Substitution effect of fish meal with various sources of animal by‐product meals in feed on growth, feed utilization, body composition, haematology and non‐specific immune response of olive flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846)

Suitability of various animal by‐product meals was evaluated as an alternative source for fish meal (FM) in olive flounder feed when 30% FM was substituted. Juvenile fish (n = 480) was distributed into 24 flow‐through tanks. Seven experimental diets were prepared. 65% FM and 12% soybean meal were in...

Full description

Saved in:
Bibliographic Details
Published in:Aquaculture research Vol. 52; no. 6; pp. 2802 - 2817
Main Authors: Kim, June, Cho, Sung Hwoan, Kim, Taeho, Hur, Sang Woo
Format: Journal Article
Language:English
Published: Oxford Hindawi Limited 01-06-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Suitability of various animal by‐product meals was evaluated as an alternative source for fish meal (FM) in olive flounder feed when 30% FM was substituted. Juvenile fish (n = 480) was distributed into 24 flow‐through tanks. Seven experimental diets were prepared. 65% FM and 12% soybean meal were included as the protein source in the control (Con) diet. Thirty per cent of FM was substituted with tuna by‐product, chicken by‐product, hydrolysed chicken offal, meat, meat and bone, and blood meals, referred to as the TBM, CBM, HCOM, MM, MBM and BM diets respectively. Each diet was hand‐fed to satiation for 8 weeks. Weight gain, specific growth rate (SGR) and feed efficiency ratio (FER) of fish fed the TBM diet were greater than those of fish fed all other diets. Weight gain, SGR and FER of fish fed the Con diet was also greater than those of fish fed the MM and BM diets. The proximate composition of the whole body fish was unaffected by the experimental diets. Lysozyme activity of fish fed the Con, TBM and CBM diets was higher than that of fish fed the MM and BM diets. Amino acid profiles of fish were not affected by the experimental diets except for tryptophan. All fatty acid profiles of fish except for eicosadienoic acid were affected by the experimental diets. In conclusion, tuna by‐product and chicken by‐product meals are the good substitutes for FM in olive flounder feed when 30% of FM at 65% in diet was replaced with animal by‐product meals.
AbstractList Suitability of various animal by‐product meals was evaluated as an alternative source for fish meal (FM) in olive flounder feed when 30% FM was substituted. Juvenile fish (n = 480) was distributed into 24 flow‐through tanks. Seven experimental diets were prepared. 65% FM and 12% soybean meal were included as the protein source in the control (Con) diet. Thirty per cent of FM was substituted with tuna by‐product, chicken by‐product, hydrolysed chicken offal, meat, meat and bone, and blood meals, referred to as the TBM, CBM, HCOM, MM, MBM and BM diets respectively. Each diet was hand‐fed to satiation for 8 weeks. Weight gain, specific growth rate (SGR) and feed efficiency ratio (FER) of fish fed the TBM diet were greater than those of fish fed all other diets. Weight gain, SGR and FER of fish fed the Con diet was also greater than those of fish fed the MM and BM diets. The proximate composition of the whole body fish was unaffected by the experimental diets. Lysozyme activity of fish fed the Con, TBM and CBM diets was higher than that of fish fed the MM and BM diets. Amino acid profiles of fish were not affected by the experimental diets except for tryptophan. All fatty acid profiles of fish except for eicosadienoic acid were affected by the experimental diets. In conclusion, tuna by‐product and chicken by‐product meals are the good substitutes for FM in olive flounder feed when 30% of FM at 65% in diet was replaced with animal by‐product meals.
Suitability of various animal by‐product meals was evaluated as an alternative source for fish meal (FM) in olive flounder feed when 30% FM was substituted. Juvenile fish (n = 480) was distributed into 24 flow‐through tanks. Seven experimental diets were prepared. 65% FM and 12% soybean meal were included as the protein source in the control (Con) diet. Thirty per cent of FM was substituted with tuna by‐product, chicken by‐product, hydrolysed chicken offal, meat, meat and bone, and blood meals, referred to as the TBM, CBM, HCOM, MM, MBM and BM diets respectively. Each diet was hand‐fed to satiation for 8 weeks. Weight gain, specific growth rate (SGR) and feed efficiency ratio (FER) of fish fed the TBM diet were greater than those of fish fed all other diets. Weight gain, SGR and FER of fish fed the Con diet was also greater than those of fish fed the MM and BM diets. The proximate composition of the whole body fish was unaffected by the experimental diets. Lysozyme activity of fish fed the Con, TBM and CBM diets was higher than that of fish fed the MM and BM diets. Amino acid profiles of fish were not affected by the experimental diets except for tryptophan. All fatty acid profiles of fish except for eicosadienoic acid were affected by the experimental diets. In conclusion, tuna by‐product and chicken by‐product meals are the good substitutes for FM in olive flounder feed when 30% of FM at 65% in diet was replaced with animal by‐product meals.
Author Hur, Sang Woo
Kim, Taeho
Cho, Sung Hwoan
Kim, June
Author_xml – sequence: 1
  givenname: June
  surname: Kim
  fullname: Kim, June
  organization: Korea Maritime and Ocean University
– sequence: 2
  givenname: Sung Hwoan
  orcidid: 0000-0002-6973-5449
  surname: Cho
  fullname: Cho, Sung Hwoan
  email: chosunh@kmou.ac.kr
  organization: Korea Maritime and Ocean University
– sequence: 3
  givenname: Taeho
  surname: Kim
  fullname: Kim, Taeho
  organization: Chonnam National University
– sequence: 4
  givenname: Sang Woo
  surname: Hur
  fullname: Hur, Sang Woo
  organization: National Institute of Fisheries Science
BookMark eNp1kctq3TAQhk1JoLl00TcYKJQGjhNJPrLOWYaQXiCQ0KTQnZGl0bFSW3IlOwd31UfoM_ZBSuW422qjy3zzz-if4-zAeYdZ9pqSc5rWhQx4Tjkt2IvsiBYlzxkl24P5zHnOufj6MjuO8ZEQuiYFPcr-3I91HOwwDtY7QGNQDeANGBsb6FC2sLdDA08yWD9GiH4MCuNMSGe7FK6n3z9_9cHrMSXOCRGsA4OoIQnugt8PzWq5pxqt_SHnSiuovZ5A-a730S4vjcRODr71uymJa0g_S9KxR2WNVWC7bnQIAWPvXcS5Bd_aJwTT-tFpDPDuTgbZWtUMzRSfg1LhGFfwgF1nnfoGb-FeNS3usF0B3azLs9Ps0KSW8dW__ST78v764epjfnP74dPV5U2uioKxXIkNRSoE59sN51TymhkmamRopCgKauSWaFEypbXYbkqjBV8nK4nipZGmFMVJ9mbRTU59HzEO1WNy0qWSFeNMFIknNFFnC6WCjzGgqfqQTA5TRUk1j7dK462ex5vYi4Xd2xan_4PV5efrJeMviCSwDg
CitedBy_id crossref_primary_10_1155_2024_4134106
crossref_primary_10_1016_j_fsi_2022_10_025
crossref_primary_10_3389_fmars_2024_1407162
crossref_primary_10_47836_pjtas_46_1_09
crossref_primary_10_1016_j_aquaculture_2022_738646
crossref_primary_10_3389_fsufs_2024_1414574
crossref_primary_10_1111_jwas_12973
crossref_primary_10_1016_j_aquaculture_2023_740225
crossref_primary_10_1016_j_aqrep_2023_101712
crossref_primary_10_1016_j_aqrep_2023_101844
crossref_primary_10_1016_j_aqrep_2022_101450
crossref_primary_10_1016_j_aqrep_2022_101150
crossref_primary_10_3390_ani14050688
crossref_primary_10_3390_fishes7060343
crossref_primary_10_47853_FAS_2022_e48
crossref_primary_10_3390_ani14081162
crossref_primary_10_3390_ani13081314
crossref_primary_10_1155_2023_7965258
Cites_doi 10.1007/s12562‐014‐0818‐7
10.1007/BF02919376
10.1146/annurev.nu.06.070186.001301
10.1111/anu.12153
10.1016/j.aquaculture.2004.06.036
10.1111/j.1365‐2109.2011.02945.x
10.1016/j.aquaculture.2016.10.024
10.1016/S0044‐8486(01)00852‐3
10.1016/S0021-9258(18)64849-5
10.1016/j.aquaculture.2006.02.060
10.2331/fishsci.63.877
10.1016/j.aquaculture.2004.08.002
10.1016/j.wasman.2012.08.001
10.1111/j.1749‐7345.2000.tb00882.x
10.1016/j.aquaculture.2014.03.025
10.1016/j.aquaculture.2014.10.010
10.1046/j.1365‐2109.2000.00505.x
10.1016/j.fsi.2014.10.035
10.2331/fishsci.63.29
10.1046/j.1365‐2109.2002.00704.x
10.1016/j.aquaculture.2018.02.010
10.1046/j.1355‐557x.2002.00672.x
10.2307/3001478
10.1016/j.aquaculture.2004.12.001
10.1016/j.aquaculture.2005.05.041
10.1111/j.1749‐7345.2000.tb00911.x
10.1016/S0044‐8486(97)00263‐9
10.1016/j.aquaculture.2020.735350
10.1046/j.1365‐2095.1997.00084.x
10.1006/fsim.2000.0333
10.1111/anu.12194
10.1577/1548‐8454(2000)062<0266:PROFMW>2.0.CO;2
10.1016/j.aquaculture.2011.09.042
10.1016/S0044‐8486(01)00629‐9
10.1016/S0044‐8486(02)00259‐4
10.1111/j.1749‐7345.2010.00442.x
10.1111/j.1749‐7345.2011.00489.x
10.1111/j.1749‐7345.2006.00074.x
10.1016/j.aqrep.2019.100212
10.5657/fas.2005.8.3.138
10.5657/fas.2005.8.2.065
10.1007/s10695‐011‐9555‐3
10.1016/S0044‐8486(01)00670‐6
10.1111/j.1365‐2109.2010.02491.x
10.1016/j.aquaculture.2014.02.023
10.1016/j.aquaculture.2005.03.031
10.1111/jwas.12535
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
Copyright © 2021 John Wiley & Sons Ltd
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: Copyright © 2021 John Wiley & Sons Ltd
DBID AAYXX
CITATION
7TN
7U7
8FD
C1K
F1W
FR3
H95
H98
H99
L.F
L.G
M7N
P64
RC3
DOI 10.1111/are.15132
DatabaseName CrossRef
Oceanic Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Toxicology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Oceanic Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2109
EndPage 2817
ExternalDocumentID 10_1111_are_15132
ARE15132
Genre article
GrantInformation_xml – fundername: Smart Aquaculture Research Center funded by the Ministry of Oceans and Fisheries, Korea
– fundername: A grant from National Institute of Fisheries Science
  funderid: R2021016
– fundername: National Research Foundation of Korea (NRF) grant funded by the Korean government
  funderid: 2020R1A2C1009903
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23M
24P
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHEFC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGJEQ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HVGLF
HZI
HZ~
IAG
IAO
IEP
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PCBAR
PIMPY
Q.N
Q11
QB0
R.K
RHX
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
ITC
7TN
7U7
8FD
C1K
F1W
FR3
H95
H98
H99
L.F
L.G
M7N
P64
RC3
ID FETCH-LOGICAL-c3322-c781e1775598551a5b2f27be2efa7331fa90d762cdd7986fd754ffe0c56faf673
IEDL.DBID 33P
ISSN 1355-557X
IngestDate Thu Oct 10 23:03:47 EDT 2024
Thu Sep 26 19:07:32 EDT 2024
Sat Aug 24 01:03:18 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3322-c781e1775598551a5b2f27be2efa7331fa90d762cdd7986fd754ffe0c56faf673
ORCID 0000-0002-6973-5449
OpenAccessLink https://doi.org/10.1111/are.15132
PQID 2527375401
PQPubID 1026362
PageCount 16
ParticipantIDs proquest_journals_2527375401
crossref_primary_10_1111_are_15132
wiley_primary_10_1111_are_15132_ARE15132
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Aquaculture research
PublicationYear 2021
Publisher Hindawi Limited
Publisher_xml – name: Hindawi Limited
References 2004; 241
2005; 250
2019; 50
1957; 226
2004; 240
2019; 15
2006; 251
2020; 525
1997; 3
2006; 257
2007; 38
2014; 20
2018; 490
1990
2015; 81
2015; 41
1986; 6
1999; 12
2000; 62
2013; 60
2001; 11
1998; 161
1955; 11
2003; 217
1997; 63
2002; 33
2002; 214
2006; 5
1993
2012; 38
2004; 229
2015; 8
2000a; 31
2010; 41
2011; 322–323
2014; 431
2015; 435
2013; 33
2020
2005; 8
2000b; 31
2000; 31
2015; 21
2005; 249
2002; 205
2011; 42
2002; 204
2000; 186
2012; 43
2017; 468
2014; 426–427
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Behrevar R. (e_1_2_9_8_1) 2015; 8
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_4_1
e_1_2_9_2_1
KOSIS (e_1_2_9_34_1) 2020
e_1_2_9_26_1
e_1_2_9_49_1
National Research Council (NRC) (e_1_2_9_47_1) 1993
e_1_2_9_30_1
e_1_2_9_53_1
AOAC (e_1_2_9_6_1) 1990
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
FAOSTAT (e_1_2_9_19_1) 2020
Allan G. L. (e_1_2_9_5_1) 2000; 186
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_42_1
e_1_2_9_40_1
Nandakumar S. (e_1_2_9_46_1) 2013; 60
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
Kang Y. J. (e_1_2_9_28_1) 1999; 12
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 6
  start-page: 225
  year: 1986
  end-page: 244
  article-title: Protein and amino acid requirements of fishes
  publication-title: Annual Review of Nutrition
– volume: 8
  start-page: 65
  year: 2005
  end-page: 69
  article-title: Effect of partial replacement of fish meal with squid liver meal™ in the diet on growth and body composition of juvenile olive flounder ( ) during winter season
  publication-title: Journal of Fisheries Science and Technology
– volume: 81
  start-page: 95
  year: 2015
  end-page: 105
  article-title: Effects of replacing fish meal with rendered animal protein and plant protein sources on growth response, biological indices, and amino acid availability for rainbow trout
  publication-title: Fisheries Science
– volume: 33
  start-page: 673
  year: 2002
  end-page: 679
  article-title: Optimum dietary protein level for maximum growth of juvenile olive flounder (Temminck et Schlegel)
  publication-title: Aquaculture Research
– volume: 63
  start-page: 29
  year: 1997
  end-page: 32
  article-title: Use of meat and bone meal as a protein source in the diet of juvenile Japanese flounder
  publication-title: Fisheries Science
– volume: 8
  start-page: 138
  year: 2005
  end-page: 141
  article-title: Effect of partial dietary substitution of meat meal for fish meal on the growth and body composition of the juvenile olive flounder
  publication-title: Journal of Fisheries Science and Technology
– volume: 161
  start-page: 131
  year: 1998
  end-page: 142
  article-title: Lysine requirement of juvenile Japanese flounder and juvenile red sea bream
  publication-title: Aquaculture
– volume: 12
  start-page: 205
  year: 1999
  end-page: 212
  article-title: Effects of meat meal, blood meal or soybean meal as a dietary protein source replacing fish meal in parrot fish,
  publication-title: Journal of Aquaculture
– volume: 11
  start-page: 523
  year: 2001
  end-page: 535
  article-title: Humoral immune parameters of cultured Atlantic halibut ( L.)
  publication-title: Fish and Shellfish Immunology
– volume: 38
  start-page: 68
  year: 2007
  end-page: 73
  article-title: Effect of daily feeding ratio on growth and body composition of sub‐adult olive flounder, , fed an extruded diet during the summer season
  publication-title: Journal of the World Aquaculture Society
– volume: 229
  start-page: 315
  year: 2004
  end-page: 323
  article-title: Requirement of dietary n‐3 highly unsaturated fatty acids for juvenile flounder ( )
  publication-title: Aquaculture
– volume: 38
  start-page: 735
  year: 2012
  end-page: 744
  article-title: Response of dietary substitution of fishmeal with various protein sources on growth, body composition and blood chemistry of olive flounder ( , Temminck & Schlegel, 1846)
  publication-title: Fish Physiology and Biochemistry
– year: 1990
– volume: 3
  start-page: 115
  year: 1997
  end-page: 126
  article-title: Dietary protein/energy ratios for Atlantic salmon in relation to fish size: growth, feed utilization and slaughter quality
  publication-title: Aquaculture Nutrition
– volume: 33
  start-page: 279
  year: 2002
  end-page: 289
  article-title: Growth and nutrient utilization of Murray cod (Mitchell) fingerling fed diets with varying levels of soybean meal and blood meal
  publication-title: Aquaculture Research
– volume: 31
  start-page: 917
  year: 2000a
  end-page: 921
  article-title: Effects of feeding frequency and dietary energy level on growth and body composition of juvenile flounder, (Temminck & Schlegel)
  publication-title: Aquaculture Research
– volume: 62
  start-page: 266
  year: 2000
  end-page: 272
  article-title: Partial replacement of fish meal with meat‐and‐body meal, flash‐dried poultry by‐product meal, and enzyme‐digested poultry by‐product meal in practical diets for juvenile red drum
  publication-title: North American Journal of Aquaculture
– volume: 249
  start-page: 387
  year: 2005
  end-page: 400
  article-title: Effects of fish meal replacement by plant protein sources on non‐specific defence mechanism and oxidative stress in gilthead sea bream ( )
  publication-title: Aquaculture
– volume: 226
  start-page: 497
  year: 1957
  end-page: 509
  article-title: A simple method for the isolation and purification of total lipids from animal tissues
  publication-title: The Journal of Biological Chemistry
– volume: 257
  start-page: 437
  year: 2006
  end-page: 445
  article-title: Growth and phosphorus loading by partially replacing fishmeal with tuna muscle by‐product powder in the diet of juvenile Japanese flounder,
  publication-title: Aquaculture
– volume: 241
  start-page: 465
  year: 2004
  end-page: 477
  article-title: Evaluation of different sulfur amino acids compounds in the diet of red drum, , and sparing value of cystine for methionine
  publication-title: Aquaculture
– volume: 250
  start-page: 431
  year: 2005
  end-page: 444
  article-title: Alterations in fillet fatty acid profile and flesh quality in gilthead seabream ( ) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding
  publication-title: Aquaculture
– start-page: 115
  year: 1993
– volume: 50
  start-page: 65
  year: 2019
  end-page: 77
  article-title: Effect of the dietary fermented tuna by‐product meal on growth, blood parameters, nonspecific immune response, and disease resistance in juvenile olive flounder,
  publication-title: Journal of the World Aquaculture Society
– volume: 186
  start-page: 293
  year: 2000
  end-page: 310
  article-title: Replacement of fish meal in diets for Australian silver perch, : I
  publication-title: Digestibility of Alternative Ingredients. Aquaculture
– volume: 426–427
  start-page: 270
  year: 2014
  end-page: 281
  article-title: Total sulfur amino acid requirement and cystine replacement value for fingerling stinging catfish, (Bloch)
  publication-title: Aquaculture
– volume: 490
  start-page: 228
  year: 2018
  end-page: 235
  article-title: Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile,
  publication-title: Aquaculture
– volume: 21
  start-page: 714
  year: 2015
  end-page: 725
  article-title: Growth, feed utilization and endocrine responses in Atlantic salmon ( ) fed diets added poultry by‐product meal and blood meal in combination with poultry oil
  publication-title: Aquaculture Nutrition
– volume: 11
  start-page: 1
  year: 1955
  end-page: 42
  article-title: Multiple range and multiple F tests
  publication-title: Biometrics
– volume: 43
  start-page: 1427
  year: 2012
  end-page: 1438
  article-title: Can fermented soybean meal and squid by‐product blend be used as fishmeal replacements for Japanese flounder ( )?
  publication-title: Aquaculture Research
– volume: 8
  start-page: 34
  year: 2015
  end-page: 39
  article-title: Effect of fish meal replacement by blood meal in fingerling rainbow trout ( ) on growth and body/fillet quality traits
  publication-title: AACL Bioflux
– volume: 525
  start-page: 735350
  year: 2020
  article-title: The effect of dietary n‐3 LC‐PUFA levels on growth, survival, and feed utilization in juvenile
  publication-title: Aquaculture
– volume: 205
  start-page: 127
  year: 2002
  end-page: 140
  article-title: Arginine requirement of juvenile Japanese flounder estimated by growth and biochemical parameters
  publication-title: Aquaculture
– volume: 468
  start-page: 271
  year: 2017
  end-page: 277
  article-title: Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream ( ) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency
  publication-title: Aquaculture
– volume: 42
  start-page: 46
  year: 2011
  end-page: 55
  article-title: Evaluation of 100% fish meal substitution with chicken concentrate, protein poultry by‐product blend, and chicken and egg concentrate on growth and disease resistance of juvenile rainbow trout,
  publication-title: Journal of the World Aquaculture Society
– volume: 41
  start-page: 177
  year: 2015
  end-page: 183
  article-title: The effects of combined dietary probiotic BFE920 and FG0001 on innate immunity and disease resistance in olive flounder ( )
  publication-title: Fish and Shellfish Immunology
– volume: 60
  start-page: 109
  year: 2013
  end-page: 114
  article-title: Fish meal replacement with chicken waste meal in Asian seabass ( ) feeds
  publication-title: Indian Journal of Fisheries
– volume: 43
  start-page: 30
  year: 2012
  end-page: 38
  article-title: Onion powder in the diet of the olive flounder, : effects on the growth, body composition, and lysozyme activity
  publication-title: Journal of the World Aquaculture Society
– volume: 20
  start-page: 753
  year: 2014
  end-page: 761
  article-title: The effect of the dietary substitution of fishmeal with tuna by‐product meal on growth, body composition, plasma chemistry and amino acid profiles of juvenile Korean rockfish ( )
  publication-title: Aquaculture Nutrition
– volume: 5
  start-page: 63
  year: 2006
  end-page: 66
  article-title: A study on the meat and bone meal or poultry by‐product meal as protein substitute for fishmeal in concentrated diets for
  publication-title: Journal of Ocean University of China
– volume: 240
  start-page: 399
  year: 2004
  end-page: 415
  article-title: Requirement of n‐3 long chain polyunsaturated fatty acids for European sea bass ( ) juvenile: growth and fatty acid composition
  publication-title: Aquaculture
– volume: 33
  start-page: 552
  year: 2013
  end-page: 565
  article-title: Potential of chicken by‐products as sources of useful biological resources
  publication-title: Waste Management
– volume: 204
  start-page: 75
  year: 2002
  end-page: 84
  article-title: Replacement of fish meal by animal by‐product meals in a practical diet for grow‐out culture of grouper
  publication-title: Aquaculture
– volume: 214
  start-page: 253
  year: 2002
  end-page: 271
  article-title: Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout,
  publication-title: Aquaculture
– volume: 431
  start-page: 92
  year: 2014
  end-page: 98
  article-title: Substitution effects of fishmeal with tuna by‐product meal in the diet on growth, body composition, plasma chemistry and amino acid profiles of juvenile olive flounder ( )
  publication-title: Aquaculture
– volume: 435
  start-page: 347
  year: 2015
  end-page: 353
  article-title: Effect of dietary inclusion of extract on biochemical and immune responses of olive flounder
  publication-title: Aquaculture
– volume: 31
  start-page: 306
  year: 2000b
  end-page: 315
  article-title: Effects of dietary protein and energy levels on growth and body composition of juvenile flounder ( )
  publication-title: Journal of the World Aquaculture Society
– volume: 217
  start-page: 465
  year: 2003
  end-page: 482
  article-title: Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot ( ): 1. Growth performance, flesh fatty acid profile, and lipid metabolism
  publication-title: Aquaculture
– volume: 15
  start-page: 1
  year: 2019
  end-page: 7
  article-title: Oral administration effect of yacon, ginger and blueberry on the growth, body composition and plasma chemistry of juvenile olive flounder ( ) and immunity test against compared to a commercial probiotic,
  publication-title: Aquaculture Reports
– year: 2020
– volume: 41
  start-page: e166
  year: 2010
  end-page: e171
  article-title: Effects of feeding frequency and dietary moisture content on growth, body composition of juvenile olive flounder ( )
  publication-title: Aquaculture Research
– volume: 63
  start-page: 877
  year: 1997
  end-page: 880
  article-title: Meat meal as a protein source in the diet of juvenile Japanese flounder
  publication-title: Fisheries Science
– volume: 31
  start-page: 618
  year: 2000
  end-page: 626
  article-title: Methionine requirement of juvenile Japanese flounder
  publication-title: Journal of the World Aquaculture Society
– volume: 251
  start-page: 78
  year: 2006
  end-page: 84
  article-title: Effect of feeding ratio on growth and body composition of juvenile olive flounder fed extruded pellets during the summer season
  publication-title: Aquaculture
– volume: 322–323
  start-page: 122
  year: 2011
  end-page: 127
  article-title: Evaluation of poultry by‐product meal in commercial diets for juvenile cobia ( )
  publication-title: Aquaculture
– ident: e_1_2_9_43_1
  doi: 10.1007/s12562‐014‐0818‐7
– ident: e_1_2_9_55_1
  doi: 10.1007/BF02919376
– volume: 12
  start-page: 205
  year: 1999
  ident: e_1_2_9_28_1
  article-title: Effects of meat meal, blood meal or soybean meal as a dietary protein source replacing fish meal in parrot fish, Oplegnathus fasciatus
  publication-title: Journal of Aquaculture
  contributor:
    fullname: Kang Y. J.
– ident: e_1_2_9_56_1
  doi: 10.1146/annurev.nu.06.070186.001301
– ident: e_1_2_9_26_1
  doi: 10.1111/anu.12153
– ident: e_1_2_9_53_1
  doi: 10.1016/j.aquaculture.2004.06.036
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1365‐2109.2011.02945.x
– volume-title: Official methods of analysis
  year: 1990
  ident: e_1_2_9_6_1
  contributor:
    fullname: AOAC
– ident: e_1_2_9_45_1
  doi: 10.1016/j.aquaculture.2016.10.024
– ident: e_1_2_9_9_1
  doi: 10.1016/S0044‐8486(01)00852‐3
– ident: e_1_2_9_21_1
  doi: 10.1016/S0021-9258(18)64849-5
– ident: e_1_2_9_54_1
  doi: 10.1016/j.aquaculture.2006.02.060
– ident: e_1_2_9_50_1
  doi: 10.2331/fishsci.63.877
– ident: e_1_2_9_23_1
  doi: 10.1016/j.aquaculture.2004.08.002
– ident: e_1_2_9_37_1
  doi: 10.1016/j.wasman.2012.08.001
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1749‐7345.2000.tb00882.x
– ident: e_1_2_9_30_1
  doi: 10.1016/j.aquaculture.2014.03.025
– ident: e_1_2_9_15_1
  doi: 10.1016/j.aquaculture.2014.10.010
– ident: e_1_2_9_40_1
  doi: 10.1046/j.1365‐2109.2000.00505.x
– ident: e_1_2_9_7_1
  doi: 10.1016/j.fsi.2014.10.035
– ident: e_1_2_9_29_1
  doi: 10.2331/fishsci.63.29
– ident: e_1_2_9_33_1
  doi: 10.1046/j.1365‐2109.2002.00704.x
– ident: e_1_2_9_16_1
  doi: 10.1016/j.aquaculture.2018.02.010
– ident: e_1_2_9_2_1
  doi: 10.1046/j.1355‐557x.2002.00672.x
– ident: e_1_2_9_17_1
  doi: 10.2307/3001478
– ident: e_1_2_9_25_1
  doi: 10.1016/j.aquaculture.2004.12.001
– ident: e_1_2_9_13_1
  doi: 10.1016/j.aquaculture.2005.05.041
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1749‐7345.2000.tb00911.x
– volume-title: Food and Agricultural Organization Statistics Database, Rome
  year: 2020
  ident: e_1_2_9_19_1
  contributor:
    fullname: FAOSTAT
– ident: e_1_2_9_22_1
  doi: 10.1016/S0044‐8486(97)00263‐9
– start-page: 115
  volume-title: Nutrients requirements of fish
  year: 1993
  ident: e_1_2_9_47_1
  contributor:
    fullname: National Research Council (NRC)
– ident: e_1_2_9_38_1
  doi: 10.1016/j.aquaculture.2020.735350
– ident: e_1_2_9_18_1
  doi: 10.1046/j.1365‐2095.1997.00084.x
– ident: e_1_2_9_36_1
  doi: 10.1006/fsim.2000.0333
– ident: e_1_2_9_24_1
  doi: 10.1111/anu.12194
– ident: e_1_2_9_35_1
  doi: 10.1577/1548‐8454(2000)062<0266:PROFMW>2.0.CO;2
– ident: e_1_2_9_32_1
  doi: 10.1046/j.1365‐2109.2002.00704.x
– ident: e_1_2_9_57_1
  doi: 10.1016/j.aquaculture.2011.09.042
– ident: e_1_2_9_44_1
  doi: 10.1016/S0044‐8486(01)00629‐9
– volume: 60
  start-page: 109
  year: 2013
  ident: e_1_2_9_46_1
  article-title: Fish meal replacement with chicken waste meal in Asian seabass (Lates calcarifer) feeds
  publication-title: Indian Journal of Fisheries
  contributor:
    fullname: Nandakumar S.
– ident: e_1_2_9_49_1
  doi: 10.1016/S0044‐8486(02)00259‐4
– volume: 186
  start-page: 293
  year: 2000
  ident: e_1_2_9_5_1
  article-title: Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanum: I
  publication-title: Digestibility of Alternative Ingredients. Aquaculture
  contributor:
    fullname: Allan G. L.
– ident: e_1_2_9_51_1
  doi: 10.1111/j.1749‐7345.2010.00442.x
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1749‐7345.2011.00489.x
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1749‐7345.2006.00074.x
– ident: e_1_2_9_31_1
  doi: 10.1016/j.aqrep.2019.100212
– ident: e_1_2_9_14_1
  doi: 10.5657/fas.2005.8.3.138
– volume-title: Korean Statistical Information Service Statistical DB
  year: 2020
  ident: e_1_2_9_34_1
  contributor:
    fullname: KOSIS
– ident: e_1_2_9_11_1
  doi: 10.5657/fas.2005.8.2.065
– ident: e_1_2_9_39_1
  doi: 10.1007/s10695‐011‐9555‐3
– ident: e_1_2_9_4_1
  doi: 10.1016/S0044‐8486(01)00670‐6
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1365‐2109.2010.02491.x
– ident: e_1_2_9_20_1
  doi: 10.1016/j.aquaculture.2014.02.023
– volume: 8
  start-page: 34
  year: 2015
  ident: e_1_2_9_8_1
  article-title: Effect of fish meal replacement by blood meal in fingerling rainbow trout (Oncorhynchus mykiss) on growth and body/fillet quality traits
  publication-title: AACL Bioflux
  contributor:
    fullname: Behrevar R.
– ident: e_1_2_9_52_1
  doi: 10.1016/j.aquaculture.2005.03.031
– ident: e_1_2_9_48_1
  doi: 10.1111/jwas.12535
SSID ssj0014031
Score 2.443727
Snippet Suitability of various animal by‐product meals was evaluated as an alternative source for fish meal (FM) in olive flounder feed when 30% FM was substituted....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2802
SubjectTerms Amino acids
animal by‐product meals
Body composition
Body weight gain
Chickens
Defence mechanisms
Diet
Fatty acids
Feed composition
Feed conversion efficiency
Feed efficiency
Feeds
Fish
Fish meal
Fishmeal
Growth rate
Haematology
Immune response
Immunity
Lysozyme
Marine fishes
Meals
Meat
non‐specific immune response
Olive flounder (Paralichthys olivaceus)
Paralichthys olivaceus
Physical growth
Satiety
Soybeans
Substitutes
Tanks
Tryptophan
Weight gain
Title Substitution effect of fish meal with various sources of animal by‐product meals in feed on growth, feed utilization, body composition, haematology and non‐specific immune response of olive flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846)
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fare.15132
https://www.proquest.com/docview/2527375401
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB60T_rgpVVcbeVQRFpIJPfZ4NNSt_RJim2hb2GuTXA3KUlX6Js_wd_oDxHPmclu64Mg-JaQZDJkzpz5vpNzvmHsnZI4sKqUoSwTHmZaZqGMdBTGMS9sJHMuMqp3Pjnjny-nn-Ykk_NxXQvj9SE2ATeaGc5f0wQXcrg3yUVvPuBylZL_RZbgyjfS080fhCxKPdnK8zDP-eWoKkRZPJsn_1yL7gDmfZjq1pnjp__Vw2fsyQgvYebt4Tl7YNpt9nh21Y8SG2aH_SJf4RIEcEjA53NAZ8E2Qw1LxI1AsVn4hiS6Ww3go_sD3SHaZomX5e3P7z-uvVKse2CApgWLyyBgg1fI62_qwJ_jOxZjoWcAstO3QCnsY55YALUgxVgX2MfGNbRdi01T8SclMEFDtSsGep_Ga6gL3QK9M9gFbQZlejg4FRSoUTWZm7tI4fkhgHOzXDat-grv4UzVFBpZBIA0szh8wS6O5-dHJ-G4C0SoUmLKik9jE3NOSvII70QuE5twaRJjBW04aUUZaXTpSmteTgureZ7hp4tUXlhhC56-ZFvYffOKgSk5wjn0qxZhl5QIjiyiJ4MkTiMLnaoJ21_bQ3XtxT6qNUnCwazcYE7Y7tpSqnG-D1VCOnb44iiesANnE39voJp9mbuD1_9-6xv2KKFkGhf-2WVbN_3K7LGHg169dWb_G_f-Cxc
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BOQCH8hYpBUYIoSLZld8bS1wiSBVEqSoapN6sfdYWiV3ZDVJv_AR-Iz8EMbN2QjkgIXFLZHu9ys7MfvNl5lvGXiqJC6ty6cs84n6iZeLLQAd-GPLMBjLlIqF-59kJPzodv5uSTM6bdS9Mrw-xIdzIM1y8JgcnQvqKl4vW7ON-FWMAvpFkaIjUwBEfb_5DSIK4T7fS1E9TfjroClEdz-bRP3ej3xDzKlB1O83Bnf-b4122PSBMmPQmcY9dM_V9dnty1g4qG-YB-0nhwtUI4KpAX9IBjQVbdSUsEToC0bPwFfPoZtVBT_B3dIeoqyVelpc_vn0_78Vi3QMdVDVY3AkBBzzD1P6i9Prv-I7F0OvpgWz0JVAV-1Aq5kEpSDTWcfs4uIa6qXFo6v-kGiaoqH3FQNtX8hqaQrPAAA12QedBmRb2jgVxNaoki3MXiaHvPJib5bKq1Rd4BSeqJHZk4QFmmtnrh-zzwXT-duYPB0H4KqZkWfFxaELOSUweEZ5IZWQjLk1krKAzJ63IA41RXWnN83FmNU8T_OkClWZW2IzHj9gWTt88ZmByjogOQ6tF5CUl4iOLAMpgHqcxER2rEXuxNojivNf7KNZ5Ei5m4RZzxHbXplIMLt8VEUnZ4YuDcMT2nFH8fYBi8mnqPuz8-63P2c3Z_ONhcfj-6MMTdiui2hrHBu2yrYt2ZZ6y651ePXM-8AuzcA8_
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF-0gtgHv8WrVQcRqZBIvveCT4e9o6KUw1boW8h-NcG75Eh6Qt_8E_wb_UPEmd3cWR8EwbeETXaX7MzsbyYzv2XspRS4sDIXvsgj7idKJL4IVOCHIc9MIFJeJlTvfHTCj8_Gh1OiyXm7qYVx_BDbgBtphrXXpOArZa4oednpN7hdxWh_byQIw4k4P47n218ISRA7bytN_TTlZwOtEKXxbF_9czP6jTCv4lS70czu_NcU77LbA76EiROIe-yabu6z3cl5N3Bs6AfsJxkLmyGAawIuoQNaA6buK1gicAQKzsJX9KLbdQ8uvN_TE2VTL7FZXP749n3lqGLtCz3UDRjcBwE7PEfH_qLy3D2OsRgqPT0QrboEymEfEsU8qEqijLWRfexcQdM22DVVf1IGE9RUvKKhc3m8mqbQLtA8g1nQaVC6g4N5SZEaWZG82UaKz_cenOrlsm7kF3gFJ7Ki2MjCA_Qzs9cP2efZ9PTdkT8cA-HLmFxlycehDjknKnnEd2UqIhNxoSNtSjpx0pR5oNCmS6V4Ps6M4mmCny6QaWZKk_H4EdvB6evHDHTOEc-hYTWIu4RAdGQQPmn04hS6oWM5Yi828lCsHNtHsfGScDELu5gjtr-RlGJQ-L6IiMgOBw7CETuwMvH3DorJp6m92Pv3R5-zm_PDWfHx_fGHJ-xWRIk1NhS0z3YuurV-yq73av3MasAvbhQN5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Substitution+effect+of+fish+meal+with+various+sources+of+animal+by%E2%80%90product+meals+in+feed+on+growth%2C+feed+utilization%2C+body+composition%2C+haematology+and+non%E2%80%90specific+immune+response+of+olive+flounder+%28Paralichthys+olivaceus%2C+Temminck+%26+Schlegel%2C+1846%29&rft.jtitle=Aquaculture+research&rft.au=Kim%2C+June&rft.au=Cho%2C+Sung+Hwoan&rft.au=Kim%2C+Taeho&rft.au=Hur%2C+Sang+Woo&rft.date=2021-06-01&rft.issn=1355-557X&rft.eissn=1365-2109&rft.volume=52&rft.issue=6&rft.spage=2802&rft.epage=2817&rft_id=info:doi/10.1111%2Fare.15132&rft.externalDBID=10.1111%252Fare.15132&rft.externalDocID=ARE15132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-557X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-557X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-557X&client=summon