Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI
Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 69; no. 11; pp. 3145 - 3154 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01-11-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μ
, the transverse shear modulus μ
, and the tensile anisotropy χ
. Measurement of the SV wave is necessary to characterize χ
, but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μ
, μ
, χ
, fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μ
increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μ
increases, the SV wave speeds increase; 3) as χ
increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text]. |
---|---|
AbstractList | Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus [Formula Omitted], the transverse shear modulus [Formula Omitted], and the tensile anisotropy [Formula Omitted]. Measurement of the SV wave is necessary to characterize [Formula Omitted], but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green’s function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: [Formula Omitted], [Formula Omitted], [Formula Omitted], fiber tilt angle [Formula Omitted], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as [Formula Omitted] increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as [Formula Omitted] increases, the SV wave speeds increase; 3) as [Formula Omitted] increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula Omitted] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an [Formula Omitted] push geometry and [Formula Omitted]. Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μ , the transverse shear modulus μ , and the tensile anisotropy χ . Measurement of the SV wave is necessary to characterize χ , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μ , μ , χ , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μ increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μ increases, the SV wave speeds increase; 3) as χ increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text]. Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μL , the transverse shear modulus μT , and the tensile anisotropy χE . Measurement of the SV wave is necessary to characterize χE , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μL , μT , χE , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μL increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μT increases, the SV wave speeds increase; 3) as χE increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text]. |
Author | Pietrosimone, Laura S Knight, Anna E Jin, Felix Q Rouze, Ned C Palmeri, Mark L Paley, Courtney Trutna Nightingale, Kathryn R Moavenzadeh, Spencer R |
Author_xml | – sequence: 1 givenname: Anna E surname: Knight fullname: Knight, Anna E – sequence: 2 givenname: Felix Q surname: Jin fullname: Jin, Felix Q – sequence: 3 givenname: Courtney Trutna surname: Paley fullname: Paley, Courtney Trutna – sequence: 4 givenname: Ned C surname: Rouze fullname: Rouze, Ned C – sequence: 5 givenname: Spencer R surname: Moavenzadeh fullname: Moavenzadeh, Spencer R – sequence: 6 givenname: Laura S surname: Pietrosimone fullname: Pietrosimone, Laura S – sequence: 7 givenname: Mark L surname: Palmeri fullname: Palmeri, Mark L – sequence: 8 givenname: Kathryn R surname: Nightingale fullname: Nightingale, Kathryn R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36054392$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1LKzEUhoMoWj_-gAsJuHEzNR-TdLKU2l4LimJbXQ5p5kRHppOaMxX672-qvXfh6hw4z_ty4Dkm-21ogZBzzvqcM3M9m4_Hw75gQvSlYNJItUd6XAmVFUapfdJjRaEyyTg7IseIH4zxPDfikBxJzVQujegRfLLRLqGLtaM3rW02WCMNnk5f6EOogE7fwUb6ar8Aad3SWbQtfkFEaDZ0gqGLYZWSD7aDWNsG6Rzr9o3Omy5aDG06PYfOdnVI1VRmt3T6OpqckgOfWDjbzRMyH49mw7vs_vHPZHhznzkpeZctHAxsUTkApxxnwiuvnTA6X3BnpU5L7r3xeqGNZaaCQhdKgLZQGG9Y5eQJufrpXcXwuQbsymWNDprGthDWWIoBMwOpJR8k9PIX-hHWMT29pSQXueBGJUr8UC4GxAi-XMV6aeOm5KzcKim_lZRbJeVOSQpd7KrXiyVU_yP_HMi_G4WJFQ |
CitedBy_id | crossref_primary_10_1016_j_jmbbm_2023_106302 |
Cites_doi | 10.1016/j.diii.2015.05.010 10.14366/usg.17017 10.1109/58.139123 10.1016/j.jmps.2016.04.028 10.1016/j.jbiomech.2015.05.038 10.1148/radiol.2015142212 10.1109/IUS52206.2021.9593455 10.1016/j.ultrasmedbio.2010.02.013 10.1016/j.jbiomech.2008.03.033 10.1109/TMI.2013.2262948 10.1088/1361-6560/62/1/91 10.1002/jcu.22534 10.1088/1361-6560/ab5c2d 10.1121/1.3559681 10.1016/j.jbiomech.2013.09.008 10.1259/bjr/93042867 10.1016/j.jbiomech.2015.09.009 10.1152/japplphysiol.00835.2019 10.1109/TUFFC.2005.1561624 10.1016/j.apmr.2014.07.007 10.1109/ULTSYM.2010.5935919 10.1088/0967-3334/33/3/N19 10.1016/j.ultrasmedbio.2018.07.004 10.1088/1361-6579/aae7e2 10.1121/1.1579008 10.1088/0031-9155/59/24/7735 10.1016/j.ultrasmedbio.2015.04.020 10.1016/j.jbiomech.2016.02.018 10.1002/mrm.25740 10.1088/1361-6560/aacfaf 10.1002/mrm.20993 10.1088/0031-9155/60/9/3639 10.1109/TMI.2021.3106278 10.1007/s00256-017-2843-y 10.1115/1.4046127 10.1148/rg.2017160116 10.1016/j.ultrasmedbio.2019.06.417 10.1371/journal.pone.0044348 10.1016/j.jbiomech.2013.07.033 10.1007/s11357-013-9517-z |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SP 7U5 8FD F28 FR3 L7M 7X8 |
DOI | 10.1109/TUFFC.2022.3203935 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1525-8955 |
EndPage | 3154 |
ExternalDocumentID | 10_1109_TUFFC_2022_3203935 36054392 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB033064 – fundername: NCI NIH HHS grantid: R01 CA142824 – fundername: NIBIB NIH HHS grantid: R01 EB022106 |
GroupedDBID | --- -~X .GJ 0R~ 186 29I 3EH 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AASAJ ABQJQ ABTAH ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CGR CS3 CUY CVF DU5 EBS ECM EIF EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 NPM O9- OCL P2P RIA RIE RIG RNS TN5 TWZ UKR VH1 ZXP ZY4 AAYXX CITATION 7SP 7U5 8FD F28 FR3 L7M 7X8 |
ID | FETCH-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3 |
ISSN | 0885-3010 |
IngestDate | Wed Jul 24 18:19:43 EDT 2024 Thu Oct 10 17:59:27 EDT 2024 Fri Aug 23 02:42:44 EDT 2024 Sat Sep 28 08:17:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0491-0821 0000-0001-8995-0050 0000-0003-2154-2434 0000-0003-0960-4495 0000-0002-2632-413X 0000-0003-0533-618X 0000-0002-0565-6354 |
PMID | 36054392 |
PQID | 2731242195 |
PQPubID | 85455 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2709736317 proquest_journals_2731242195 crossref_primary_10_1109_TUFFC_2022_3203935 pubmed_primary_36054392 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
PublicationTitleAlternate | IEEE Trans Ultrason Ferroelectr Freq Control |
PublicationYear | 2022 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 Jin (ref39) 2022 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Lai (ref31) 2010 ref5 ref40 |
References_xml | – ident: ref6 doi: 10.1016/j.diii.2015.05.010 – ident: ref9 doi: 10.14366/usg.17017 – ident: ref38 doi: 10.1109/58.139123 – ident: ref20 doi: 10.1016/j.jmps.2016.04.028 – ident: ref35 doi: 10.1016/j.jbiomech.2015.05.038 – ident: ref2 doi: 10.1148/radiol.2015142212 – ident: ref32 doi: 10.1109/IUS52206.2021.9593455 – ident: ref12 doi: 10.1016/j.ultrasmedbio.2010.02.013 – ident: ref22 doi: 10.1016/j.jbiomech.2008.03.033 – volume-title: A Radon Transform Wave-Speed Estimator (V2.0.1) year: 2022 ident: ref39 contributor: fullname: Jin – ident: ref25 doi: 10.1109/TMI.2013.2262948 – ident: ref41 doi: 10.1088/1361-6560/62/1/91 – ident: ref7 doi: 10.1002/jcu.22534 – ident: ref27 doi: 10.1088/1361-6560/ab5c2d – ident: ref16 doi: 10.1121/1.3559681 – ident: ref26 doi: 10.1016/j.jbiomech.2013.09.008 – ident: ref34 doi: 10.1259/bjr/93042867 – ident: ref19 doi: 10.1016/j.jbiomech.2015.09.009 – ident: ref37 doi: 10.1152/japplphysiol.00835.2019 – ident: ref29 doi: 10.1109/TUFFC.2005.1561624 – ident: ref23 doi: 10.1016/j.apmr.2014.07.007 – ident: ref30 doi: 10.1109/ULTSYM.2010.5935919 – volume-title: Introduction to Continum Mechanics year: 2010 ident: ref31 contributor: fullname: Lai – ident: ref1 doi: 10.1088/0967-3334/33/3/N19 – ident: ref24 doi: 10.1016/j.ultrasmedbio.2018.07.004 – ident: ref5 doi: 10.1088/1361-6579/aae7e2 – ident: ref11 doi: 10.1121/1.1579008 – ident: ref14 doi: 10.1088/0031-9155/59/24/7735 – ident: ref8 doi: 10.1016/j.ultrasmedbio.2015.04.020 – ident: ref18 doi: 10.1016/j.jbiomech.2016.02.018 – ident: ref21 doi: 10.1002/mrm.25740 – ident: ref42 doi: 10.1088/1361-6560/aacfaf – ident: ref15 doi: 10.1002/mrm.20993 – ident: ref40 doi: 10.1088/0031-9155/60/9/3639 – ident: ref28 doi: 10.1109/TMI.2021.3106278 – ident: ref4 doi: 10.1007/s00256-017-2843-y – ident: ref17 doi: 10.1115/1.4046127 – ident: ref33 doi: 10.1148/rg.2017160116 – ident: ref10 doi: 10.1016/j.ultrasmedbio.2019.06.417 – ident: ref3 doi: 10.1371/journal.pone.0044348 – ident: ref13 doi: 10.1016/j.jbiomech.2013.07.033 – ident: ref36 doi: 10.1007/s11357-013-9517-z |
SSID | ssj0014492 |
Score | 2.4519193 |
Snippet | Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 3145 |
SubjectTerms | Amplitudes Anisotropy Elasticity Elasticity Imaging Techniques - methods Evaluation Geometry Green's functions Interrogation Isotropic material Muscles Parameters Parametric analysis Parametric statistics SH waves Shear modulus Transverse shear Ultrasonics Ultrasonography |
Title | Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36054392 https://www.proquest.com/docview/2731242195 https://search.proquest.com/docview/2709736317 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lRUhwQFBegYIWiZvlYmf92iNqE7WoBGictjfLj12pUmRXfiDKr2dm12unqpDKgYsTrWM72vk8OzM78w0hHzkXmZNh_MvJhe2FDodXijM7kH4ocjAZUonFycercHkZHc29-WRiWhqOY_9V0jAGssbK2X-Q9nBTGIDvIHM4gtTheC-5f08x3Qp5928RjqzOVdszS3Wwti7SnyoRS3ObY2aG2NxYJ03V1tU1XPk1bfV_tXRKwXrT1mmjmuWcVa2JHzL7yFpdzE-2DVx0HrHvhGlCrnYjuuFyhRop6rrS_Xf6EYzey1pndd-Y9PlhLShNAAHZnsfSiS-a_mAhNle_rB_jXlgfhcdufG0JKi-uu7YcVp-zqvutgrhLjG1vBz3AX3aHoIfoFfXMtyOuKX6NJtdNXwxi3S29zFxNWtmv8czVzNV31w9FvxqvF4vDA3zuAZup4uVxtTQZAstvyWJ9eprE88t4hzyYgZ7ryweHTSzP4zNTp-XwT3fvetsW-ouDowyd-Cl50nso9LOG1jMyEeUeebzFW7lHHqq84bx5TpoRbtTAjVaSrs4pwo0quFEFN3pV0m240QFudIAbVXCjI9zoCDcKcKMItxdkvZjHh8d238fDzhlzWzvLRZhGBZhjuZ-DQSt9GeS43Z-5eYr9JD1PSi6DLOCpwwsRBZE_E0EqIi65U-TsJdktq1K8JlRErst5UXhc-l7oeRljgSxkGsGnn8lwSiwzo8m1pmtJlJvr8ETNf4Lzn_TzPyX7ZtKT_hVuErDnXcyT4HD6w3AalC7upKWlqDr8DbJcBWB7T8krLazhcSwALwi8jjf3uPoteTSie5_stnUn3pGdpujeKyj9AcKOq1g |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+Analysis+of+SV+Mode+Shear+Waves+in+Transversely+Isotropic+Materials+Using+Ultrasonic+Rotational+3-D+SWEI&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Knight%2C+Anna+E&rft.au=Jin%2C+Felix+Q&rft.au=Paley%2C+Courtney+Trutna&rft.au=Rouze%2C+Ned+C&rft.date=2022-11-01&rft.eissn=1525-8955&rft.volume=69&rft.issue=11&rft.spage=3145&rft.epage=3154&rft_id=info:doi/10.1109%2FTUFFC.2022.3203935&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon |