On shuffled-square-free words
A word u is a shuffle of words v and w, which we denote by u∈v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the left-to-right ordering of the letters from v and w. In case u∈v⧢v for some word v, the word u is called a shuffled-square. A word u is shuffled-square...
Saved in:
Published in: | Theoretical computer science Vol. 941; pp. 91 - 103 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
04-01-2023
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A word u is a shuffle of words v and w, which we denote by u∈v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the left-to-right ordering of the letters from v and w. In case u∈v⧢v for some word v, the word u is called a shuffled-square. A word u is shuffled-square-free if it does not have a non-empty factor (i.e., non-empty sequence of adjacent letters) that is a shuffled-square. Our contribution in this context is two-fold. First, we prove that there exist arbitrarily long shuffled-square-free words in any alphabet with six letters or more, thereby improving on a previous result of Guégan and Ochem. Furthermore, we show that recognizing shuffled-square-free words on arbitrary alphabets is NP-complete. |
---|---|
AbstractList | A word u is a shuffle of words v and w, which we denote by u∈v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the left-to-right ordering of the letters from v and w. In case u∈v⧢v for some word v, the word u is called a shuffled-square. A word u is shuffled-square-free if it does not have a non-empty factor (i.e., non-empty sequence of adjacent letters) that is a shuffled-square. Our contribution in this context is two-fold. First, we prove that there exist arbitrarily long shuffled-square-free words in any alphabet with six letters or more, thereby improving on a previous result of Guégan and Ochem. Furthermore, we show that recognizing shuffled-square-free words on arbitrary alphabets is NP-complete. A word u is a shuffle of words v and w, which we denote by u ∈ v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the left-to-right ordering of the letters from v and w. In case u∈v⧢v for some word v, the word u is called a shuffled-square. A word u is shuffled-square-free if it does not have a non-empty factor (i.e., non-empty sequence of adjacent letters) that is a shuffled-square. Our contribution in this context is two-fold. First, we prove that there exist arbitrarily long shuffled-square-free words in any alphabet with six letters or more, thereby improving on a previous result of Guégan and Ochem. Furthermore, we show that recognizing shuffled-square-free words on arbitrary alphabets is NP-complete. |
Author | Jugé, Vincent Bulteau, Laurent Vialette, Stéphane |
Author_xml | – sequence: 1 givenname: Laurent surname: Bulteau fullname: Bulteau, Laurent email: laurent.bulteau@univ-eiffel.fr – sequence: 2 givenname: Vincent surname: Jugé fullname: Jugé, Vincent email: vincent.juge@univ-eiffel.fr – sequence: 3 givenname: Stéphane orcidid: 0000-0003-2308-6970 surname: Vialette fullname: Vialette, Stéphane email: stephane.vialette@univ-eiffel.fr |
BackLink | https://hal.science/hal-04290576$$DView record in HAL |
BookMark | eNp9kE9LAzEQxYNUsK1-AA9Crx6yTv7sZoOnUqwVFnrRc0iTCd1SdzVpK357s1Q8OpdhHu8NM78JGXV9h4TcMigYsOphVxxcKjhwnucCeH1BxqxWmnKu5YiMQYCkQqvyikxS2kGuUlVjcrfuZml7DGGPnqbPo41IQ0ScffXRp2tyGew-4c1vn5K35dPrYkWb9fPLYt5QJwQ7UMaVBVDCIWDQUG-QcWm159rqSoCtKlWCC96DQ2VtLUOpgqr1RkrYoLRiSu7Pe7d2bz5i-27jt-lta1bzxgwaSK6Hg08se9nZ62KfUsTwF2BgBhZmZzILM7AYpMwiZx7PGcxPnFqMJrkWO4e-jegOxvftP-kfXCBmqQ |
CitedBy_id | crossref_primary_10_3390_sym15111982 crossref_primary_10_1007_s00026_023_00651_5 |
Cites_doi | 10.1016/j.tcs.2019.01.012 10.1016/0196-6774(84)90021-X 10.55016/ojs/cdm.v16i1.69831 10.1016/j.jcss.2013.11.002 10.1016/j.tcs.2015.07.027 10.1016/0020-0190(81)90024-7 10.1051/ita/2016007 10.1016/0304-3975(83)90109-3 10.1016/j.cosrev.2012.09.001 10.1016/j.tcs.2007.03.025 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.tcs.2022.10.028 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1879-2294 |
EndPage | 103 |
ExternalDocumentID | oai_HAL_hal_04290576v1 10_1016_j_tcs_2022_10_028 S0304397522006405 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPC SPCBC SSV SSW T5K TN5 WH7 YNT ZMT ~G- 0SF 29Q 6I. AAEDT AAQXK AAXKI AAYXX ABDPE ABEFU ABFNM ABTAH ABVKL ABXDB ACNNM ADMUD ADVLN AEXQZ AFJKZ AGHFR AKRWK ASPBG AVWKF AZFZN CITATION EJD FGOYB G-2 HZ~ NCXOZ R2- RIG SEW SSZ TAE WUQ XJT ZY4 1XC G8K VOOES |
ID | FETCH-LOGICAL-c331t-127a0073ce0ef908be124a9d29a9630a66750cfdd0ce7aa84f57f789b440be4a3 |
ISSN | 0304-3975 |
IngestDate | Tue Oct 15 16:04:46 EDT 2024 Mon Nov 04 10:07:19 EST 2024 Fri Feb 23 02:40:13 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Shuffle Combinatorics Complexity |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c331t-127a0073ce0ef908be124a9d29a9630a66750cfdd0ce7aa84f57f789b440be4a3 |
ORCID | 0000-0003-2308-6970 |
OpenAccessLink | https://hal.science/hal-04290576 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_04290576v1 crossref_primary_10_1016_j_tcs_2022_10_028 elsevier_sciencedirect_doi_10_1016_j_tcs_2022_10_028 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-04 |
PublicationDateYYYYMMDD | 2023-01-04 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Theoretical computer science |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Kőnig (br0160) June 1927; 3 Mol, Rampersad (br0190) 2021; 16 Shur (br0220) 2015; 601 Buss, Soltys (br0060) 2014; 80 Ilie (br0150) 2007; 380 Grytczuk, Kordulewski, Niewiadomski (br0130) 2020; 27 Guégan, Ochem (br0140) 2016; 50 Crochemore (br0080) 1981; 12 A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Thue (br0250) 1906; 1906 Shur (br0230) 2012; 6 Main, Lorentz (br0180) 1984; 5 Crochemore, Currie, Kucherov, Nowotka (br0090) 2014; 4 J.D. Currie, Shuffle squares are avoidable, unpublished, 2014. Rizzi, Vialette (br0210) 2017 Flajolet, Sedgewick (br0110) 2009 Lothaire (br0170) 2005 Müller (br0200) 2015 S. Brlek, S. Li, On the number of squares in a finite word, 2022. Berstel (br0020) 1992; vol. 11 Choffrut, Karhumäki (br0070) 1997 Bóna (br0030) 2015; vol. 87 Bulteau, Vialette (br0050) 2020; 806 Apostolico, Preparata (br0010) 1983; 22 Fraenkel, Simpson (br0120) 1995; 2 Kőnig (10.1016/j.tcs.2022.10.028_br0160) 1927; 3 Bulteau (10.1016/j.tcs.2022.10.028_br0050) 2020; 806 Bóna (10.1016/j.tcs.2022.10.028_br0030) 2015; vol. 87 Main (10.1016/j.tcs.2022.10.028_br0180) 1984; 5 Müller (10.1016/j.tcs.2022.10.028_br0200) 2015 Fraenkel (10.1016/j.tcs.2022.10.028_br0120) 1995; 2 10.1016/j.tcs.2022.10.028_br0100 Mol (10.1016/j.tcs.2022.10.028_br0190) 2021; 16 Shur (10.1016/j.tcs.2022.10.028_br0230) 2012; 6 10.1016/j.tcs.2022.10.028_br0240 Lothaire (10.1016/j.tcs.2022.10.028_br0170) 2005 Choffrut (10.1016/j.tcs.2022.10.028_br0070) 1997 Grytczuk (10.1016/j.tcs.2022.10.028_br0130) 2020; 27 Shur (10.1016/j.tcs.2022.10.028_br0220) 2015; 601 Crochemore (10.1016/j.tcs.2022.10.028_br0080) 1981; 12 Flajolet (10.1016/j.tcs.2022.10.028_br0110) 2009 Berstel (10.1016/j.tcs.2022.10.028_br0020) 1992; vol. 11 Guégan (10.1016/j.tcs.2022.10.028_br0140) 2016; 50 Crochemore (10.1016/j.tcs.2022.10.028_br0090) 2014; 4 Thue (10.1016/j.tcs.2022.10.028_br0250) 1906; 1906 Buss (10.1016/j.tcs.2022.10.028_br0060) 2014; 80 10.1016/j.tcs.2022.10.028_br0040 Ilie (10.1016/j.tcs.2022.10.028_br0150) 2007; 380 Rizzi (10.1016/j.tcs.2022.10.028_br0210) 2017 Apostolico (10.1016/j.tcs.2022.10.028_br0010) 1983; 22 |
References_xml | – volume: vol. 11 start-page: 65 year: 1992 end-page: 80 ident: br0020 article-title: Axel Thue's papers on repetitions in words: a translation publication-title: Monographies du LaCIM contributor: fullname: Berstel – volume: vol. 87 year: 2015 ident: br0030 article-title: Handbook of Enumerative Combinatorics contributor: fullname: Bóna – volume: 4 start-page: 28 year: 2014 end-page: 46 ident: br0090 article-title: Combinatorics and algorithmics of strings (Dagstuhl seminar 14111) publication-title: Dagstuhl Rep. contributor: fullname: Nowotka – volume: 1906 year: 1906 ident: br0250 article-title: Über unendliche Zeichenreihen publication-title: Christiania Vidensk.-Selsk. Skr. contributor: fullname: Thue – volume: 22 start-page: 297 year: 1983 end-page: 315 ident: br0010 article-title: Optimal off-line detection of repetitions in a string publication-title: Theor. Comput. Sci. contributor: fullname: Preparata – volume: 3 start-page: 121 year: June 1927 end-page: 130 ident: br0160 article-title: Über eine Schlussweise aus dem Endlichen ins Unendliche publication-title: Acta Litt. Sci. Reg. Univ. Hung. Francisco-Josephinae, Sect. Sci. Math. contributor: fullname: Kőnig – year: 2009 ident: br0110 article-title: Analytic Combinatorics contributor: fullname: Sedgewick – volume: 2 year: 1995 ident: br0120 article-title: How many squares must a binary sequence contain? publication-title: Electron. J. Comb. contributor: fullname: Simpson – volume: 12 start-page: 244 year: 1981 end-page: 250 ident: br0080 article-title: An optimal algorithm for computing the repetitions in a word publication-title: Inf. Process. Lett. contributor: fullname: Crochemore – volume: 380 start-page: 373 year: 2007 end-page: 376 ident: br0150 article-title: A note on the number of squares in a word publication-title: Theor. Comput. Sci. contributor: fullname: Ilie – year: 2005 ident: br0170 article-title: Applied Combinatorics on Words contributor: fullname: Lothaire – start-page: 329 year: 1997 end-page: 438 ident: br0070 article-title: Combinatorics of words publication-title: Handbook of Formal Languages, vol. 1, Word, Language, Grammar contributor: fullname: Karhumäki – volume: 80 start-page: 766 year: 2014 end-page: 776 ident: br0060 article-title: Unshuffling a square is NP-hard publication-title: J. Comput. Syst. Sci. contributor: fullname: Soltys – year: 2015 ident: br0200 article-title: Avoiding and Enforcing Repetitive Structures in Words contributor: fullname: Müller – volume: 27 year: 2020 ident: br0130 article-title: Extremal square-free words publication-title: Electron. J. Comb. contributor: fullname: Niewiadomski – volume: 806 start-page: 116 year: 2020 end-page: 132 ident: br0050 article-title: Recognizing binary shuffle squares is NP-hard publication-title: Theor. Comput. Sci. contributor: fullname: Vialette – volume: 5 start-page: 422 year: 1984 end-page: 432 ident: br0180 article-title: An O(n log n) algorithm for finding all repetitions in a string publication-title: J. Algorithms contributor: fullname: Lorentz – volume: 50 start-page: 101 year: 2016 end-page: 103 ident: br0140 article-title: A short proof that shuffle squares are 7-avoidable publication-title: RAIRO Theor. Inform. Appl. contributor: fullname: Ochem – volume: 601 start-page: 67 year: 2015 end-page: 72 ident: br0220 article-title: Generating square-free words efficiently publication-title: Theor. Comput. Sci. contributor: fullname: Shur – volume: 6 start-page: 187 year: 2012 end-page: 208 ident: br0230 article-title: Growth properties of power-free languages publication-title: Comput. Sci. Rev. contributor: fullname: Shur – year: 2017 ident: br0210 article-title: On recognising words that are squares for the shuffle product publication-title: Theor. Comput. Sci. contributor: fullname: Vialette – volume: 16 start-page: 8 year: 2021 end-page: 19 ident: br0190 article-title: Lengths of extremal square-free ternary words publication-title: Contrib. Discrete Math. contributor: fullname: Rampersad – volume: 806 start-page: 116 year: 2020 ident: 10.1016/j.tcs.2022.10.028_br0050 article-title: Recognizing binary shuffle squares is NP-hard publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2019.01.012 contributor: fullname: Bulteau – volume: 5 start-page: 422 issue: 3 year: 1984 ident: 10.1016/j.tcs.2022.10.028_br0180 article-title: An O(n log n) algorithm for finding all repetitions in a string publication-title: J. Algorithms doi: 10.1016/0196-6774(84)90021-X contributor: fullname: Main – ident: 10.1016/j.tcs.2022.10.028_br0040 – volume: 16 start-page: 8 issue: 1 year: 2021 ident: 10.1016/j.tcs.2022.10.028_br0190 article-title: Lengths of extremal square-free ternary words publication-title: Contrib. Discrete Math. doi: 10.55016/ojs/cdm.v16i1.69831 contributor: fullname: Mol – volume: 80 start-page: 766 issue: 4 year: 2014 ident: 10.1016/j.tcs.2022.10.028_br0060 article-title: Unshuffling a square is NP-hard publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2013.11.002 contributor: fullname: Buss – volume: 601 start-page: 67 year: 2015 ident: 10.1016/j.tcs.2022.10.028_br0220 article-title: Generating square-free words efficiently publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2015.07.027 contributor: fullname: Shur – volume: 12 start-page: 244 issue: 5 year: 1981 ident: 10.1016/j.tcs.2022.10.028_br0080 article-title: An optimal algorithm for computing the repetitions in a word publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(81)90024-7 contributor: fullname: Crochemore – volume: vol. 87 year: 2015 ident: 10.1016/j.tcs.2022.10.028_br0030 contributor: fullname: Bóna – volume: 50 start-page: 101 issue: 1 year: 2016 ident: 10.1016/j.tcs.2022.10.028_br0140 article-title: A short proof that shuffle squares are 7-avoidable publication-title: RAIRO Theor. Inform. Appl. doi: 10.1051/ita/2016007 contributor: fullname: Guégan – volume: 2 year: 1995 ident: 10.1016/j.tcs.2022.10.028_br0120 article-title: How many squares must a binary sequence contain? publication-title: Electron. J. Comb. contributor: fullname: Fraenkel – volume: 22 start-page: 297 year: 1983 ident: 10.1016/j.tcs.2022.10.028_br0010 article-title: Optimal off-line detection of repetitions in a string publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(83)90109-3 contributor: fullname: Apostolico – year: 2009 ident: 10.1016/j.tcs.2022.10.028_br0110 contributor: fullname: Flajolet – year: 2017 ident: 10.1016/j.tcs.2022.10.028_br0210 article-title: On recognising words that are squares for the shuffle product publication-title: Theor. Comput. Sci. contributor: fullname: Rizzi – volume: 6 start-page: 187 issue: 5–6 year: 2012 ident: 10.1016/j.tcs.2022.10.028_br0230 article-title: Growth properties of power-free languages publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2012.09.001 contributor: fullname: Shur – volume: 1906 issue: 7 year: 1906 ident: 10.1016/j.tcs.2022.10.028_br0250 article-title: Über unendliche Zeichenreihen publication-title: Christiania Vidensk.-Selsk. Skr. contributor: fullname: Thue – ident: 10.1016/j.tcs.2022.10.028_br0240 – volume: 3 start-page: 121 issue: 2–3 year: 1927 ident: 10.1016/j.tcs.2022.10.028_br0160 article-title: Über eine Schlussweise aus dem Endlichen ins Unendliche publication-title: Acta Litt. Sci. Reg. Univ. Hung. Francisco-Josephinae, Sect. Sci. Math. contributor: fullname: Kőnig – year: 2015 ident: 10.1016/j.tcs.2022.10.028_br0200 contributor: fullname: Müller – ident: 10.1016/j.tcs.2022.10.028_br0100 – volume: 4 start-page: 28 issue: 3 year: 2014 ident: 10.1016/j.tcs.2022.10.028_br0090 article-title: Combinatorics and algorithmics of strings (Dagstuhl seminar 14111) publication-title: Dagstuhl Rep. contributor: fullname: Crochemore – start-page: 329 year: 1997 ident: 10.1016/j.tcs.2022.10.028_br0070 article-title: Combinatorics of words contributor: fullname: Choffrut – year: 2005 ident: 10.1016/j.tcs.2022.10.028_br0170 contributor: fullname: Lothaire – volume: vol. 11 start-page: 65 year: 1992 ident: 10.1016/j.tcs.2022.10.028_br0020 article-title: Axel Thue's papers on repetitions in words: a translation contributor: fullname: Berstel – volume: 27 issue: 1 year: 2020 ident: 10.1016/j.tcs.2022.10.028_br0130 article-title: Extremal square-free words publication-title: Electron. J. Comb. contributor: fullname: Grytczuk – volume: 380 start-page: 373 issue: 3 year: 2007 ident: 10.1016/j.tcs.2022.10.028_br0150 article-title: A note on the number of squares in a word publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2007.03.025 contributor: fullname: Ilie |
SSID | ssj0000576 |
Score | 2.4357 |
Snippet | A word u is a shuffle of words v and w, which we denote by u∈v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the... A word u is a shuffle of words v and w, which we denote by u ∈ v⧢w, if u can be obtained by mixing the letters from v and w in a way that preserves the... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 91 |
SubjectTerms | Combinatorics Complexity Computer Science Shuffle |
Title | On shuffled-square-free words |
URI | https://dx.doi.org/10.1016/j.tcs.2022.10.028 https://hal.science/hal-04290576 |
Volume | 941 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8NR2L_DAxwCxwVCEeGJy5dpOnTxWUFQmYA8raG-R44-VaQrb2vD7Ocd2WxggQOIlii6J49xdzuf7BHhR8y4WQRKJPxIRjtcEtSJOtKbW5obhquI9urMT-eG0eD0V014vlRTawP4rpRGGtPaZs39B7fWgCMBzpDkekep4_CO6HzeHy0Xr3IU1ZHmFDGCJu7bW94QJOb1JFZ1vpTDq2NvhMC6I6016e4FM0KYE6q0gmaP2LPjYu0DZz43euvYJv9JHEIUosnDb5UJFB340MTDemRg2JsabuS8h38r7VMrQ92Rog_gsZEkYC22Lk3wtQ2WrKCFDb6641o66-gY3xXiwKJwPV9pXVGds6APwYhL599WxT_w0_CwY65ySeR92GMqcfAA7k7fT06PNspzL4LiO004u7i7Y74cX_UpJ6S-Sub1TP-b34E7cN2STQPD70LPNLtxNPTmyKKJ34fb7dR3e5QM4OG6yn3FD1nHDQ_j4Zjp_NSOxIQbRnI9WZMSk8q5Vbal1JS1qi9qZKg0rFcpRqsa4-6PaGUO1lUoVwuXSyaKshaC1FYo_gkHzpbGPIbPl2HBqcj2mRkjqVOFqI8yYCa4LZtUevEwYqC5D3ZMqBQSeV4iuyqPLgxBdeyASjqrIp0Ehq5Cgv3vsOeJzPbwvdD6bvKs8zKtJnmBfR_v_NvYTuLXh5KcwWF239gD6S9M-i4zxDa4fa3Q |
link.rule.ids | 230,315,782,786,887,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+shuffled-square-free+words&rft.jtitle=Theoretical+computer+science&rft.au=Bulteau%2C+Laurent&rft.au=Jug%C3%A9%2C+Vincent&rft.au=Vialette%2C+St%C3%A9phane&rft.date=2023-01-04&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=941&rft.spage=91&rft.epage=103&rft_id=info:doi/10.1016%2Fj.tcs.2022.10.028&rft.externalDocID=S0304397522006405 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |