On shuffled-square-free words

A word u is a shuffle of words v and w, which we denote by u∈v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the left-to-right ordering of the letters from v and w. In case u∈v⧢v for some word v, the word u is called a shuffled-square. A word u is shuffled-square...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 941; pp. 91 - 103
Main Authors: Bulteau, Laurent, Jugé, Vincent, Vialette, Stéphane
Format: Journal Article
Language:English
Published: Elsevier B.V 04-01-2023
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A word u is a shuffle of words v and w, which we denote by u∈v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the left-to-right ordering of the letters from v and w. In case u∈v⧢v for some word v, the word u is called a shuffled-square. A word u is shuffled-square-free if it does not have a non-empty factor (i.e., non-empty sequence of adjacent letters) that is a shuffled-square. Our contribution in this context is two-fold. First, we prove that there exist arbitrarily long shuffled-square-free words in any alphabet with six letters or more, thereby improving on a previous result of Guégan and Ochem. Furthermore, we show that recognizing shuffled-square-free words on arbitrary alphabets is NP-complete.
AbstractList A word u is a shuffle of words v and w, which we denote by u∈v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the left-to-right ordering of the letters from v and w. In case u∈v⧢v for some word v, the word u is called a shuffled-square. A word u is shuffled-square-free if it does not have a non-empty factor (i.e., non-empty sequence of adjacent letters) that is a shuffled-square. Our contribution in this context is two-fold. First, we prove that there exist arbitrarily long shuffled-square-free words in any alphabet with six letters or more, thereby improving on a previous result of Guégan and Ochem. Furthermore, we show that recognizing shuffled-square-free words on arbitrary alphabets is NP-complete.
A word u is a shuffle of words v and w, which we denote by u ∈ v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the left-to-right ordering of the letters from v and w. In case u∈v⧢v for some word v, the word u is called a shuffled-square. A word u is shuffled-square-free if it does not have a non-empty factor (i.e., non-empty sequence of adjacent letters) that is a shuffled-square. Our contribution in this context is two-fold. First, we prove that there exist arbitrarily long shuffled-square-free words in any alphabet with six letters or more, thereby improving on a previous result of Guégan and Ochem. Furthermore, we show that recognizing shuffled-square-free words on arbitrary alphabets is NP-complete.
Author Jugé, Vincent
Bulteau, Laurent
Vialette, Stéphane
Author_xml – sequence: 1
  givenname: Laurent
  surname: Bulteau
  fullname: Bulteau, Laurent
  email: laurent.bulteau@univ-eiffel.fr
– sequence: 2
  givenname: Vincent
  surname: Jugé
  fullname: Jugé, Vincent
  email: vincent.juge@univ-eiffel.fr
– sequence: 3
  givenname: Stéphane
  orcidid: 0000-0003-2308-6970
  surname: Vialette
  fullname: Vialette, Stéphane
  email: stephane.vialette@univ-eiffel.fr
BackLink https://hal.science/hal-04290576$$DView record in HAL
BookMark eNp9kE9LAzEQxYNUsK1-AA9Crx6yTv7sZoOnUqwVFnrRc0iTCd1SdzVpK357s1Q8OpdhHu8NM78JGXV9h4TcMigYsOphVxxcKjhwnucCeH1BxqxWmnKu5YiMQYCkQqvyikxS2kGuUlVjcrfuZml7DGGPnqbPo41IQ0ScffXRp2tyGew-4c1vn5K35dPrYkWb9fPLYt5QJwQ7UMaVBVDCIWDQUG-QcWm159rqSoCtKlWCC96DQ2VtLUOpgqr1RkrYoLRiSu7Pe7d2bz5i-27jt-lta1bzxgwaSK6Hg08se9nZ62KfUsTwF2BgBhZmZzILM7AYpMwiZx7PGcxPnFqMJrkWO4e-jegOxvftP-kfXCBmqQ
CitedBy_id crossref_primary_10_3390_sym15111982
crossref_primary_10_1007_s00026_023_00651_5
Cites_doi 10.1016/j.tcs.2019.01.012
10.1016/0196-6774(84)90021-X
10.55016/ojs/cdm.v16i1.69831
10.1016/j.jcss.2013.11.002
10.1016/j.tcs.2015.07.027
10.1016/0020-0190(81)90024-7
10.1051/ita/2016007
10.1016/0304-3975(83)90109-3
10.1016/j.cosrev.2012.09.001
10.1016/j.tcs.2007.03.025
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.tcs.2022.10.028
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 103
ExternalDocumentID oai_HAL_hal_04290576v1
10_1016_j_tcs_2022_10_028
S0304397522006405
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
0SF
29Q
6I.
AAEDT
AAQXK
AAXKI
AAYXX
ABDPE
ABEFU
ABFNM
ABTAH
ABVKL
ABXDB
ACNNM
ADMUD
ADVLN
AEXQZ
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
G-2
HZ~
NCXOZ
R2-
RIG
SEW
SSZ
TAE
WUQ
XJT
ZY4
1XC
G8K
VOOES
ID FETCH-LOGICAL-c331t-127a0073ce0ef908be124a9d29a9630a66750cfdd0ce7aa84f57f789b440be4a3
ISSN 0304-3975
IngestDate Tue Oct 15 16:04:46 EDT 2024
Mon Nov 04 10:07:19 EST 2024
Fri Feb 23 02:40:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Shuffle
Combinatorics
Complexity
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-127a0073ce0ef908be124a9d29a9630a66750cfdd0ce7aa84f57f789b440be4a3
ORCID 0000-0003-2308-6970
OpenAccessLink https://hal.science/hal-04290576
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_04290576v1
crossref_primary_10_1016_j_tcs_2022_10_028
elsevier_sciencedirect_doi_10_1016_j_tcs_2022_10_028
PublicationCentury 2000
PublicationDate 2023-01-04
PublicationDateYYYYMMDD 2023-01-04
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-04
  day: 04
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kőnig (br0160) June 1927; 3
Mol, Rampersad (br0190) 2021; 16
Shur (br0220) 2015; 601
Buss, Soltys (br0060) 2014; 80
Ilie (br0150) 2007; 380
Grytczuk, Kordulewski, Niewiadomski (br0130) 2020; 27
Guégan, Ochem (br0140) 2016; 50
Crochemore (br0080) 1981; 12
A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen.
Thue (br0250) 1906; 1906
Shur (br0230) 2012; 6
Main, Lorentz (br0180) 1984; 5
Crochemore, Currie, Kucherov, Nowotka (br0090) 2014; 4
J.D. Currie, Shuffle squares are avoidable, unpublished, 2014.
Rizzi, Vialette (br0210) 2017
Flajolet, Sedgewick (br0110) 2009
Lothaire (br0170) 2005
Müller (br0200) 2015
S. Brlek, S. Li, On the number of squares in a finite word, 2022.
Berstel (br0020) 1992; vol. 11
Choffrut, Karhumäki (br0070) 1997
Bóna (br0030) 2015; vol. 87
Bulteau, Vialette (br0050) 2020; 806
Apostolico, Preparata (br0010) 1983; 22
Fraenkel, Simpson (br0120) 1995; 2
Kőnig (10.1016/j.tcs.2022.10.028_br0160) 1927; 3
Bulteau (10.1016/j.tcs.2022.10.028_br0050) 2020; 806
Bóna (10.1016/j.tcs.2022.10.028_br0030) 2015; vol. 87
Main (10.1016/j.tcs.2022.10.028_br0180) 1984; 5
Müller (10.1016/j.tcs.2022.10.028_br0200) 2015
Fraenkel (10.1016/j.tcs.2022.10.028_br0120) 1995; 2
10.1016/j.tcs.2022.10.028_br0100
Mol (10.1016/j.tcs.2022.10.028_br0190) 2021; 16
Shur (10.1016/j.tcs.2022.10.028_br0230) 2012; 6
10.1016/j.tcs.2022.10.028_br0240
Lothaire (10.1016/j.tcs.2022.10.028_br0170) 2005
Choffrut (10.1016/j.tcs.2022.10.028_br0070) 1997
Grytczuk (10.1016/j.tcs.2022.10.028_br0130) 2020; 27
Shur (10.1016/j.tcs.2022.10.028_br0220) 2015; 601
Crochemore (10.1016/j.tcs.2022.10.028_br0080) 1981; 12
Flajolet (10.1016/j.tcs.2022.10.028_br0110) 2009
Berstel (10.1016/j.tcs.2022.10.028_br0020) 1992; vol. 11
Guégan (10.1016/j.tcs.2022.10.028_br0140) 2016; 50
Crochemore (10.1016/j.tcs.2022.10.028_br0090) 2014; 4
Thue (10.1016/j.tcs.2022.10.028_br0250) 1906; 1906
Buss (10.1016/j.tcs.2022.10.028_br0060) 2014; 80
10.1016/j.tcs.2022.10.028_br0040
Ilie (10.1016/j.tcs.2022.10.028_br0150) 2007; 380
Rizzi (10.1016/j.tcs.2022.10.028_br0210) 2017
Apostolico (10.1016/j.tcs.2022.10.028_br0010) 1983; 22
References_xml – volume: vol. 11
  start-page: 65
  year: 1992
  end-page: 80
  ident: br0020
  article-title: Axel Thue's papers on repetitions in words: a translation
  publication-title: Monographies du LaCIM
  contributor:
    fullname: Berstel
– volume: vol. 87
  year: 2015
  ident: br0030
  article-title: Handbook of Enumerative Combinatorics
  contributor:
    fullname: Bóna
– volume: 4
  start-page: 28
  year: 2014
  end-page: 46
  ident: br0090
  article-title: Combinatorics and algorithmics of strings (Dagstuhl seminar 14111)
  publication-title: Dagstuhl Rep.
  contributor:
    fullname: Nowotka
– volume: 1906
  year: 1906
  ident: br0250
  article-title: Über unendliche Zeichenreihen
  publication-title: Christiania Vidensk.-Selsk. Skr.
  contributor:
    fullname: Thue
– volume: 22
  start-page: 297
  year: 1983
  end-page: 315
  ident: br0010
  article-title: Optimal off-line detection of repetitions in a string
  publication-title: Theor. Comput. Sci.
  contributor:
    fullname: Preparata
– volume: 3
  start-page: 121
  year: June 1927
  end-page: 130
  ident: br0160
  article-title: Über eine Schlussweise aus dem Endlichen ins Unendliche
  publication-title: Acta Litt. Sci. Reg. Univ. Hung. Francisco-Josephinae, Sect. Sci. Math.
  contributor:
    fullname: Kőnig
– year: 2009
  ident: br0110
  article-title: Analytic Combinatorics
  contributor:
    fullname: Sedgewick
– volume: 2
  year: 1995
  ident: br0120
  article-title: How many squares must a binary sequence contain?
  publication-title: Electron. J. Comb.
  contributor:
    fullname: Simpson
– volume: 12
  start-page: 244
  year: 1981
  end-page: 250
  ident: br0080
  article-title: An optimal algorithm for computing the repetitions in a word
  publication-title: Inf. Process. Lett.
  contributor:
    fullname: Crochemore
– volume: 380
  start-page: 373
  year: 2007
  end-page: 376
  ident: br0150
  article-title: A note on the number of squares in a word
  publication-title: Theor. Comput. Sci.
  contributor:
    fullname: Ilie
– year: 2005
  ident: br0170
  article-title: Applied Combinatorics on Words
  contributor:
    fullname: Lothaire
– start-page: 329
  year: 1997
  end-page: 438
  ident: br0070
  article-title: Combinatorics of words
  publication-title: Handbook of Formal Languages, vol. 1, Word, Language, Grammar
  contributor:
    fullname: Karhumäki
– volume: 80
  start-page: 766
  year: 2014
  end-page: 776
  ident: br0060
  article-title: Unshuffling a square is NP-hard
  publication-title: J. Comput. Syst. Sci.
  contributor:
    fullname: Soltys
– year: 2015
  ident: br0200
  article-title: Avoiding and Enforcing Repetitive Structures in Words
  contributor:
    fullname: Müller
– volume: 27
  year: 2020
  ident: br0130
  article-title: Extremal square-free words
  publication-title: Electron. J. Comb.
  contributor:
    fullname: Niewiadomski
– volume: 806
  start-page: 116
  year: 2020
  end-page: 132
  ident: br0050
  article-title: Recognizing binary shuffle squares is NP-hard
  publication-title: Theor. Comput. Sci.
  contributor:
    fullname: Vialette
– volume: 5
  start-page: 422
  year: 1984
  end-page: 432
  ident: br0180
  article-title: An O(n log n) algorithm for finding all repetitions in a string
  publication-title: J. Algorithms
  contributor:
    fullname: Lorentz
– volume: 50
  start-page: 101
  year: 2016
  end-page: 103
  ident: br0140
  article-title: A short proof that shuffle squares are 7-avoidable
  publication-title: RAIRO Theor. Inform. Appl.
  contributor:
    fullname: Ochem
– volume: 601
  start-page: 67
  year: 2015
  end-page: 72
  ident: br0220
  article-title: Generating square-free words efficiently
  publication-title: Theor. Comput. Sci.
  contributor:
    fullname: Shur
– volume: 6
  start-page: 187
  year: 2012
  end-page: 208
  ident: br0230
  article-title: Growth properties of power-free languages
  publication-title: Comput. Sci. Rev.
  contributor:
    fullname: Shur
– year: 2017
  ident: br0210
  article-title: On recognising words that are squares for the shuffle product
  publication-title: Theor. Comput. Sci.
  contributor:
    fullname: Vialette
– volume: 16
  start-page: 8
  year: 2021
  end-page: 19
  ident: br0190
  article-title: Lengths of extremal square-free ternary words
  publication-title: Contrib. Discrete Math.
  contributor:
    fullname: Rampersad
– volume: 806
  start-page: 116
  year: 2020
  ident: 10.1016/j.tcs.2022.10.028_br0050
  article-title: Recognizing binary shuffle squares is NP-hard
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2019.01.012
  contributor:
    fullname: Bulteau
– volume: 5
  start-page: 422
  issue: 3
  year: 1984
  ident: 10.1016/j.tcs.2022.10.028_br0180
  article-title: An O(n log n) algorithm for finding all repetitions in a string
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(84)90021-X
  contributor:
    fullname: Main
– ident: 10.1016/j.tcs.2022.10.028_br0040
– volume: 16
  start-page: 8
  issue: 1
  year: 2021
  ident: 10.1016/j.tcs.2022.10.028_br0190
  article-title: Lengths of extremal square-free ternary words
  publication-title: Contrib. Discrete Math.
  doi: 10.55016/ojs/cdm.v16i1.69831
  contributor:
    fullname: Mol
– volume: 80
  start-page: 766
  issue: 4
  year: 2014
  ident: 10.1016/j.tcs.2022.10.028_br0060
  article-title: Unshuffling a square is NP-hard
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2013.11.002
  contributor:
    fullname: Buss
– volume: 601
  start-page: 67
  year: 2015
  ident: 10.1016/j.tcs.2022.10.028_br0220
  article-title: Generating square-free words efficiently
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2015.07.027
  contributor:
    fullname: Shur
– volume: 12
  start-page: 244
  issue: 5
  year: 1981
  ident: 10.1016/j.tcs.2022.10.028_br0080
  article-title: An optimal algorithm for computing the repetitions in a word
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(81)90024-7
  contributor:
    fullname: Crochemore
– volume: vol. 87
  year: 2015
  ident: 10.1016/j.tcs.2022.10.028_br0030
  contributor:
    fullname: Bóna
– volume: 50
  start-page: 101
  issue: 1
  year: 2016
  ident: 10.1016/j.tcs.2022.10.028_br0140
  article-title: A short proof that shuffle squares are 7-avoidable
  publication-title: RAIRO Theor. Inform. Appl.
  doi: 10.1051/ita/2016007
  contributor:
    fullname: Guégan
– volume: 2
  year: 1995
  ident: 10.1016/j.tcs.2022.10.028_br0120
  article-title: How many squares must a binary sequence contain?
  publication-title: Electron. J. Comb.
  contributor:
    fullname: Fraenkel
– volume: 22
  start-page: 297
  year: 1983
  ident: 10.1016/j.tcs.2022.10.028_br0010
  article-title: Optimal off-line detection of repetitions in a string
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(83)90109-3
  contributor:
    fullname: Apostolico
– year: 2009
  ident: 10.1016/j.tcs.2022.10.028_br0110
  contributor:
    fullname: Flajolet
– year: 2017
  ident: 10.1016/j.tcs.2022.10.028_br0210
  article-title: On recognising words that are squares for the shuffle product
  publication-title: Theor. Comput. Sci.
  contributor:
    fullname: Rizzi
– volume: 6
  start-page: 187
  issue: 5–6
  year: 2012
  ident: 10.1016/j.tcs.2022.10.028_br0230
  article-title: Growth properties of power-free languages
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2012.09.001
  contributor:
    fullname: Shur
– volume: 1906
  issue: 7
  year: 1906
  ident: 10.1016/j.tcs.2022.10.028_br0250
  article-title: Über unendliche Zeichenreihen
  publication-title: Christiania Vidensk.-Selsk. Skr.
  contributor:
    fullname: Thue
– ident: 10.1016/j.tcs.2022.10.028_br0240
– volume: 3
  start-page: 121
  issue: 2–3
  year: 1927
  ident: 10.1016/j.tcs.2022.10.028_br0160
  article-title: Über eine Schlussweise aus dem Endlichen ins Unendliche
  publication-title: Acta Litt. Sci. Reg. Univ. Hung. Francisco-Josephinae, Sect. Sci. Math.
  contributor:
    fullname: Kőnig
– year: 2015
  ident: 10.1016/j.tcs.2022.10.028_br0200
  contributor:
    fullname: Müller
– ident: 10.1016/j.tcs.2022.10.028_br0100
– volume: 4
  start-page: 28
  issue: 3
  year: 2014
  ident: 10.1016/j.tcs.2022.10.028_br0090
  article-title: Combinatorics and algorithmics of strings (Dagstuhl seminar 14111)
  publication-title: Dagstuhl Rep.
  contributor:
    fullname: Crochemore
– start-page: 329
  year: 1997
  ident: 10.1016/j.tcs.2022.10.028_br0070
  article-title: Combinatorics of words
  contributor:
    fullname: Choffrut
– year: 2005
  ident: 10.1016/j.tcs.2022.10.028_br0170
  contributor:
    fullname: Lothaire
– volume: vol. 11
  start-page: 65
  year: 1992
  ident: 10.1016/j.tcs.2022.10.028_br0020
  article-title: Axel Thue's papers on repetitions in words: a translation
  contributor:
    fullname: Berstel
– volume: 27
  issue: 1
  year: 2020
  ident: 10.1016/j.tcs.2022.10.028_br0130
  article-title: Extremal square-free words
  publication-title: Electron. J. Comb.
  contributor:
    fullname: Grytczuk
– volume: 380
  start-page: 373
  issue: 3
  year: 2007
  ident: 10.1016/j.tcs.2022.10.028_br0150
  article-title: A note on the number of squares in a word
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2007.03.025
  contributor:
    fullname: Ilie
SSID ssj0000576
Score 2.4357
Snippet A word u is a shuffle of words v and w, which we denote by u∈v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the...
A word u is a shuffle of words v and w, which we denote by u ∈ v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 91
SubjectTerms Combinatorics
Complexity
Computer Science
Shuffle
Title On shuffled-square-free words
URI https://dx.doi.org/10.1016/j.tcs.2022.10.028
https://hal.science/hal-04290576
Volume 941
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8NR2L_DAxwCxwVCEeGJy5dpOnTxWUFQmYA8raG-R44-VaQrb2vD7Ocd2WxggQOIlii6J49xdzuf7BHhR8y4WQRKJPxIRjtcEtSJOtKbW5obhquI9urMT-eG0eD0V014vlRTawP4rpRGGtPaZs39B7fWgCMBzpDkekep4_CO6HzeHy0Xr3IU1ZHmFDGCJu7bW94QJOb1JFZ1vpTDq2NvhMC6I6016e4FM0KYE6q0gmaP2LPjYu0DZz43euvYJv9JHEIUosnDb5UJFB340MTDemRg2JsabuS8h38r7VMrQ92Rog_gsZEkYC22Lk3wtQ2WrKCFDb6641o66-gY3xXiwKJwPV9pXVGds6APwYhL599WxT_w0_CwY65ySeR92GMqcfAA7k7fT06PNspzL4LiO004u7i7Y74cX_UpJ6S-Sub1TP-b34E7cN2STQPD70LPNLtxNPTmyKKJ34fb7dR3e5QM4OG6yn3FD1nHDQ_j4Zjp_NSOxIQbRnI9WZMSk8q5Vbal1JS1qi9qZKg0rFcpRqsa4-6PaGUO1lUoVwuXSyaKshaC1FYo_gkHzpbGPIbPl2HBqcj2mRkjqVOFqI8yYCa4LZtUevEwYqC5D3ZMqBQSeV4iuyqPLgxBdeyASjqrIp0Ehq5Cgv3vsOeJzPbwvdD6bvKs8zKtJnmBfR_v_NvYTuLXh5KcwWF239gD6S9M-i4zxDa4fa3Q
link.rule.ids 230,315,782,786,887,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+shuffled-square-free+words&rft.jtitle=Theoretical+computer+science&rft.au=Bulteau%2C+Laurent&rft.au=Jug%C3%A9%2C+Vincent&rft.au=Vialette%2C+St%C3%A9phane&rft.date=2023-01-04&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=941&rft.spage=91&rft.epage=103&rft_id=info:doi/10.1016%2Fj.tcs.2022.10.028&rft.externalDocID=S0304397522006405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon