQgPsg8xhC1KH7V_JfbLc8ULlLJg0KCszQBuGd0xVjd6DtpGDSlYb5rBVoblDKk19daNs0gKOYUtFgD0rxqXz5WJac4NrwgkVPtCUz-GGbyDfi00JN6VfRpR3e7Urvzf_1LaA55djE3jQhdnDDQ--stxE1yv552y1YmIwZ6sfMAWNUrFbqsy1YtWqiLz23U5ZDjZzcaNdIu35Zb5VnpxlobKRblllezd8HRRTZ0I3YVHKh2ICWHWASlMGr9ZfeqL0YY0PGKhLvrSzemCh13etOdpTi3JL4cP3mjX1gTZxiSJjFcGGKRofl3c608QJzC6S6dX5ebKYXC8O0CMfZruh5TKqzQGwqULPUOMS-qnr8L4x9GCFA_bOxtSh0fbO4hl62ixU8KhG2HPUk-sX6HE7MC_RTwtpGJCGLaThMsP3kIYtpGELabhDGjZIw9ALbpGGf0MaNkjDIHBcIw23SHuFrqaTxfiz09T4cDghfgX6LRJp5KUpGP7S4zGDT-oLloEuiV0hZQYtfpZxL5RceozCaRERhLuhS-OQkSN0uC7X8g3CaUoyEUmu6KYCL6Opyz0hYHnDKeV06PbRBzPYybeayiXRIRiEJmfBfKRFMu6jEyOHpHmstwlRqsqlASV99L79GcZbvV1ja1nu1DEB4IjEw6iPXtfyay9D4hAMYxL20REItG3ugHD856u-RU-6h-MEHVabnXyHDrZid6qdSKcacr8A9QzClQ
link.rule.ids 315,782,786,866,27935,27936
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+performance+of+hexamethylene+tetra-amine+interlinked+bimetallic+NiCo-MOF+for+efficient+electrochemical+hydrogen+and+oxygen+evolution&rft.jtitle=RSC+advances&rft.au=Rida+Zahid&rft.au=Muhammad+Ramzan+Abdul+Karim&rft.au=Khan%2C+Fahd+Sikandar&rft.au=Mohsin+Ali+Marwat&rft.date=2024-04-25&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=14&rft.issue=20&rft.spage=13837&rft.epage=13849&rft_id=info:doi/10.1039%2Fd4ra00340c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon