Dynamics of front-like water evaporation phase transition interfaces

•We study global dynamics of phase transition evaporation interfaces in the form of traveling fronts in horizontally extended domains of porous layers where a water located over a vapor.•Properties of traveling fronts are analyzed analytically and numerically.•The asymptotic behavior of perturbation...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation Vol. 67; pp. 223 - 236
Main Authors: Shargatov, V.A., Gorkunov, S.V., Il’ichev, A.T.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-02-2019
Elsevier Science Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We study global dynamics of phase transition evaporation interfaces in the form of traveling fronts in horizontally extended domains of porous layers where a water located over a vapor.•Properties of traveling fronts are analyzed analytically and numerically.•The asymptotic behavior of perturbations are described analytically using propagation features of traveling fronts obeying a model diffusion equation.•The expression for a speed of the traveling front was obtained.•The comparison was made of the known results of front dynamics for the model diffusion equation and their dynamics in general situation. We study global dynamics of phase transition evaporation interfaces in the form of traveling fronts in horizontally extended domains of porous layers where a water located over a vapor. These interfaces appear, for example, as asymptotics of shapes of localized perturbations of the unstable plane water evaporation surface caused by long-wave instability of vertical flows in the non-wettable porous domains. Properties of traveling fronts are analyzed analytically and numerically. The asymptotic behavior of perturbations are described analytically using propagation features of traveling fronts obeying a model diffusion equation derived recently for a weakly nonlinear narrow waveband near the threshold of instability. In context of this problem the fronts are unstable though nonlinear interplay makes possible formation of stable wave configurations. The paper is devoted to comparison of the known results of front dynamics for the model diffusion equation, when two phase transition interfaces are close, and their dynamics in general situation when both interfaces are sufficiently far from each other.
AbstractList •We study global dynamics of phase transition evaporation interfaces in the form of traveling fronts in horizontally extended domains of porous layers where a water located over a vapor.•Properties of traveling fronts are analyzed analytically and numerically.•The asymptotic behavior of perturbations are described analytically using propagation features of traveling fronts obeying a model diffusion equation.•The expression for a speed of the traveling front was obtained.•The comparison was made of the known results of front dynamics for the model diffusion equation and their dynamics in general situation. We study global dynamics of phase transition evaporation interfaces in the form of traveling fronts in horizontally extended domains of porous layers where a water located over a vapor. These interfaces appear, for example, as asymptotics of shapes of localized perturbations of the unstable plane water evaporation surface caused by long-wave instability of vertical flows in the non-wettable porous domains. Properties of traveling fronts are analyzed analytically and numerically. The asymptotic behavior of perturbations are described analytically using propagation features of traveling fronts obeying a model diffusion equation derived recently for a weakly nonlinear narrow waveband near the threshold of instability. In context of this problem the fronts are unstable though nonlinear interplay makes possible formation of stable wave configurations. The paper is devoted to comparison of the known results of front dynamics for the model diffusion equation, when two phase transition interfaces are close, and their dynamics in general situation when both interfaces are sufficiently far from each other.
We study global dynamics of phase transition evaporation interfaces in the form of traveling fronts in horizontally extended domains of porous layers where a water located over a vapor. These interfaces appear, for example, as asymptotics of shapes of localized perturbations of the unstable plane water evaporation surface caused by long-wave instability of vertical flows in the non-wettable porous domains. Properties of traveling fronts are analyzed analytically and numerically. The asymptotic behavior of perturbations are described analytically using propagation features of traveling fronts obeying a model diffusion equation derived recently for a weakly nonlinear narrow waveband near the threshold of instability. In context of this problem the fronts are unstable though nonlinear interplay makes possible formation of stable wave configurations. The paper is devoted to comparison of the known results of front dynamics for the model diffusion equation, when two phase transition interfaces are close, and their dynamics in general situation when both interfaces are sufficiently far from each other.
Author Gorkunov, S.V.
Shargatov, V.A.
Il’ichev, A.T.
Author_xml – sequence: 1
  givenname: V.A.
  surname: Shargatov
  fullname: Shargatov, V.A.
  email: shargatov@mail.ru
  organization: Ishlinsky Institute for Problems in Mechanics RAS, Vernadskogo pr., 101, Moscow 119526, Russia
– sequence: 2
  givenname: S.V.
  surname: Gorkunov
  fullname: Gorkunov, S.V.
  email: gorkunov.ser@mail.ru
  organization: Ishlinsky Institute for Problems in Mechanics RAS, Vernadskogo pr., 101, Moscow 119526, Russia
– sequence: 3
  givenname: A.T.
  surname: Il’ichev
  fullname: Il’ichev, A.T.
  email: ilichev@mi.ras.ru
  organization: Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow 119991, Russia
BookMark eNp9kE1PAjEQhhuDiYD-Ai-beN51uh9tOXgwIGpC4kXPTelOY1do13bB8O8t4NlLp5k8z0zmnZCR8w4JuaVQUKDsviu0iy4WJVBRAC8A2AUZU8FFzktej9IfgOcNh_qKTGLsIFmzph6TxeLg1NbqmHmTmeDdkG_sF2Y_asCQ4V71PqjBepf1nypiNgTloj01rEuIURrjNbk0ahPx5q9Oycfy6X3-kq_enl_nj6tcVxUd8hlDBEUFrI2CumEahCmZXregGyYMAoJotGqxNhXTbU1nbYI5rpE3VFSsmpK789w--O8dxkF2fhdcWilLWlac1ulNVHWmdPAxBjSyD3arwkFSkMe4ZCdPccljXBK4THEl6-FsYTpgbzHIqC06ja0NqAfZevuv_wvUpHbe
CitedBy_id crossref_primary_10_18698_0536_1044_2023_9_72_87
crossref_primary_10_4213_tm4100
crossref_primary_10_1134_S0015462820020044
crossref_primary_10_18698_0536_1044_2022_11_58_68
crossref_primary_10_1134_S0040577922050130
crossref_primary_10_18698_0536_1044_2023_10_71_83
crossref_primary_10_1134_S0015462822030156
crossref_primary_10_18698_0536_1044_2022_9_73_82
crossref_primary_10_18698_0536_1044_2023_8_96_108
crossref_primary_10_1134_S0081543820050211
crossref_primary_10_3390_math10173177
crossref_primary_10_1088_1757_899X_779_1_012042
crossref_primary_10_4213_tmf10250
crossref_primary_10_1088_1757_899X_589_1_012033
crossref_primary_10_4213_lkn32
crossref_primary_10_1016_j_amc_2020_125208
crossref_primary_10_1088_1757_899X_779_1_012036
crossref_primary_10_1088_1757_899X_492_1_012036
crossref_primary_10_18698_0536_1044_2023_7_93_106
crossref_primary_10_1088_1757_899X_492_1_012002
Cites_doi 10.1016/0001-8708(76)90098-0
10.1016/0167-2789(93)90197-9
10.1209/0295-5075/122/10001
10.1016/j.ijheatmasstransfer.2014.12.027
10.1016/S0092-8240(79)80020-8
10.1017/S0308210500024525
10.1007/BF01019332
10.1016/j.euromechflu.2007.11.006
10.1134/S0965542513090078
10.1007/BF02101705
10.1134/S106377610810018X
10.1098/rspa.2002.1087
10.1016/0022-0396(92)90153-E
ContentType Journal Article
Copyright 2018
Copyright Elsevier Science Ltd. Feb 2019
Copyright_xml – notice: 2018
– notice: Copyright Elsevier Science Ltd. Feb 2019
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2018.07.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
EndPage 236
ExternalDocumentID 10_1016_j_cnsns_2018_07_006
S1007570418302193
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
AAXDM
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c331t-96ee0a180bfa0456c08f26cbd0c568fe0e085cade4f36cd419d1807ebe7518363
ISSN 1007-5704
IngestDate Thu Oct 10 17:37:15 EDT 2024
Thu Sep 26 18:52:40 EDT 2024
Fri Feb 23 02:45:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Porous medium
Evaporation
Turning point bifurcation
Front stability
Interface
Fingering
KPP equation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-96ee0a180bfa0456c08f26cbd0c568fe0e085cade4f36cd419d1807ebe7518363
PQID 2123714123
PQPubID 2047477
PageCount 14
ParticipantIDs proquest_journals_2123714123
crossref_primary_10_1016_j_cnsns_2018_07_006
elsevier_sciencedirect_doi_10_1016_j_cnsns_2018_07_006
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Il’ichev, Chugainova (bib0016) 2016; vol. 295
Shargatov, Il’ichev, Tsypkin (bib0007) 2015; 83
Pego, Weinstein (bib0018) 1994; 164
Brunet (bib0023) 2016
Kudryashov (bib0010) 1993; 94
Lui (bib0021) 1990; 115
Pego, Weinstein (bib0013) 1992; A340
Kolabin, Dyad’kin, Arens (bib0001) 1988
Berestycki J., Brunet E., Derrida B.. A new approach to computing the asymptotics of the position of Fisher-KPP fronts. 2018.
Il’ichev, Tsypkin (bib0012) 2008; 107
.
Jonkhout (bib0005) 2016
Levinson (bib0017) 1998
Alexander, Sachs (bib0014) 1995; 2
Brevdo (bib0020) 2003; 459
Kolmogorov, Petrovskii, Piskunov (bib0003) 1937; 1
Kirchgässner (bib0022) 1992; 96
Bramson (bib0004) 1983
Lide D.R.. CRC handbook of chemistry and physics. Boca Raton, New York, Washington. 2001. 202.
Ablowitz, Zeppetella (bib0009) 1979; 41
Sattinger (bib0019) 1976; 22
Il’ichev, Shargatov (bib0006) 2013; 53
Pego, Semerka, Weinstein (bib0015) 1993; 67
Ilichev, Tsypkin (bib0002) 2008; 27
Kudryashov (10.1016/j.cnsns.2018.07.006_bib0010) 1993; 94
10.1016/j.cnsns.2018.07.006_bib0011
Pego (10.1016/j.cnsns.2018.07.006_bib0015) 1993; 67
Kirchgässner (10.1016/j.cnsns.2018.07.006_bib0022) 1992; 96
Ilichev (10.1016/j.cnsns.2018.07.006_bib0002) 2008; 27
Pego (10.1016/j.cnsns.2018.07.006_bib0013) 1992; A340
Levinson (10.1016/j.cnsns.2018.07.006_bib0017) 1998
10.1016/j.cnsns.2018.07.006_bib0008
Jonkhout (10.1016/j.cnsns.2018.07.006_bib0005) 2016
Alexander (10.1016/j.cnsns.2018.07.006_bib0014) 1995; 2
Il’ichev (10.1016/j.cnsns.2018.07.006_bib0012) 2008; 107
Shargatov (10.1016/j.cnsns.2018.07.006_bib0007) 2015; 83
Lui (10.1016/j.cnsns.2018.07.006_bib0021) 1990; 115
Il’ichev (10.1016/j.cnsns.2018.07.006_bib0016) 2016; vol. 295
Il’ichev (10.1016/j.cnsns.2018.07.006_bib0006) 2013; 53
Kolmogorov (10.1016/j.cnsns.2018.07.006_bib0003) 1937; 1
Brevdo (10.1016/j.cnsns.2018.07.006_bib0020) 2003; 459
Brunet (10.1016/j.cnsns.2018.07.006_bib0023) 2016
Kolabin (10.1016/j.cnsns.2018.07.006_sbref0001) 1988
Sattinger (10.1016/j.cnsns.2018.07.006_bib0019) 1976; 22
Bramson (10.1016/j.cnsns.2018.07.006_bib0004) 1983
Ablowitz (10.1016/j.cnsns.2018.07.006_bib0009) 1979; 41
Pego (10.1016/j.cnsns.2018.07.006_bib0018) 1994; 164
References_xml – year: 1988
  ident: bib0001
  article-title: Thermophysical aspects of development of underground resourses
  contributor:
    fullname: Arens
– volume: 107
  start-page: 699
  year: 2008
  end-page: 711
  ident: bib0012
  article-title: Instabilities of uniform filtration flows with phase transition
  publication-title: J Exp Theor Phys
  contributor:
    fullname: Tsypkin
– volume: 1
  start-page: 1
  year: 1937
  end-page: 26
  ident: bib0003
  article-title: Study of diffusion equation with an increase in the quantity of matter and its application to a biological problem
  publication-title: Byull Mosk Gos Univ Mat Mekh
  contributor:
    fullname: Piskunov
– volume: 459
  start-page: 1403
  year: 2003
  end-page: 1425
  ident: bib0020
  article-title: Global and absolute instabilities of spatially developing open flows and media with algebraically decaying tails
  publication-title: Proc R Soc Lond A
  contributor:
    fullname: Brevdo
– volume: 164
  start-page: 305
  year: 1994
  end-page: 349
  ident: bib0018
  article-title: Asymptotic stability of solitary waves
  publication-title: Comm Math Phys
  contributor:
    fullname: Weinstein
– year: 2016
  ident: bib0005
  publication-title: Traveling wave solutions of reaction-diffusion equations in population dynamics
  contributor:
    fullname: Jonkhout
– volume: A340
  start-page: 47
  year: 1992
  end-page: 94
  ident: bib0013
  article-title: Eigenvalues, and solitary wave instabilities
  publication-title: Phil Trans R Soc Lond
  contributor:
    fullname: Weinstein
– volume: 2
  start-page: 471
  year: 1995
  end-page: 507
  ident: bib0014
  article-title: Linear instability of a Boussinesq-type equation; a computer assisted computation
  publication-title: Nonlin World
  contributor:
    fullname: Sachs
– volume: vol. 295
  start-page: 148
  year: 2016
  end-page: 157
  ident: bib0016
  article-title: Spectral stability theory of heteroclinic solutions to the Korteweg-de Vries-Burgers equation with an arbitrary potential
  publication-title: Proc. Steklov Inst. Math.
  contributor:
    fullname: Chugainova
– volume: 67
  start-page: 45
  year: 1993
  end-page: 65
  ident: bib0015
  article-title: Oscillatory instability of traveling waves for a KdV-Burgers equation
  publication-title: Physica D
  contributor:
    fullname: Weinstein
– volume: 22
  start-page: 312
  year: 1976
  end-page: 355
  ident: bib0019
  article-title: On the stability of waves of nonlinear parabolic systems
  publication-title: Adv Math
  contributor:
    fullname: Sattinger
– volume: 96
  start-page: 256
  year: 1992
  end-page: 278
  ident: bib0022
  article-title: On the nonlinear dynamics of traveling fronts
  publication-title: J Differ Equ
  contributor:
    fullname: Kirchgässner
– volume: 41
  start-page: 835
  year: 1979
  end-page: 840
  ident: bib0009
  article-title: Explicit solutions of Fishers equation for a special wave speed
  publication-title: Bull Math Biol
  contributor:
    fullname: Zeppetella
– volume: 94
  start-page: 211
  year: 1993
  end-page: 218
  ident: bib0010
  article-title: On exact solutions of families of Fisher equations
  publication-title: Theor Math Phys
  contributor:
    fullname: Kudryashov
– volume: 53
  start-page: 1350
  year: 2013
  end-page: 1370
  ident: bib0006
  article-title: Dynamics of water evaporation fronts
  publication-title: Comput Math Math Phys
  contributor:
    fullname: Shargatov
– volume: 27
  start-page: 665
  year: 2008
  end-page: 677
  ident: bib0002
  article-title: Catastrophic transition to instability of evaporation front in a porous medium
  publication-title: Eur J Mech B Fluids
  contributor:
    fullname: Tsypkin
– year: 1983
  ident: bib0004
  article-title: Convergence of solutions of the Kolmogorov equation to traveling waves
  contributor:
    fullname: Bramson
– volume: 115
  start-page: 1
  year: 1990
  end-page: 18
  ident: bib0021
  article-title: Existence and stability of traveling wave solutions for an evolutionary ecology model
  publication-title: Proc R Soc Edinb A
  contributor:
    fullname: Lui
– volume: 83
  start-page: 552
  year: 2015
  end-page: 561
  ident: bib0007
  article-title: Dynamics and stability of moving fronts of water evaporation in a porous medium
  publication-title: Int J Heat Mass Transf
  contributor:
    fullname: Tsypkin
– start-page: 1
  year: 1998
  end-page: 35
  ident: bib0017
  article-title: The asymptotic nature of solutions of linear systems of differential equations
  publication-title: Selected papers of Norman Levinson
  contributor:
    fullname: Levinson
– year: 2016
  ident: bib0023
  publication-title: Some aspects of the fisher-KPP equation and the branching Brownian motion
  contributor:
    fullname: Brunet
– volume: 22
  start-page: 312
  year: 1976
  ident: 10.1016/j.cnsns.2018.07.006_bib0019
  article-title: On the stability of waves of nonlinear parabolic systems
  publication-title: Adv Math
  doi: 10.1016/0001-8708(76)90098-0
  contributor:
    fullname: Sattinger
– volume: vol. 295
  start-page: 148
  year: 2016
  ident: 10.1016/j.cnsns.2018.07.006_bib0016
  article-title: Spectral stability theory of heteroclinic solutions to the Korteweg-de Vries-Burgers equation with an arbitrary potential
  contributor:
    fullname: Il’ichev
– year: 1988
  ident: 10.1016/j.cnsns.2018.07.006_sbref0001
  contributor:
    fullname: Kolabin
– volume: 67
  start-page: 45
  year: 1993
  ident: 10.1016/j.cnsns.2018.07.006_bib0015
  article-title: Oscillatory instability of traveling waves for a KdV-Burgers equation
  publication-title: Physica D
  doi: 10.1016/0167-2789(93)90197-9
  contributor:
    fullname: Pego
– ident: 10.1016/j.cnsns.2018.07.006_bib0011
  doi: 10.1209/0295-5075/122/10001
– year: 2016
  ident: 10.1016/j.cnsns.2018.07.006_bib0005
  contributor:
    fullname: Jonkhout
– volume: 2
  start-page: 471
  year: 1995
  ident: 10.1016/j.cnsns.2018.07.006_bib0014
  article-title: Linear instability of a Boussinesq-type equation; a computer assisted computation
  publication-title: Nonlin World
  contributor:
    fullname: Alexander
– volume: 1
  start-page: 1
  issue: 6
  year: 1937
  ident: 10.1016/j.cnsns.2018.07.006_bib0003
  article-title: Study of diffusion equation with an increase in the quantity of matter and its application to a biological problem
  publication-title: Byull Mosk Gos Univ Mat Mekh
  contributor:
    fullname: Kolmogorov
– volume: 83
  start-page: 552
  year: 2015
  ident: 10.1016/j.cnsns.2018.07.006_bib0007
  article-title: Dynamics and stability of moving fronts of water evaporation in a porous medium
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.12.027
  contributor:
    fullname: Shargatov
– volume: 41
  start-page: 835
  year: 1979
  ident: 10.1016/j.cnsns.2018.07.006_bib0009
  article-title: Explicit solutions of Fishers equation for a special wave speed
  publication-title: Bull Math Biol
  doi: 10.1016/S0092-8240(79)80020-8
  contributor:
    fullname: Ablowitz
– volume: 115
  start-page: 1
  year: 1990
  ident: 10.1016/j.cnsns.2018.07.006_bib0021
  article-title: Existence and stability of traveling wave solutions for an evolutionary ecology model
  publication-title: Proc R Soc Edinb A
  doi: 10.1017/S0308210500024525
  contributor:
    fullname: Lui
– year: 1983
  ident: 10.1016/j.cnsns.2018.07.006_bib0004
  contributor:
    fullname: Bramson
– ident: 10.1016/j.cnsns.2018.07.006_bib0008
– volume: 94
  start-page: 211
  year: 1993
  ident: 10.1016/j.cnsns.2018.07.006_bib0010
  article-title: On exact solutions of families of Fisher equations
  publication-title: Theor Math Phys
  doi: 10.1007/BF01019332
  contributor:
    fullname: Kudryashov
– year: 2016
  ident: 10.1016/j.cnsns.2018.07.006_bib0023
  contributor:
    fullname: Brunet
– volume: 27
  start-page: 665
  year: 2008
  ident: 10.1016/j.cnsns.2018.07.006_bib0002
  article-title: Catastrophic transition to instability of evaporation front in a porous medium
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2007.11.006
  contributor:
    fullname: Ilichev
– volume: 53
  start-page: 1350
  year: 2013
  ident: 10.1016/j.cnsns.2018.07.006_bib0006
  article-title: Dynamics of water evaporation fronts
  publication-title: Comput Math Math Phys
  doi: 10.1134/S0965542513090078
  contributor:
    fullname: Il’ichev
– volume: A340
  start-page: 47
  year: 1992
  ident: 10.1016/j.cnsns.2018.07.006_bib0013
  article-title: Eigenvalues, and solitary wave instabilities
  publication-title: Phil Trans R Soc Lond
  contributor:
    fullname: Pego
– volume: 164
  start-page: 305
  year: 1994
  ident: 10.1016/j.cnsns.2018.07.006_bib0018
  article-title: Asymptotic stability of solitary waves
  publication-title: Comm Math Phys
  doi: 10.1007/BF02101705
  contributor:
    fullname: Pego
– volume: 107
  start-page: 699
  year: 2008
  ident: 10.1016/j.cnsns.2018.07.006_bib0012
  article-title: Instabilities of uniform filtration flows with phase transition
  publication-title: J Exp Theor Phys
  doi: 10.1134/S106377610810018X
  contributor:
    fullname: Il’ichev
– volume: 459
  start-page: 1403
  year: 2003
  ident: 10.1016/j.cnsns.2018.07.006_bib0020
  article-title: Global and absolute instabilities of spatially developing open flows and media with algebraically decaying tails
  publication-title: Proc R Soc Lond A
  doi: 10.1098/rspa.2002.1087
  contributor:
    fullname: Brevdo
– volume: 96
  start-page: 256
  year: 1992
  ident: 10.1016/j.cnsns.2018.07.006_bib0022
  article-title: On the nonlinear dynamics of traveling fronts
  publication-title: J Differ Equ
  doi: 10.1016/0022-0396(92)90153-E
  contributor:
    fullname: Kirchgässner
– start-page: 1
  year: 1998
  ident: 10.1016/j.cnsns.2018.07.006_bib0017
  article-title: The asymptotic nature of solutions of linear systems of differential equations
  contributor:
    fullname: Levinson
SSID ssj0016954
Score 2.3403835
Snippet •We study global dynamics of phase transition evaporation interfaces in the form of traveling fronts in horizontally extended domains of porous layers where a...
We study global dynamics of phase transition evaporation interfaces in the form of traveling fronts in horizontally extended domains of porous layers where a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 223
SubjectTerms Asymptotic properties
Differential equations
Domains
Evaporation
Fingering
Front stability
Interface
KPP equation
Mathematical models
Phase transitions
Porous materials
Porous medium
Surface stability
Turning point bifurcation
Title Dynamics of front-like water evaporation phase transition interfaces
URI https://dx.doi.org/10.1016/j.cnsns.2018.07.006
https://www.proquest.com/docview/2123714123
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBbS9rLL2r2wbt2gw26ZDT8UWT4GTYZ2h12SDb0ZsixhbTM3SJr274_Uw04bbNgG7GIEdGIL4heSksiPhHzgPGsKPNUdcVNGDOxkJGSdR-COlBFMKGnbAZ3Nii8XYjJl08EgdADrZf9V0yADXWPl7F9ou3soCOAz6ByuoHW4_pHeJ67FvM3QMMhOEC0ur_XwXiIbor6Ty6Dz5XdwYNgionVpW5Y5YmUwRWs7Yn1QQWKTZ1vHriFXw1AThPBpN-7sZzFcX_7wPcG67RukY4LV_Z3Nqo3HcZf1c7O63rROPou_dfLzRUjCKDFV1d4fx_N4e48Cy6Ie5HvsFs9YW4u7pKPCdR-OtZMJWNRCSMW2DbTr1xEsrCtP9s46c-wpO37AbUlcxapdt0jKngpL0Zo8Yt22fnyGA8FxpMiFBgHtHjnIwGyB1TwYn08vPnenUry0XfW6gQcWK5svuPOqX0U6j3y-DWTmR-SpX4HQsYPOMzLQ7XNy6Fcj1Nv69QsyCUiiN4b2SKIWSXQLSdQiifZIoj2SXpKvn6bz07PI99yIVJ6nt1HJtU5kKpLaSIz2VSJMxlXdJGrEhdGJhhgdKzeYyblqWFo28OUCTAGe3-U8f0X2AYb6NaHMwFpVF40e5ZKldV4rrtJGisQorL_OjsnHMD_V0lGrVCHn8Kqy01nhdFYJpkjwY8LDHFYe3i7qq0Dpv__hSZjxyv9R4T5EbEXK4PrmX5_7ljzpsX5C9m9XG_2O7K2bzXsPnJ8b7JGA
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+front-like+water+evaporation+phase+transition+interfaces&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Shargatov%2C+V.A.&rft.au=Gorkunov%2C+S.V.&rft.au=Il%E2%80%99ichev%2C+A.T.&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=1007-5704&rft.eissn=1878-7274&rft.volume=67&rft.spage=223&rft.epage=236&rft_id=info:doi/10.1016%2Fj.cnsns.2018.07.006&rft.externalDocID=S1007570418302193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon