Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI

Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 69; no. 11; pp. 3145 - 3154
Main Authors: Knight, Anna E, Jin, Felix Q, Paley, Courtney Trutna, Rouze, Ned C, Moavenzadeh, Spencer R, Pietrosimone, Laura S, Palmeri, Mark L, Nightingale, Kathryn R
Format: Journal Article
Language:English
Published: United States The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01-11-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μ , the transverse shear modulus μ , and the tensile anisotropy χ . Measurement of the SV wave is necessary to characterize χ , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μ , μ , χ , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μ increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μ increases, the SV wave speeds increase; 3) as χ increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text].
AbstractList Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus [Formula Omitted], the transverse shear modulus [Formula Omitted], and the tensile anisotropy [Formula Omitted]. Measurement of the SV wave is necessary to characterize [Formula Omitted], but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green’s function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: [Formula Omitted], [Formula Omitted], [Formula Omitted], fiber tilt angle [Formula Omitted], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as [Formula Omitted] increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as [Formula Omitted] increases, the SV wave speeds increase; 3) as [Formula Omitted] increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula Omitted] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an [Formula Omitted] push geometry and [Formula Omitted].
Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μ , the transverse shear modulus μ , and the tensile anisotropy χ . Measurement of the SV wave is necessary to characterize χ , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μ , μ , χ , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μ increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μ increases, the SV wave speeds increase; 3) as χ increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text].
Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μL , the transverse shear modulus μT , and the tensile anisotropy χE . Measurement of the SV wave is necessary to characterize χE , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μL , μT , χE , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μL increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μT increases, the SV wave speeds increase; 3) as χE increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text].
Author Pietrosimone, Laura S
Knight, Anna E
Jin, Felix Q
Rouze, Ned C
Palmeri, Mark L
Paley, Courtney Trutna
Nightingale, Kathryn R
Moavenzadeh, Spencer R
Author_xml – sequence: 1
  givenname: Anna E
  surname: Knight
  fullname: Knight, Anna E
– sequence: 2
  givenname: Felix Q
  surname: Jin
  fullname: Jin, Felix Q
– sequence: 3
  givenname: Courtney Trutna
  surname: Paley
  fullname: Paley, Courtney Trutna
– sequence: 4
  givenname: Ned C
  surname: Rouze
  fullname: Rouze, Ned C
– sequence: 5
  givenname: Spencer R
  surname: Moavenzadeh
  fullname: Moavenzadeh, Spencer R
– sequence: 6
  givenname: Laura S
  surname: Pietrosimone
  fullname: Pietrosimone, Laura S
– sequence: 7
  givenname: Mark L
  surname: Palmeri
  fullname: Palmeri, Mark L
– sequence: 8
  givenname: Kathryn R
  surname: Nightingale
  fullname: Nightingale, Kathryn R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36054392$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1LKzEUhoMoWj_-gAsJuHEzNR-TdLKU2l4LimJbXQ5p5kRHppOaMxX672-qvXfh6hw4z_ty4Dkm-21ogZBzzvqcM3M9m4_Hw75gQvSlYNJItUd6XAmVFUapfdJjRaEyyTg7IseIH4zxPDfikBxJzVQujegRfLLRLqGLtaM3rW02WCMNnk5f6EOogE7fwUb6ar8Aad3SWbQtfkFEaDZ0gqGLYZWSD7aDWNsG6Rzr9o3Omy5aDG06PYfOdnVI1VRmt3T6OpqckgOfWDjbzRMyH49mw7vs_vHPZHhznzkpeZctHAxsUTkApxxnwiuvnTA6X3BnpU5L7r3xeqGNZaaCQhdKgLZQGG9Y5eQJufrpXcXwuQbsymWNDprGthDWWIoBMwOpJR8k9PIX-hHWMT29pSQXueBGJUr8UC4GxAi-XMV6aeOm5KzcKim_lZRbJeVOSQpd7KrXiyVU_yP_HMi_G4WJFQ
CitedBy_id crossref_primary_10_1016_j_jmbbm_2023_106302
Cites_doi 10.1016/j.diii.2015.05.010
10.14366/usg.17017
10.1109/58.139123
10.1016/j.jmps.2016.04.028
10.1016/j.jbiomech.2015.05.038
10.1148/radiol.2015142212
10.1109/IUS52206.2021.9593455
10.1016/j.ultrasmedbio.2010.02.013
10.1016/j.jbiomech.2008.03.033
10.1109/TMI.2013.2262948
10.1088/1361-6560/62/1/91
10.1002/jcu.22534
10.1088/1361-6560/ab5c2d
10.1121/1.3559681
10.1016/j.jbiomech.2013.09.008
10.1259/bjr/93042867
10.1016/j.jbiomech.2015.09.009
10.1152/japplphysiol.00835.2019
10.1109/TUFFC.2005.1561624
10.1016/j.apmr.2014.07.007
10.1109/ULTSYM.2010.5935919
10.1088/0967-3334/33/3/N19
10.1016/j.ultrasmedbio.2018.07.004
10.1088/1361-6579/aae7e2
10.1121/1.1579008
10.1088/0031-9155/59/24/7735
10.1016/j.ultrasmedbio.2015.04.020
10.1016/j.jbiomech.2016.02.018
10.1002/mrm.25740
10.1088/1361-6560/aacfaf
10.1002/mrm.20993
10.1088/0031-9155/60/9/3639
10.1109/TMI.2021.3106278
10.1007/s00256-017-2843-y
10.1115/1.4046127
10.1148/rg.2017160116
10.1016/j.ultrasmedbio.2019.06.417
10.1371/journal.pone.0044348
10.1016/j.jbiomech.2013.07.033
10.1007/s11357-013-9517-z
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
L7M
7X8
DOI 10.1109/TUFFC.2022.3203935
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Solid State and Superconductivity Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 3154
ExternalDocumentID 10_1109_TUFFC_2022_3203935
36054392
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB033064
– fundername: NCI NIH HHS
  grantid: R01 CA142824
– fundername: NIBIB NIH HHS
  grantid: R01 EB022106
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABTAH
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
NPM
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
UKR
VH1
ZXP
ZY4
AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
L7M
7X8
ID FETCH-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3
ISSN 0885-3010
IngestDate Wed Jul 24 18:19:43 EDT 2024
Thu Oct 10 17:59:27 EDT 2024
Fri Aug 23 02:42:44 EDT 2024
Sat Sep 28 08:17:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0491-0821
0000-0001-8995-0050
0000-0003-2154-2434
0000-0003-0960-4495
0000-0002-2632-413X
0000-0003-0533-618X
0000-0002-0565-6354
PMID 36054392
PQID 2731242195
PQPubID 85455
PageCount 10
ParticipantIDs proquest_miscellaneous_2709736317
proquest_journals_2731242195
crossref_primary_10_1109_TUFFC_2022_3203935
pubmed_primary_36054392
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2022
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
Jin (ref39) 2022
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Lai (ref31) 2010
ref5
ref40
References_xml – ident: ref6
  doi: 10.1016/j.diii.2015.05.010
– ident: ref9
  doi: 10.14366/usg.17017
– ident: ref38
  doi: 10.1109/58.139123
– ident: ref20
  doi: 10.1016/j.jmps.2016.04.028
– ident: ref35
  doi: 10.1016/j.jbiomech.2015.05.038
– ident: ref2
  doi: 10.1148/radiol.2015142212
– ident: ref32
  doi: 10.1109/IUS52206.2021.9593455
– ident: ref12
  doi: 10.1016/j.ultrasmedbio.2010.02.013
– ident: ref22
  doi: 10.1016/j.jbiomech.2008.03.033
– volume-title: A Radon Transform Wave-Speed Estimator (V2.0.1)
  year: 2022
  ident: ref39
  contributor:
    fullname: Jin
– ident: ref25
  doi: 10.1109/TMI.2013.2262948
– ident: ref41
  doi: 10.1088/1361-6560/62/1/91
– ident: ref7
  doi: 10.1002/jcu.22534
– ident: ref27
  doi: 10.1088/1361-6560/ab5c2d
– ident: ref16
  doi: 10.1121/1.3559681
– ident: ref26
  doi: 10.1016/j.jbiomech.2013.09.008
– ident: ref34
  doi: 10.1259/bjr/93042867
– ident: ref19
  doi: 10.1016/j.jbiomech.2015.09.009
– ident: ref37
  doi: 10.1152/japplphysiol.00835.2019
– ident: ref29
  doi: 10.1109/TUFFC.2005.1561624
– ident: ref23
  doi: 10.1016/j.apmr.2014.07.007
– ident: ref30
  doi: 10.1109/ULTSYM.2010.5935919
– volume-title: Introduction to Continum Mechanics
  year: 2010
  ident: ref31
  contributor:
    fullname: Lai
– ident: ref1
  doi: 10.1088/0967-3334/33/3/N19
– ident: ref24
  doi: 10.1016/j.ultrasmedbio.2018.07.004
– ident: ref5
  doi: 10.1088/1361-6579/aae7e2
– ident: ref11
  doi: 10.1121/1.1579008
– ident: ref14
  doi: 10.1088/0031-9155/59/24/7735
– ident: ref8
  doi: 10.1016/j.ultrasmedbio.2015.04.020
– ident: ref18
  doi: 10.1016/j.jbiomech.2016.02.018
– ident: ref21
  doi: 10.1002/mrm.25740
– ident: ref42
  doi: 10.1088/1361-6560/aacfaf
– ident: ref15
  doi: 10.1002/mrm.20993
– ident: ref40
  doi: 10.1088/0031-9155/60/9/3639
– ident: ref28
  doi: 10.1109/TMI.2021.3106278
– ident: ref4
  doi: 10.1007/s00256-017-2843-y
– ident: ref17
  doi: 10.1115/1.4046127
– ident: ref33
  doi: 10.1148/rg.2017160116
– ident: ref10
  doi: 10.1016/j.ultrasmedbio.2019.06.417
– ident: ref3
  doi: 10.1371/journal.pone.0044348
– ident: ref13
  doi: 10.1016/j.jbiomech.2013.07.033
– ident: ref36
  doi: 10.1007/s11357-013-9517-z
SSID ssj0014492
Score 2.4519193
Snippet Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 3145
SubjectTerms Amplitudes
Anisotropy
Elasticity
Elasticity Imaging Techniques - methods
Evaluation
Geometry
Green's functions
Interrogation
Isotropic material
Muscles
Parameters
Parametric analysis
Parametric statistics
SH waves
Shear modulus
Transverse shear
Ultrasonics
Ultrasonography
Title Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI
URI https://www.ncbi.nlm.nih.gov/pubmed/36054392
https://www.proquest.com/docview/2731242195
https://search.proquest.com/docview/2709736317
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lRUhwQFBegYIWiZvlYmf92iNqE7WoBGictjfLj12pUmRXfiDKr2dm12unqpDKgYsTrWM72vk8OzM78w0hHzkXmZNh_MvJhe2FDodXijM7kH4ocjAZUonFycercHkZHc29-WRiWhqOY_9V0jAGssbK2X-Q9nBTGIDvIHM4gtTheC-5f08x3Qp5928RjqzOVdszS3Wwti7SnyoRS3ObY2aG2NxYJ03V1tU1XPk1bfV_tXRKwXrT1mmjmuWcVa2JHzL7yFpdzE-2DVx0HrHvhGlCrnYjuuFyhRop6rrS_Xf6EYzey1pndd-Y9PlhLShNAAHZnsfSiS-a_mAhNle_rB_jXlgfhcdufG0JKi-uu7YcVp-zqvutgrhLjG1vBz3AX3aHoIfoFfXMtyOuKX6NJtdNXwxi3S29zFxNWtmv8czVzNV31w9FvxqvF4vDA3zuAZup4uVxtTQZAstvyWJ9eprE88t4hzyYgZ7ryweHTSzP4zNTp-XwT3fvetsW-ouDowyd-Cl50nso9LOG1jMyEeUeebzFW7lHHqq84bx5TpoRbtTAjVaSrs4pwo0quFEFN3pV0m240QFudIAbVXCjI9zoCDcKcKMItxdkvZjHh8d238fDzhlzWzvLRZhGBZhjuZ-DQSt9GeS43Z-5eYr9JD1PSi6DLOCpwwsRBZE_E0EqIi65U-TsJdktq1K8JlRErst5UXhc-l7oeRljgSxkGsGnn8lwSiwzo8m1pmtJlJvr8ETNf4Lzn_TzPyX7ZtKT_hVuErDnXcyT4HD6w3AalC7upKWlqDr8DbJcBWB7T8krLazhcSwALwi8jjf3uPoteTSie5_stnUn3pGdpujeKyj9AcKOq1g
link.rule.ids 315,782,786,27933,27934
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+Analysis+of+SV+Mode+Shear+Waves+in+Transversely+Isotropic+Materials+Using+Ultrasonic+Rotational+3-D+SWEI&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Knight%2C+Anna+E&rft.au=Jin%2C+Felix+Q&rft.au=Paley%2C+Courtney+Trutna&rft.au=Rouze%2C+Ned+C&rft.date=2022-11-01&rft.eissn=1525-8955&rft.volume=69&rft.issue=11&rft.spage=3145&rft.epage=3154&rft_id=info:doi/10.1109%2FTUFFC.2022.3203935&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon