Developments in the fabrication and performance of high-quality HgCdTe detectors grown on 4-in. Si substrates
We are continuing to develop our growth and processing capabilities for HgCdTe grown on 4-in. Si substrates by molecular beam epitaxy (MBE). Both short-wave and mid-wave infrared (SWIR and MWIR) double-layer hetero-junctions (DLHJs) have been fabricated. In order to improve the producibility of the...
Saved in:
Published in: | Journal of electronic materials Vol. 31; no. 7; pp. 815 - 821 |
---|---|
Main Authors: | , , , , , , , |
Format: | Conference Proceeding Journal Article |
Language: | English |
Published: |
New York, NY
Institute of Electrical and Electronics Engineers
01-07-2002
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We are continuing to develop our growth and processing capabilities for HgCdTe grown on 4-in. Si substrates by molecular beam epitaxy (MBE). Both short-wave and mid-wave infrared (SWIR and MWIR) double-layer hetero-junctions (DLHJs) have been fabricated. In order to improve the producibility of the material, we have implemented an in-situ growth composition-control system. We have explored dry etching the HgCdTe/Si wafers and seen promising results. No induced damage was observed in these samples. Detector results show that the HgCdTe/Si devices are state-of-the-art, following the diffusion-limited trend line established by other HgCdTe technologies. Focal-plane array (FPA) testing has been performed in order to assess the material over large areas. The FPA configurations range from 128×128 to 1,024×1,024, with unit cells as small as 20 µm. The MWIR responsivity and NEDT values are comparable to those of existing InSb FPAs. Pixel operabilities well in excess of 99% have been measured. We have also explored the role of growth macrodefects on diode performance and related their impact to FPA operability. The SWIR HgCdTe/Si shows similar results to the MWIR material. Short-wave IR FPA, median dark-current values of less than 0.1 e^sup -^/sec have been achieved.[PUBLICATION ABSTRACT] |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-002-0243-z |