A dynamical system associated with Newton's method for parametric approximations of convex minimization problems
We study the existence and asymptotic convergence when t{sup {yields}}+{infinity} for the trajectories generated by {nabla}{sup 2}f(u(t),{epsilon}(t))u-dot(t) + {epsilon}-dot(t) {partial_derivative}{sup 2}f/({partial_derivative}{epsilon}{partial_derivative}x) (u(t),{epsilon}(t)) + {nabla}f(u(t),{eps...
Saved in:
Published in: | Applied mathematics & optimization Vol. 38; no. 2; pp. 193 - 217 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
Springer
01-09-1998
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We study the existence and asymptotic convergence when t{sup {yields}}+{infinity} for the trajectories generated by {nabla}{sup 2}f(u(t),{epsilon}(t))u-dot(t) + {epsilon}-dot(t) {partial_derivative}{sup 2}f/({partial_derivative}{epsilon}{partial_derivative}x) (u(t),{epsilon}(t)) + {nabla}f(u(t),{epsilon}(t)) = 0, where {l_brace}f(c-dot,{epsilon}{r_brace}{sub {l_brace}}{sub {epsilon}}{sub >0{r_brace}} is a parametric family of convex functions which approximates a given convex function f we want to minimize, and {epsilon}(t) is a parametrization such that {epsilon}(t){sup {yields}} 0 when t{sup {yields}}+{infinity} . This method is obtained from the following variational characterization of Newton's method: u(t) element of Argmin{l_brace}f(x,{epsilon}(t))-e{sup -t}<{nabla}f(u{sub 0},{epsilon}{sub 0}),x>: x element of H{r_brace}, (P{sub t}{sup {epsilon}})where H is a real Hilbert space. We find conditions on the approximating family f(.,{epsilon}) and the parametrization {epsilon}(t) to ensure the norm convergence of the solution trajectories u(t) toward a particular minimizer of f . The asymptotic estimates obtained allow us to study the rate of convergence as well. The results are illustrated through some applications to barrier and penalty methods for linear programming, and to viscosity methods for an abstract noncoercive variational problem. Comparisons with the steepest descent method are also provided. |
---|---|
AbstractList | We study the existence and asymptotic convergence when t{sup {yields}}+{infinity} for the trajectories generated by {nabla}{sup 2}f(u(t),{epsilon}(t))u-dot(t) + {epsilon}-dot(t) {partial_derivative}{sup 2}f/({partial_derivative}{epsilon}{partial_derivative}x) (u(t),{epsilon}(t)) + {nabla}f(u(t),{epsilon}(t)) = 0, where {l_brace}f(c-dot,{epsilon}{r_brace}{sub {l_brace}}{sub {epsilon}}{sub >0{r_brace}} is a parametric family of convex functions which approximates a given convex function f we want to minimize, and {epsilon}(t) is a parametrization such that {epsilon}(t){sup {yields}} 0 when t{sup {yields}}+{infinity} . This method is obtained from the following variational characterization of Newton's method: u(t) element of Argmin{l_brace}f(x,{epsilon}(t))-e{sup -t}<{nabla}f(u{sub 0},{epsilon}{sub 0}),x>: x element of H{r_brace}, (P{sub t}{sup {epsilon}})where H is a real Hilbert space. We find conditions on the approximating family f(.,{epsilon}) and the parametrization {epsilon}(t) to ensure the norm convergence of the solution trajectories u(t) toward a particular minimizer of f . The asymptotic estimates obtained allow us to study the rate of convergence as well. The results are illustrated through some applications to barrier and penalty methods for linear programming, and to viscosity methods for an abstract noncoercive variational problem. Comparisons with the steepest descent method are also provided. |
Author | PEREC C, J. M ALVAREZ D, F |
Author_xml | – sequence: 1 givenname: F surname: ALVAREZ D fullname: ALVAREZ D, F organization: Departamento de Ingenieria Matematica, Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile – sequence: 2 givenname: J. M surname: PEREC C fullname: PEREC C, J. M organization: Departamento de Ingenieria Matematica, Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2294148$$DView record in Pascal Francis https://www.osti.gov/biblio/21067563$$D View this record in Osti.gov |
BookMark | eNpVkE1LxDAQhoMouKsevQcUPFUnH22a47L4BYte9FzSNGUj26Rkguv6662uCJ6GGZ4Z5n3m5DDE4Ag5Z3DNANQNAnBZag0AdX1AZkwKXkAF1SGZAeiykBWrjskc8W1CuKjEjIwL2u2CGbw1G4o7zG6gBjFab7Lr6NbnNX1y2xzDFdLB5XXsaB8THU0yU5u8pWYcU_zwg8k-BqSxpzaGd_dBBx_84D9_5nRi2o0b8JQc9WaD7uy3npDXu9uX5UOxer5_XC5WhRWC5YK1pWSlaA13BmwndG-EYp1upSs7kE6xVuvasV4pDtrWFqxRAhSUHZdK9-KEXOzvRsy-Qeuzs-vpseBsbjiDSpWVmKhiT9kUEZPrmzFNSdKuYdB8S23-SZ34yz0_GpyM9ckE6_FviXMtmazFF4FVeeA |
CODEN | AMOMBN |
CitedBy_id | crossref_primary_10_1007_s11228_017_0411_1 crossref_primary_10_1023_B_JOTA_0000015684_50827_49 crossref_primary_10_1007_s10107_021_01721_3 crossref_primary_10_1023_B_JOTA_0000037603_51578_45 crossref_primary_10_1137_130910294 crossref_primary_10_1016_j_amc_2009_10_026 crossref_primary_10_1016_S0021_7824_01_01253_3 crossref_primary_10_1007_s10957_023_02290_5 crossref_primary_10_1137_060655183 crossref_primary_10_1287_moor_2022_1343 crossref_primary_10_1137_S0363012902410861 crossref_primary_10_1137_23M1549675 crossref_primary_10_1007_s10107_021_01707_1 crossref_primary_10_1137_S0363012998335802 crossref_primary_10_1137_110854758 crossref_primary_10_1080_02331934_2018_1452922 crossref_primary_10_1016_j_na_2009_07_013 crossref_primary_10_1007_s10957_012_0222_3 crossref_primary_10_1137_100784114 crossref_primary_10_1080_23249935_2023_2226245 |
ContentType | Journal Article |
Copyright | 1998 INIST-CNRS |
Copyright_xml | – notice: 1998 INIST-CNRS |
DBID | IQODW AAYXX CITATION OTOTI |
DOI | 10.1007/s002459900088 |
DatabaseName | Pascal-Francis CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1432-0606 |
EndPage | 217 |
ExternalDocumentID | 21067563 10_1007_s002459900088 2294148 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC G8K GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HZ~ I-F I09 IHE IJ- IKXTQ IQODW ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TH9 TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WHG WJK WK8 YLTOR Z45 Z81 Z8U ZL0 ZMTXR ZWQNP ZY4 ~8M ~EX AACDK AAJBT AASML AAYXX AAYZH ABAKF ABDPE ABJNI ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION HVGLF OTOTI |
ID | FETCH-LOGICAL-c331t-1b54153ba2ea0cd39fa371d9b4e5d04e71b998e1f77209c8c0ca730705d2479f3 |
ISSN | 0095-4616 |
IngestDate | Fri May 19 00:39:02 EDT 2023 Fri Nov 22 00:48:28 EST 2024 Sun Oct 29 17:06:36 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Existence condition Approximate method Barrier function Optimal trajectory Evolution equation Linear programming Asymptotic convergence Newton method Convex programming Penalty method Optimization |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c331t-1b54153ba2ea0cd39fa371d9b4e5d04e71b998e1f77209c8c0ca730705d2479f3 |
OpenAccessLink | http://www.dim.uchile.cl/~falvarez/Papers/AlvPer_AMO98.pdf |
PageCount | 25 |
ParticipantIDs | osti_scitechconnect_21067563 crossref_primary_10_1007_s002459900088 pascalfrancis_primary_2294148 |
PublicationCentury | 1900 |
PublicationDate | 1998-09-01 |
PublicationDateYYYYMMDD | 1998-09-01 |
PublicationDate_xml | – month: 09 year: 1998 text: 1998-09-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | Applied mathematics & optimization |
PublicationYear | 1998 |
Publisher | Springer |
Publisher_xml | – name: Springer |
SSID | ssj0002363 |
Score | 1.6347331 |
Snippet | We study the existence and asymptotic convergence when t{sup {yields}}+{infinity} for the trajectories generated by {nabla}{sup 2}f(u(t),{epsilon}(t))u-dot(t)... |
SourceID | osti crossref pascalfrancis |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 193 |
SubjectTerms | Applied sciences APPROXIMATIONS ASYMPTOTIC SOLUTIONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONVERGENCE Exact sciences and technology FUNCTIONS HILBERT SPACE LINEAR PROGRAMMING Mathematical programming MINIMIZATION NEWTON METHOD Operational research and scientific management Operational research. Management science VARIATIONAL METHODS |
Title | A dynamical system associated with Newton's method for parametric approximations of convex minimization problems |
URI | https://www.osti.gov/biblio/21067563 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZ7KU9lG4fNO1u0aG0B-Ng6xFbx5BkH4eUwqbQW5BlGwJNvMTZsvTXd0aSHymltIe9mERgE_R9GX2SZ74h5IOERVcymYZaC40bFBnqLIc_noT1TYOaS-15x_Vt8vlbOl-IxWDQlEd3Y4-KNIwB1lg5-x9otw-FAfgMmMMVUIfrP-E-DeauyTzafFib5haCJtMcAptVfEkdLG0DaZtr-EVjnhYa9qM03VcPm22XJjfD5PSHYLnZbba-chNrDLAXTd3Xt42o3bZusLUlVwWRqbmx5dj3H3pf_AzmVkCPuyCNgzNLr3GwHHfnEq5QTzXnEj7WKhmKSeyNrl14FZyF0SSa9OMvT3s8Y38M6y6T49a-J1bY5tS1AvzNKZuhHZ6c8BNyyiDsQNQ7nd6sri7blZlx31nP_zLvuYqllEfPPtIowwpiLabM6hqQK127k54GWT0nz_zmgU4d6mdkUOxekKc9S0n4tuxm_iW5m9KWDdSxgXZsoMgG6tjwqaaOCxS4QDsu0GMu0Kqkjgu0zwXacOEV-Xq5WM2uQ99jIzScx4cwziRIOJ5pVujI5FyVmidxrjJRyDwSRRJngG0Rl7ALi5RJTWR0guuEzJlIVMlfk-Gu2hVvCM0yw9K0REkOmlHHuBPWaaFSHgsT5dmIfGxmdX3nrFTWrWl2f_pH5BznfA0aEI2MDWZ8mcO6gXdELo6waB_GmBKwu3_799vfkScdXc_J8LC_Ly7ISZ3fv_d8-QXWB3iZ |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamical+System+Associated+with+Newton%27s+Method+for+Parametric+Approximations+of+Convex+Minimization+Problems&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Alvarez+D%2C+F.&rft.au=Perez+C%2C+J.+M.&rft.date=1998-09-01&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=38&rft.issue=2&rft_id=info:doi/10.1007%2FS002459900088&rft.externalDocID=21067563 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon |