A dynamical system associated with Newton's method for parametric approximations of convex minimization problems

We study the existence and asymptotic convergence when t{sup {yields}}+{infinity} for the trajectories generated by {nabla}{sup 2}f(u(t),{epsilon}(t))u-dot(t) + {epsilon}-dot(t) {partial_derivative}{sup 2}f/({partial_derivative}{epsilon}{partial_derivative}x) (u(t),{epsilon}(t)) + {nabla}f(u(t),{eps...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics & optimization Vol. 38; no. 2; pp. 193 - 217
Main Authors: ALVAREZ D, F, PEREC C, J. M
Format: Journal Article
Language:English
Published: New York, NY Springer 01-09-1998
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the existence and asymptotic convergence when t{sup {yields}}+{infinity} for the trajectories generated by {nabla}{sup 2}f(u(t),{epsilon}(t))u-dot(t) + {epsilon}-dot(t) {partial_derivative}{sup 2}f/({partial_derivative}{epsilon}{partial_derivative}x) (u(t),{epsilon}(t)) + {nabla}f(u(t),{epsilon}(t)) = 0, where {l_brace}f(c-dot,{epsilon}{r_brace}{sub {l_brace}}{sub {epsilon}}{sub >0{r_brace}} is a parametric family of convex functions which approximates a given convex function f we want to minimize, and {epsilon}(t) is a parametrization such that {epsilon}(t){sup {yields}} 0 when t{sup {yields}}+{infinity} . This method is obtained from the following variational characterization of Newton's method: u(t) element of Argmin{l_brace}f(x,{epsilon}(t))-e{sup -t}<{nabla}f(u{sub 0},{epsilon}{sub 0}),x>: x element of H{r_brace}, (P{sub t}{sup {epsilon}})where H is a real Hilbert space. We find conditions on the approximating family f(.,{epsilon}) and the parametrization {epsilon}(t) to ensure the norm convergence of the solution trajectories u(t) toward a particular minimizer of f . The asymptotic estimates obtained allow us to study the rate of convergence as well. The results are illustrated through some applications to barrier and penalty methods for linear programming, and to viscosity methods for an abstract noncoercive variational problem. Comparisons with the steepest descent method are also provided.
AbstractList We study the existence and asymptotic convergence when t{sup {yields}}+{infinity} for the trajectories generated by {nabla}{sup 2}f(u(t),{epsilon}(t))u-dot(t) + {epsilon}-dot(t) {partial_derivative}{sup 2}f/({partial_derivative}{epsilon}{partial_derivative}x) (u(t),{epsilon}(t)) + {nabla}f(u(t),{epsilon}(t)) = 0, where {l_brace}f(c-dot,{epsilon}{r_brace}{sub {l_brace}}{sub {epsilon}}{sub >0{r_brace}} is a parametric family of convex functions which approximates a given convex function f we want to minimize, and {epsilon}(t) is a parametrization such that {epsilon}(t){sup {yields}} 0 when t{sup {yields}}+{infinity} . This method is obtained from the following variational characterization of Newton's method: u(t) element of Argmin{l_brace}f(x,{epsilon}(t))-e{sup -t}<{nabla}f(u{sub 0},{epsilon}{sub 0}),x>: x element of H{r_brace}, (P{sub t}{sup {epsilon}})where H is a real Hilbert space. We find conditions on the approximating family f(.,{epsilon}) and the parametrization {epsilon}(t) to ensure the norm convergence of the solution trajectories u(t) toward a particular minimizer of f . The asymptotic estimates obtained allow us to study the rate of convergence as well. The results are illustrated through some applications to barrier and penalty methods for linear programming, and to viscosity methods for an abstract noncoercive variational problem. Comparisons with the steepest descent method are also provided.
Author PEREC C, J. M
ALVAREZ D, F
Author_xml – sequence: 1
  givenname: F
  surname: ALVAREZ D
  fullname: ALVAREZ D, F
  organization: Departamento de Ingenieria Matematica, Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile
– sequence: 2
  givenname: J. M
  surname: PEREC C
  fullname: PEREC C, J. M
  organization: Departamento de Ingenieria Matematica, Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2294148$$DView record in Pascal Francis
https://www.osti.gov/biblio/21067563$$D View this record in Osti.gov
BookMark eNpVkE1LxDAQhoMouKsevQcUPFUnH22a47L4BYte9FzSNGUj26Rkguv6662uCJ6GGZ4Z5n3m5DDE4Ag5Z3DNANQNAnBZag0AdX1AZkwKXkAF1SGZAeiykBWrjskc8W1CuKjEjIwL2u2CGbw1G4o7zG6gBjFab7Lr6NbnNX1y2xzDFdLB5XXsaB8THU0yU5u8pWYcU_zwg8k-BqSxpzaGd_dBBx_84D9_5nRi2o0b8JQc9WaD7uy3npDXu9uX5UOxer5_XC5WhRWC5YK1pWSlaA13BmwndG-EYp1upSs7kE6xVuvasV4pDtrWFqxRAhSUHZdK9-KEXOzvRsy-Qeuzs-vpseBsbjiDSpWVmKhiT9kUEZPrmzFNSdKuYdB8S23-SZ34yz0_GpyM9ckE6_FviXMtmazFF4FVeeA
CODEN AMOMBN
CitedBy_id crossref_primary_10_1007_s11228_017_0411_1
crossref_primary_10_1023_B_JOTA_0000015684_50827_49
crossref_primary_10_1007_s10107_021_01721_3
crossref_primary_10_1023_B_JOTA_0000037603_51578_45
crossref_primary_10_1137_130910294
crossref_primary_10_1016_j_amc_2009_10_026
crossref_primary_10_1016_S0021_7824_01_01253_3
crossref_primary_10_1007_s10957_023_02290_5
crossref_primary_10_1137_060655183
crossref_primary_10_1287_moor_2022_1343
crossref_primary_10_1137_S0363012902410861
crossref_primary_10_1137_23M1549675
crossref_primary_10_1007_s10107_021_01707_1
crossref_primary_10_1137_S0363012998335802
crossref_primary_10_1137_110854758
crossref_primary_10_1080_02331934_2018_1452922
crossref_primary_10_1016_j_na_2009_07_013
crossref_primary_10_1007_s10957_012_0222_3
crossref_primary_10_1137_100784114
crossref_primary_10_1080_23249935_2023_2226245
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID IQODW
AAYXX
CITATION
OTOTI
DOI 10.1007/s002459900088
DatabaseName Pascal-Francis
CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1432-0606
EndPage 217
ExternalDocumentID 21067563
10_1007_s002459900088
2294148
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
G8K
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IQODW
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TH9
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WHG
WJK
WK8
YLTOR
Z45
Z81
Z8U
ZL0
ZMTXR
ZWQNP
ZY4
~8M
~EX
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABDPE
ABJNI
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
HVGLF
OTOTI
ID FETCH-LOGICAL-c331t-1b54153ba2ea0cd39fa371d9b4e5d04e71b998e1f77209c8c0ca730705d2479f3
ISSN 0095-4616
IngestDate Fri May 19 00:39:02 EDT 2023
Fri Nov 22 00:48:28 EST 2024
Sun Oct 29 17:06:36 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Existence condition
Approximate method
Barrier function
Optimal trajectory
Evolution equation
Linear programming
Asymptotic convergence
Newton method
Convex programming
Penalty method
Optimization
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-1b54153ba2ea0cd39fa371d9b4e5d04e71b998e1f77209c8c0ca730705d2479f3
OpenAccessLink http://www.dim.uchile.cl/~falvarez/Papers/AlvPer_AMO98.pdf
PageCount 25
ParticipantIDs osti_scitechconnect_21067563
crossref_primary_10_1007_s002459900088
pascalfrancis_primary_2294148
PublicationCentury 1900
PublicationDate 1998-09-01
PublicationDateYYYYMMDD 1998-09-01
PublicationDate_xml – month: 09
  year: 1998
  text: 1998-09-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle Applied mathematics & optimization
PublicationYear 1998
Publisher Springer
Publisher_xml – name: Springer
SSID ssj0002363
Score 1.6347331
Snippet We study the existence and asymptotic convergence when t{sup {yields}}+{infinity} for the trajectories generated by {nabla}{sup 2}f(u(t),{epsilon}(t))u-dot(t)...
SourceID osti
crossref
pascalfrancis
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 193
SubjectTerms Applied sciences
APPROXIMATIONS
ASYMPTOTIC SOLUTIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONVERGENCE
Exact sciences and technology
FUNCTIONS
HILBERT SPACE
LINEAR PROGRAMMING
Mathematical programming
MINIMIZATION
NEWTON METHOD
Operational research and scientific management
Operational research. Management science
VARIATIONAL METHODS
Title A dynamical system associated with Newton's method for parametric approximations of convex minimization problems
URI https://www.osti.gov/biblio/21067563
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZ7KU9lG4fNO1u0aG0B-Ng6xFbx5BkH4eUwqbQW5BlGwJNvMTZsvTXd0aSHymltIe9mERgE_R9GX2SZ74h5IOERVcymYZaC40bFBnqLIc_noT1TYOaS-15x_Vt8vlbOl-IxWDQlEd3Y4-KNIwB1lg5-x9otw-FAfgMmMMVUIfrP-E-DeauyTzafFib5haCJtMcAptVfEkdLG0DaZtr-EVjnhYa9qM03VcPm22XJjfD5PSHYLnZbba-chNrDLAXTd3Xt42o3bZusLUlVwWRqbmx5dj3H3pf_AzmVkCPuyCNgzNLr3GwHHfnEq5QTzXnEj7WKhmKSeyNrl14FZyF0SSa9OMvT3s8Y38M6y6T49a-J1bY5tS1AvzNKZuhHZ6c8BNyyiDsQNQ7nd6sri7blZlx31nP_zLvuYqllEfPPtIowwpiLabM6hqQK127k54GWT0nz_zmgU4d6mdkUOxekKc9S0n4tuxm_iW5m9KWDdSxgXZsoMgG6tjwqaaOCxS4QDsu0GMu0Kqkjgu0zwXacOEV-Xq5WM2uQ99jIzScx4cwziRIOJ5pVujI5FyVmidxrjJRyDwSRRJngG0Rl7ALi5RJTWR0guuEzJlIVMlfk-Gu2hVvCM0yw9K0REkOmlHHuBPWaaFSHgsT5dmIfGxmdX3nrFTWrWl2f_pH5BznfA0aEI2MDWZ8mcO6gXdELo6waB_GmBKwu3_799vfkScdXc_J8LC_Ly7ISZ3fv_d8-QXWB3iZ
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamical+System+Associated+with+Newton%27s+Method+for+Parametric+Approximations+of+Convex+Minimization+Problems&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Alvarez+D%2C+F.&rft.au=Perez+C%2C+J.+M.&rft.date=1998-09-01&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=38&rft.issue=2&rft_id=info:doi/10.1007%2FS002459900088&rft.externalDocID=21067563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon