The Fem1a gene is downregulated in Rhabdomyosarcoma

Rhabdomyosarcoma (RMS) is the most common soft tissue neoplasm of children, and those metastatic at presentation have a poor prognosis. RMS development is related to defective skeletal muscle differentiation, involving a variety of cell signaling and transcriptional control pathways, including aberr...

Full description

Saved in:
Bibliographic Details
Published in:Tumor biology Vol. 26; no. 6; p. 294
Main Authors: Ventura-Holman, Tereza, Hahn, Heidi, Subauste, Jose S, Maher, Joseph F
Format: Journal Article
Language:English
Published: United States 01-11-2005
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rhabdomyosarcoma (RMS) is the most common soft tissue neoplasm of children, and those metastatic at presentation have a poor prognosis. RMS development is related to defective skeletal muscle differentiation, involving a variety of cell signaling and transcriptional control pathways, including aberrant hedgehog signaling. Here we evaluate Fem1a, a gene highly expressed in skeletal muscle, as a candidate for involvement in RMS. Fem1a is a homolog of fem-1, which controls cell fate decisions in the sex determination pathway of Caenorhabditis elegans, a pathway with homology to mammalian hedgehog signaling. We show that Fem1a expression is activated during myocyte differentiation of C2C12 myoblasts, and this expression is largely confined to the terminally differentiating pool, not to the satellite-cell-like quiescent reserve cell pool. We find that the human homolog, FEM1A, is downregulated in all of 8 different human RMS cell lines, including those derived from embryonal and alveolar RMS. Using mouse genetic models of RMS development, we further show that Fem1a is consistently downregulated in primary RMS from Ptch1+/- mice, from p53-/- mice, from p53+/-; Ptch1+/- mice, and from HGF/SF-Ink4a/Arf-/- mice. Therefore, Fem1a downregulation may be involved in, and/or a marker of, an early cell fate defect fundamental to RMS pathogenesis.
ISSN:1010-4283
DOI:10.1159/000089261