Thermal Management Using MEMS Bimorph Cantilever Beams

This paper examines a passive cooling technique using microelectromechanical systems (MEMS) for localized thermal management of electronic devices. The prototype was designed using analytic equations, simulated using finite element methods (FEM), and fabricated using the commercial PolyMUMPs™ proces...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mechanics Vol. 56; no. 7; pp. 1293 - 1303
Main Authors: Coutu, R. A., LaFleur, R. S., Walton, J. P. K., Starman, L. A.
Format: Journal Article
Language:English
Published: New York Springer US 01-09-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper examines a passive cooling technique using microelectromechanical systems (MEMS) for localized thermal management of electronic devices. The prototype was designed using analytic equations, simulated using finite element methods (FEM), and fabricated using the commercial PolyMUMPs™ process. The system consisted of an electronic device simulator (EDS) and MEMS bimorph cantilever beams (MBCB) array with beams lengths of 200, 250, and 300 μm that were tested to characterize deflection and thermal behavior. The specific beam lengths were chosen to actuate in response to heating associated with the EDS (i.e. the longest beams actuated first corresponding to the hottest portion of the EDS). The results show that the beams deflected as designed when thermally actuated and effectively transferred heat away via thermal conduction. The temperature when the beams reached “net-zero” deflection (i.e. uncurled and flat) was related to the initial deflection distance while the contact deflection temperature and rate of actuation was related to beam length. Initial beam deflections, after release, and contact temperatures, when fully actuated, were approximately 5.05, 9.45, 14.05 μm, and 231, 222, 216 °C, respectively with the longer beams making contact first. This innovative passive thermal management system enables selective device cooling without requiring active control or forced convection to maintain steady-state operating temperatures for sensitive microelectronic devices.
AbstractList This paper examines a passive cooling technique using microelectromechanical systems (MEMS) for localized thermal management of electronic devices. The prototype was designed using analytic equations, simulated using finite element methods (FEM), and fabricated using the commercial PolyMUMPs™ process. The system consisted of an electronic device simulator (EDS) and MEMS bimorph cantilever beams (MBCB) array with beams lengths of 200, 250, and 300 μm that were tested to characterize deflection and thermal behavior. The specific beam lengths were chosen to actuate in response to heating associated with the EDS (i.e. the longest beams actuated first corresponding to the hottest portion of the EDS). The results show that the beams deflected as designed when thermally actuated and effectively transferred heat away via thermal conduction. The temperature when the beams reached “net-zero” deflection (i.e. uncurled and flat) was related to the initial deflection distance while the contact deflection temperature and rate of actuation was related to beam length. Initial beam deflections, after release, and contact temperatures, when fully actuated, were approximately 5.05, 9.45, 14.05 μm, and 231, 222, 216 °C, respectively with the longer beams making contact first. This innovative passive thermal management system enables selective device cooling without requiring active control or forced convection to maintain steady-state operating temperatures for sensitive microelectronic devices.
Author Coutu, R. A.
Starman, L. A.
LaFleur, R. S.
Walton, J. P. K.
Author_xml – sequence: 1
  givenname: R. A.
  surname: Coutu
  fullname: Coutu, R. A.
  email: Ronald.Coutu@afit.edu
  organization: Air Force Institute of Technology
– sequence: 2
  givenname: R. S.
  surname: LaFleur
  fullname: LaFleur, R. S.
  organization: Air Force Institute of Technology
– sequence: 3
  givenname: J. P. K.
  surname: Walton
  fullname: Walton, J. P. K.
  organization: Air Force Institute of Technology
– sequence: 4
  givenname: L. A.
  surname: Starman
  fullname: Starman, L. A.
  organization: Air Force Institute of Technology
BookMark eNp9j0FOwzAQRS1UJNrCAdjlAoYZ27HpkkaFIrViQVlbTjJpUyVOZQckbo-rsmYxGo007-u_GZv4wRNj9wgPCGAeI6JUwAF1GgMcr9gUjUIujM4nbAqAiqunHG_YLMYjJEYaMWV6d6DQuy7bOu_21JMfs8_Y-n22XW0_smXbD-F0yArnx7ajbwrZklwfb9l147pId397znYvq12x5pv317fiecMrKXHkTe1y2ShciFISiLIyUpWmyfNFo2WNmozQdQVQ1boEB5UGJFGnEwjBKTlneImtwhBjoMaeQtu78GMR7NnbXrxt8rZnb4uJERcmpl-_p2CPw1fwqeU_0C9EmFuO
CitedBy_id crossref_primary_10_1088_1402_4896_ad54fb
crossref_primary_10_1007_s00542_019_04363_w
crossref_primary_10_1088_1402_4896_ad5a4f
crossref_primary_10_12737_2219_0767_2022_15_3_110_128
crossref_primary_10_1016_j_sna_2022_113877
crossref_primary_10_3390_act7030038
crossref_primary_10_3390_mi9030108
Cites_doi 10.1109/TCAPT.2003.809110
10.1002/9780470649671
10.1109/MEMSYS.2013.6474352
10.1109/CERMA.2007.4367751
10.1109/TCPMT.2013.2282362
10.1109/ICSENS.2012.6411220
10.1109/JSEN.2009.2034624
10.1109/Transducers.2013.6627086
10.1109/NEWCAS.2013.6573624
10.1109/TCAPT.2009.2018834
10.1109/6144.910802
ContentType Journal Article
Copyright The Author(s) 2016
Copyright_xml – notice: The Author(s) 2016
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11340-016-0170-1
DatabaseName SpringerOpen
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1741-2765
EndPage 1303
ExternalDocumentID 10_1007_s11340_016_0170_1
GroupedDBID -5B
-5G
-BR
-EM
-XX
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDEX
ABDZT
ABECU
ABFGW
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBEA
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFDAS
AFEXP
AFFNX
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAGR
AIAKS
AIDUJ
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
E.L
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G8K
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IGS
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LAS
LLZTM
M4V
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9P
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UCJ
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XSW
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABDPE
ABYXP
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c331t-fda53f4192b3e02bc734b7f559f63d16e726dc00cd6b0a0c601e2d0cd0e10a43
IEDL.DBID AEJHL
ISSN 0014-4851
IngestDate Thu Nov 21 21:56:26 EST 2024
Sat Dec 16 12:04:35 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Microelectromechanical systems
Thermal management
MEMS
Cantilever beams
Bimorph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-fda53f4192b3e02bc734b7f559f63d16e726dc00cd6b0a0c601e2d0cd0e10a43
OpenAccessLink http://link.springer.com/10.1007/s11340-016-0170-1
PageCount 11
ParticipantIDs crossref_primary_10_1007_s11340_016_0170_1
springer_journals_10_1007_s11340_016_0170_1
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Experimental mechanics
PublicationTitleAbbrev Exp Mech
PublicationYear 2016
Publisher Springer US
Publisher_xml – name: Springer US
References PolyMUMPs™ material properties database (2009) CoventorWare MEMS
Li M-H, Li C-S, Chin C-H, Chen C-Y, Li S-S (2013) An ultra-low power ovenized CMOS-MEMS resonator monolithically integrated with interface circuits. IEEE MEMS 2013, Taipei, Taiwan
SucecJHeat transfer1975New YorkSimon & Schusster, Inc0996.76080
DeVoe DL Thermal issues in MEMS and microscale systems. IEEE Trans Compon Packag Technol 25(4):576–83
ZhouFArunasalamPMurrayBTSammakiaBModeling heat transport in thermal interface materials enhanced with MEMS-based microinterconnectsIEEE Trans Compon Packag Technol2010331162410.1109/TCAPT.2009.2018834
Pal S, Samuelson SR, Zhang X, Xie H (2013) Large in-plane displacement microactuators based on electro-thermal bimorphs with folded multiple segments. IEEE Transducers 2013, Barcelona, Spain
Carter J, Cowen A, Hardy B, Mahadevan R, Stonefield M, Wilcenski S PolyMUMPs™ Design Handbook (Revision 11.0). MEMSCAP Inc.
LaidlerKJChemical kinetics19873New YorkHarper & Row42
CoutuRAOstrowSAMicroelectromechanical systems (MEMS) resistive heaters as circuit protection devicesIEEE Trans Compon Packag Manuf Technol20133122174217910.1109/TCPMT.2013.2282362
BoyerLContact resistance calculations: generalizations of Greenwood’s formula including interface filmsIEEE Trans Compon Packag Technol200124505810.1109/6144.910802
Bazaei A, Fowler AG, Moheimani SOR (2012) Improved electrothermal position sensing in MEMS with non-uniformly shaped heaters. IEEE
Hildenbrand J, Korvink J, Wollënstein J, Peter C, Kürzinger A, Naumann F, Ebert M, Lamprecht F (2010) Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems. IEEE Sensors J 10(2)
Varona J, Tecpoyotl-Torres M, Hamoui AA (2007) Modeling of MEMS thermal actuation with external heat source. Electronics, Robotics and Automotive Mechanics Conference, vol 596, pp 591–6
Siegele M, Gamauf C, Nemecek A, Mutinati GC, Steinhauer S, Köck A, Kraft J, Siegert J, Schrank F (2013) Optimized integrated micro-hotplates in CMOS technology. IEEE
Roman CT, Starman LA, Coutu RA Jr (2010) Thermal management and metamaterials. Proceedings of the SEM Annual Conference, The 11th International Symposium on MEMS and Nanotechnology, vol 2. Indianapolis, IN, p 215–222
LeeKBPrinciples of microelectromechanical systems2011HobokenWiley10.1002/9780470649671
F Zhou (170_CR4) 2010; 33
KB Lee (170_CR10) 2011
170_CR8
170_CR9
170_CR5
170_CR6
170_CR7
L Boyer (170_CR14) 2001; 24
RA Coutu (170_CR13) 2013; 3
KJ Laidler (170_CR1) 1987
170_CR2
170_CR3
170_CR12
J Sucec (170_CR11) 1975
170_CR16
170_CR15
References_xml – start-page: 42
  volume-title: Chemical kinetics
  year: 1987
  ident: 170_CR1
  contributor:
    fullname: KJ Laidler
– ident: 170_CR9
– ident: 170_CR3
  doi: 10.1109/TCAPT.2003.809110
– volume-title: Principles of microelectromechanical systems
  year: 2011
  ident: 170_CR10
  doi: 10.1002/9780470649671
  contributor:
    fullname: KB Lee
– ident: 170_CR8
  doi: 10.1109/MEMSYS.2013.6474352
– volume-title: Heat transfer
  year: 1975
  ident: 170_CR11
  contributor:
    fullname: J Sucec
– ident: 170_CR16
– ident: 170_CR2
  doi: 10.1109/CERMA.2007.4367751
– ident: 170_CR15
– volume: 3
  start-page: 2174
  issue: 12
  year: 2013
  ident: 170_CR13
  publication-title: IEEE Trans Compon Packag Manuf Technol
  doi: 10.1109/TCPMT.2013.2282362
  contributor:
    fullname: RA Coutu
– ident: 170_CR5
  doi: 10.1109/ICSENS.2012.6411220
– ident: 170_CR6
  doi: 10.1109/JSEN.2009.2034624
– ident: 170_CR7
  doi: 10.1109/Transducers.2013.6627086
– ident: 170_CR12
  doi: 10.1109/NEWCAS.2013.6573624
– volume: 33
  start-page: 16
  issue: 1
  year: 2010
  ident: 170_CR4
  publication-title: IEEE Trans Compon Packag Technol
  doi: 10.1109/TCAPT.2009.2018834
  contributor:
    fullname: F Zhou
– volume: 24
  start-page: 50
  year: 2001
  ident: 170_CR14
  publication-title: IEEE Trans Compon Packag Technol
  doi: 10.1109/6144.910802
  contributor:
    fullname: L Boyer
SSID ssj0007372
Score 2.2318826
Snippet This paper examines a passive cooling technique using microelectromechanical systems (MEMS) for localized thermal management of electronic devices. The...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1293
SubjectTerms Biomedical Engineering and Bioengineering
Characterization and Evaluation of Materials
Control
Dynamical Systems
Engineering
Lasers
Optical Devices
Optics
Photonics
Solid Mechanics
Vibration
Title Thermal Management Using MEMS Bimorph Cantilever Beams
URI https://link.springer.com/article/10.1007/s11340-016-0170-1
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1Bu8DAN6J8yQMTyMiOnTgZ25KqQpSlHdiiOLYXIEW0_f-c06SlEgwwRrKi6Pn53l3ufAdwYzmzodIxVVpEVGoX0iRUxg8RQP1IuHOmGmI7Vs8v8UPq2-QEq18X5et9k5GsDPX6rhsXvhKR-wBYMYoRTxulJ0Rut7vp4_BpZX_94JWl_ZVUokPR5DJ_esmmGm2mQiuFGez_59sOYK_2J0l3SYBD2LLlEex-6zJ4DBFSAc3vG1mXupCqUoCM0tGY9HC3EGzSR4zRRCC1Sc_m77MTmAzSSX9I63EJtBCCz6kzeSicz-pqYVmgCyWkVg5DBhcJwyOrgsgUjBUm0ixnBYZiNjD4yHDDcilOoVVOS3sGxOk4YVLaBLVc6qjQWhuGJz-xcc7RpevAbYNa9rFsipGt2x97LDJfOOaxyHgH7hrQsvp8zH5fff6n1RewE1So-5qvS2jNPxf2CrZnZnFds-ILGriuYQ
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwADb0R5emACWXJix07GFlpa0XZpBrYoju0JCqLt_-ecJpRKMMBoybKs78730H2-A7ixAbOR0jFVmksqtItoEinjhwig_0gC50w5xHaixs_xQ9e3yeH1X5iS7V6XJEtLvfrsFnBPRQx8BqwYxZSnKRIpUJWb7UH62PsywH7yytIACyowoqiLmT8dsu6O1muhpYvp7f3rcvuwW0WUpL1UgQPYsNND2PnWZ_AIJCoDGuAXsiK7kJIrQEbd0YR0UF4IN7lHlNFIoHKTjs1fZ8eQ9rrpfZ9WAxNowXkwp87kEXe-rqu5ZaEuFBdaOUwanOQmkFaF0hSMFUZqlrMCkzEbGlwyFFku-Ak0pm9TewrE6ThhQtgEvbnQstBaG4ZvP7FxHmBQ14LbGrbsfdkWI1s1QPZYZJ465rHIghbc1aBl1QuZ_b777E-7r2Grn46G2XAwfjqH7bCUgGeIXUBj_rGwl7A5M4urSkU-Abnesks
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7agujBt1ifOXhSQpMmu9k9SR9bqrZFaA_els0mOelabPv_nezDWtCDeAyEsMzMzoP55huEbgyjxpMqIFJxnwhlPRJ6UrslAhA_QmatzpfYTuT4JehFjibnvpqFydHuVUuymGlwLE3ZojnTtrkafGPcwRKZq4YlJVD-1AUUMmDo9Xb0OBh-OWO3haVwxoIIyC6qxuZPj6yHpvW-aB5u-nv__tB9tFtmmrhdmMYB2jDZIdr5xj94hHwwEnDMr3gFgsE5hgCPotEEd0CPoAbcBemD8wCjxx2TvM2P0bQfTbsDUi5SICnnbEGsTjxuXb9XcUNbKpVcKGmhmLA-18w3suXrlNJU-4omNIUizbQ0HCmoMhH8BNWy98ycImxVEFIhTAhRXig_VUppCj4hNEHCINlroNtKhPGsoMuIV8TIThaxg5Q5WcSsge4qAcblnzP__fbZn25fo63nXj8ePoyfztF2K1eAA4ZdoNriY2ku0eZcL69Ka_kEWo67FA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Management+Using+MEMS+Bimorph+Cantilever+Beams&rft.jtitle=Experimental+mechanics&rft.au=Coutu%2C+R.+A.&rft.au=LaFleur%2C+R.+S.&rft.au=Walton%2C+J.+P.+K.&rft.au=Starman%2C+L.+A.&rft.date=2016-09-01&rft.pub=Springer+US&rft.issn=0014-4851&rft.eissn=1741-2765&rft.volume=56&rft.issue=7&rft.spage=1293&rft.epage=1303&rft_id=info:doi/10.1007%2Fs11340-016-0170-1&rft.externalDocID=10_1007_s11340_016_0170_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4851&client=summon