Specific heat and excess heat capacity of grout with phase change materials using heat conduction microcalorimetry
Microencapsulated phase-change-materials (PCMs) incorporated in cementitious grout can be used as a source of energy in an underground thermal energy storage system. Differential scanning calorimetry (DSC) is a widely used technique to measure the latent heat or specific heat of PCM-embedded cementi...
Saved in:
Published in: | Construction & building materials Vol. 401; p. 132915 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
19-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Microencapsulated phase-change-materials (PCMs) incorporated in cementitious grout can be used as a source of energy in an underground thermal energy storage system. Differential scanning calorimetry (DSC) is a widely used technique to measure the latent heat or specific heat of PCM-embedded cementitious materials. However, using milligram sample sizes (as required by DSC) of a cementitious material fails to represent the actual scale of cementitious components. This is the reason why, in the present paper, non-isothermal heat conduction microcalorimetry (MC) was evaluated as a tool for determining the thermal properties of PCM-embedded grout as well as pure PCM (three PCMs were used). An MC experimental protocol (using both single and 5–6 temperature cycles) was developed and used to measure latent heat and melting and crystallization temperatures, which were in good agreement with those reported for pure PCMs by the producers. In addition, the specific heats of the PCM-containing grout also agreed with measurements using the hot disk technique. Overall, the results show that the MC technique can be used as a potential standard method in determining thermal processes in complex systems, such as in PCM-embedded cementitious systems, where a large sample size is needed to represent the material. |
---|---|
AbstractList | Microencapsulated phase-change-materials (PCMs) incorporated in cementitious grout can be used as a source of energy in an underground thermal energy storage system. Differential scanning calorimetry (DSC) is a widely used technique to measure the latent heat or specific heat of PCM-embedded cementitious materials. However, using milligram sample sizes (as required by DSC) of a cementitious material fails to represent the actual scale of cementitious components. This is the reason why, in the present paper, non-isothermal heat conduction microcalorimetry (MC) was evaluated as a tool for determining the thermal properties of PCM-embedded grout as well as pure PCM (three PCMs were used). An MC experimental protocol (using both single and 5–6 temperature cycles) was developed and used to measure latent heat and melting and crystallization temperatures, which were in good agreement with those reported for pure PCMs by the producers. In addition, the specific heats of the PCM-containing grout also agreed with measurements using the hot disk technique. Overall, the results show that the MC technique can be used as a potential standard method in determining thermal processes in complex systems, such as in PCM-embedded cementitious systems, where a large sample size is needed to represent the material. |
ArticleNumber | 132915 |
Author | Pushp, Mohit Lönnermark, Anders Hedenqvist, Mikael Arun Chaudhari, Ojas Nejad Ghafar, Ali Blomqvist, Per Vikegard, Peter |
Author_xml | – sequence: 1 givenname: Mohit surname: Pushp fullname: Pushp, Mohit – sequence: 2 givenname: Ojas surname: Arun Chaudhari fullname: Arun Chaudhari, Ojas – sequence: 3 givenname: Peter surname: Vikegard fullname: Vikegard, Peter – sequence: 4 givenname: Per surname: Blomqvist fullname: Blomqvist, Per – sequence: 5 givenname: Anders surname: Lönnermark fullname: Lönnermark, Anders – sequence: 6 givenname: Ali surname: Nejad Ghafar fullname: Nejad Ghafar, Ali – sequence: 7 givenname: Mikael surname: Hedenqvist fullname: Hedenqvist, Mikael |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-334778$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-66941$$DView record from Swedish Publication Index |
BookMark | eNqFkctqwzAQRbVIoUnaf1DXxa4etmwvQ_qEQBd9bIUkj2OliWUkmTR_X4eE0l1Xw8C5cxnODE061wFCN5SklFBxt0mN6_Rgt_VOxZQRxlPKWUXzCZqSKicJEbS8RLMQNoQQwQSbIv_Wg7GNNbgFFbHqagzfBkI47Ub1yth4wK7Ba--GiPc2trhvVQBsWtWtAY9l4K3aBjwE263PQdfVg4nWdXhnjXdGbZ23O4j-cIUumpGG6_Oco4_Hh_flc7J6fXpZLlaJ4ZzEpCwKYQQvMlrUijHgOWSFaozOCYNSN7oulYaGa03rnDZgSq1ZDtQwwTNGCJ-j29PdsId-0LIf-5U_SKesvLefC-n8WnorhagyOtLJ__RXbCXnWVGUI1-d-PG5EDw0vwlK5FGH3Mg_OuRRhzzp4D-6aIo6 |
Cites_doi | 10.1007/s10973-017-6684-7 10.1016/j.cemconres.2013.09.012 10.1016/j.applthermaleng.2014.01.027 10.1016/j.apenergy.2012.03.058 10.1016/j.energy.2020.118698 10.1016/j.enbuild.2015.07.043 10.1016/j.applthermaleng.2004.03.017 10.1016/j.renene.2012.08.024 10.1016/j.enconman.2010.07.033 10.1016/j.enconman.2016.11.061 10.1016/j.cemconcomp.2007.04.007 10.1016/j.conbuildmat.2019.05.064 10.1016/j.enbuild.2015.11.028 10.1016/j.apenergy.2015.08.019 10.1016/j.cemconcomp.2009.08.002 10.1016/j.applthermaleng.2013.11.050 10.1016/S1359-4311(02)00192-8 10.1063/1.1145178 10.3390/ma10050462 10.1016/j.rser.2015.12.081 10.1016/j.cemconres.2015.10.004 10.1016/j.applthermaleng.2014.06.053 10.1016/j.enbuild.2019.07.014 10.1016/j.egypro.2017.03.010 10.1002/er.4522 10.1016/j.cemconcomp.2017.04.010 10.1061/(ASCE)MT.1943-5533.0003178 10.1016/j.renene.2023.02.079 10.1016/j.tca.2011.04.027 10.1016/j.enbuild.2015.02.044 10.1016/j.cemconcomp.2015.10.023 10.1016/j.renene.2021.02.120 10.1016/j.cemconcomp.2014.03.003 |
ContentType | Journal Article |
DBID | AAYXX CITATION ADTPV AFDQA AOWAS D8T D8V ZZAVC |
DOI | 10.1016/j.conbuildmat.2023.132915 |
DatabaseName | CrossRef SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_DiVA_org_ri_66941 oai_DiVA_org_kth_334778 10_1016_j_conbuildmat_2023_132915 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYOK AAYXX ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADOJD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BAAKF BJAXD BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IAO IEA IGG IHE IHM IOF ISM ITC J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 R2- RIG RNS ROL RPZ RZL SDF SDG SES SET SEW SMS SPC SPCBC SSM SST SSZ T5K UNMZH VH1 WUQ XI7 ZMT ~G- ADTPV AFDQA AOWAS D8T D8V ZZAVC |
ID | FETCH-LOGICAL-c330t-8776c637417da22e35e47afcb502e8bfbd8abef3bb1d51fec8bb25e1c26342003 |
ISSN | 0950-0618 1879-0526 |
IngestDate | Tue Oct 01 22:42:11 EDT 2024 Tue Oct 01 22:30:24 EDT 2024 Thu Sep 26 17:43:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c330t-8776c637417da22e35e47afcb502e8bfbd8abef3bb1d51fec8bb25e1c26342003 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-334778 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ri_66941 swepub_primary_oai_DiVA_org_kth_334778 crossref_primary_10_1016_j_conbuildmat_2023_132915 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-19 |
PublicationDateYYYYMMDD | 2023-10-19 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Construction & building materials |
PublicationYear | 2023 |
References | Wadsö (10.1016/j.conbuildmat.2023.132915_b0130) 2016; 79 Ramakrishnan (10.1016/j.conbuildmat.2023.132915_b0070) 2015; 157 Eddhahak-Ouni (10.1016/j.conbuildmat.2023.132915_b0120) 2014; 64 Zhang (10.1016/j.conbuildmat.2023.132915_b0110) 2013; 50 Bao (10.1016/j.conbuildmat.2023.132915_b0050) 2017; 10 Günther (10.1016/j.conbuildmat.2023.132915_b0190) 2011; 522 Snehal (10.1016/j.conbuildmat.2023.132915_b0175) 2021 Hunger (10.1016/j.conbuildmat.2023.132915_b0075) 2009; 31 Zalba (10.1016/j.conbuildmat.2023.132915_b0200) 2003; 23 Snehal (10.1016/j.conbuildmat.2023.132915_b0045) 2020; 32 Oró (10.1016/j.conbuildmat.2023.132915_b0180) 2012; 99 10.1016/j.conbuildmat.2023.132915_b0155 10.1016/j.conbuildmat.2023.132915_b0010 Suurkuusk (10.1016/j.conbuildmat.2023.132915_b0135) 2018; 131 Bentz (10.1016/j.conbuildmat.2023.132915_b0115) 2007; 29 Emmi (10.1016/j.conbuildmat.2023.132915_b0020) 2023; 206 10.1016/j.conbuildmat.2023.132915_b0150 Cao (10.1016/j.conbuildmat.2023.132915_b0065) 2017; 133 Wei (10.1016/j.conbuildmat.2023.132915_b0060) 2017; 81 Lecompte (10.1016/j.conbuildmat.2023.132915_b0080) 2015; 94 Fernandes (10.1016/j.conbuildmat.2023.132915_b0170) 2014; 51 Franquet (10.1016/j.conbuildmat.2023.132915_b0040) 2014; 73 Cui (10.1016/j.conbuildmat.2023.132915_b0035) 2015; 105 Berardi (10.1016/j.conbuildmat.2023.132915_b0125) 2019; 199 Gustavsson (10.1016/j.conbuildmat.2023.132915_b0165) 1994; 65 Lyne (10.1016/j.conbuildmat.2023.132915_b0025) 2019; 43 Pisello (10.1016/j.conbuildmat.2023.132915_b0085) 2017; 111 Joulin (10.1016/j.conbuildmat.2023.132915_b0095) 2014; 66 Marani (10.1016/j.conbuildmat.2023.132915_b0100) 2019; 217 Pomianowski (10.1016/j.conbuildmat.2023.132915_b0090) 2014; 55 10.1016/j.conbuildmat.2023.132915_b0145 Benli (10.1016/j.conbuildmat.2023.132915_b0030) 2011; 52 Gu (10.1016/j.conbuildmat.2023.132915_b0185) 2004; 24 Rostami (10.1016/j.conbuildmat.2023.132915_b0195) 2020; 211 10.1016/j.conbuildmat.2023.132915_b0140 10.1016/j.conbuildmat.2023.132915_b0160 Aresti (10.1016/j.conbuildmat.2023.132915_b0015) 2021; 171 Haurie (10.1016/j.conbuildmat.2023.132915_b0105) 2016; 111 10.1016/j.conbuildmat.2023.132915_b0005 Khadiran (10.1016/j.conbuildmat.2023.132915_b0055) 2016; 57 Thiele (10.1016/j.conbuildmat.2023.132915_b0205) 2016; 65 |
References_xml | – volume: 131 start-page: 1949 issue: 2 year: 2018 ident: 10.1016/j.conbuildmat.2023.132915_b0135 article-title: A multichannel microcalorimetric system publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-017-6684-7 contributor: fullname: Suurkuusk – volume: 55 start-page: 22 year: 2014 ident: 10.1016/j.conbuildmat.2023.132915_b0090 article-title: A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2013.09.012 contributor: fullname: Pomianowski – volume: 66 start-page: 171 year: 2014 ident: 10.1016/j.conbuildmat.2023.132915_b0095 article-title: Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.01.027 contributor: fullname: Joulin – ident: 10.1016/j.conbuildmat.2023.132915_b0145 – volume: 99 start-page: 513 year: 2012 ident: 10.1016/j.conbuildmat.2023.132915_b0180 article-title: Review on phase change materials (PCMs) for cold thermal energy storage applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.03.058 contributor: fullname: Oró – volume: 211 year: 2020 ident: 10.1016/j.conbuildmat.2023.132915_b0195 article-title: A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage publication-title: Energy doi: 10.1016/j.energy.2020.118698 contributor: fullname: Rostami – volume: 105 start-page: 273 year: 2015 ident: 10.1016/j.conbuildmat.2023.132915_b0035 article-title: Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2015.07.043 contributor: fullname: Cui – volume: 24 start-page: 2511 issue: 17-18 year: 2004 ident: 10.1016/j.conbuildmat.2023.132915_b0185 article-title: Thermal energy recovery of air conditioning system––heat recovery system calculation and phase change materials development publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.03.017 contributor: fullname: Gu – volume: 50 start-page: 670 year: 2013 ident: 10.1016/j.conbuildmat.2023.132915_b0110 article-title: Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material publication-title: Renew. Energy doi: 10.1016/j.renene.2012.08.024 contributor: fullname: Zhang – volume: 52 start-page: 581 issue: 1 year: 2011 ident: 10.1016/j.conbuildmat.2023.132915_b0030 article-title: Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2010.07.033 contributor: fullname: Benli – volume: 133 start-page: 56 year: 2017 ident: 10.1016/j.conbuildmat.2023.132915_b0065 article-title: Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.11.061 contributor: fullname: Cao – volume: 29 start-page: 527 year: 2007 ident: 10.1016/j.conbuildmat.2023.132915_b0115 article-title: Potential applications of phase change materials in concrete technology publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2007.04.007 contributor: fullname: Bentz – volume: 217 start-page: 36 year: 2019 ident: 10.1016/j.conbuildmat.2023.132915_b0100 article-title: Integrating phase change materials in construction materials: Critical review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.05.064 contributor: fullname: Marani – volume: 111 start-page: 393 year: 2016 ident: 10.1016/j.conbuildmat.2023.132915_b0105 article-title: Single layer mortars with microencapsulated PCM: Study of physical and thermal properties, and fire behaviour publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2015.11.028 contributor: fullname: Haurie – volume: 157 start-page: 85 year: 2015 ident: 10.1016/j.conbuildmat.2023.132915_b0070 article-title: A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.019 contributor: fullname: Ramakrishnan – ident: 10.1016/j.conbuildmat.2023.132915_b0160 – volume: 31 start-page: 731 year: 2009 ident: 10.1016/j.conbuildmat.2023.132915_b0075 article-title: The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.08.002 contributor: fullname: Hunger – ident: 10.1016/j.conbuildmat.2023.132915_b0155 – volume: 64 start-page: 32 year: 2014 ident: 10.1016/j.conbuildmat.2023.132915_b0120 article-title: Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs) publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.11.050 contributor: fullname: Eddhahak-Ouni – volume: 23 start-page: 251 issue: 3 year: 2003 ident: 10.1016/j.conbuildmat.2023.132915_b0200 article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00192-8 contributor: fullname: Zalba – volume: 65 start-page: 3856 year: 1994 ident: 10.1016/j.conbuildmat.2023.132915_b0165 article-title: Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1145178 contributor: fullname: Gustavsson – volume: 10 start-page: 462 year: 2017 ident: 10.1016/j.conbuildmat.2023.132915_b0050 article-title: Thermal Properties of Cement-Based Composites for Geothermal Energy Applications publication-title: Materials. doi: 10.3390/ma10050462 contributor: fullname: Bao – volume: 57 start-page: 916 year: 2016 ident: 10.1016/j.conbuildmat.2023.132915_b0055 article-title: Advanced energy storage materials for building applications and their thermal performance characterization: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.081 contributor: fullname: Khadiran – volume: 79 start-page: 316 year: 2016 ident: 10.1016/j.conbuildmat.2023.132915_b0130 article-title: An international round robin test on isothermal (conduction) calorimetry for measurement of three-day heat of hydration of cement publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2015.10.004 contributor: fullname: Wadsö – ident: 10.1016/j.conbuildmat.2023.132915_b0150 – volume: 73 start-page: 32 year: 2014 ident: 10.1016/j.conbuildmat.2023.132915_b0040 article-title: Experimental and theoretical analysis of a cement mortar containing microencapsulated PCM publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.06.053 contributor: fullname: Franquet – volume: 199 start-page: 402 year: 2019 ident: 10.1016/j.conbuildmat.2023.132915_b0125 article-title: Properties of concretes enhanced with phase change materials for building applications publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2019.07.014 contributor: fullname: Berardi – volume: 111 start-page: 81 year: 2017 ident: 10.1016/j.conbuildmat.2023.132915_b0085 article-title: Multifunctional Analysis of Innovative PCM-filled Concretes publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.010 contributor: fullname: Pisello – volume: 43 start-page: 4148 year: 2019 ident: 10.1016/j.conbuildmat.2023.132915_b0025 article-title: Laboratory investigation on the use of thermally enhanced phase change material to improve the performance of borehole heat exchangers for ground source heat pumps publication-title: Int. J. Energy Res. doi: 10.1002/er.4522 contributor: fullname: Lyne – volume: 81 start-page: 66 year: 2017 ident: 10.1016/j.conbuildmat.2023.132915_b0060 article-title: The durability of cementitious composites containing microencapsulated phase change materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2017.04.010 contributor: fullname: Wei – volume: 32 start-page: 04020108 year: 2020 ident: 10.1016/j.conbuildmat.2023.132915_b0045 article-title: Influence of Integration of Phase Change Materials on Hydration and Microstructure Properties of Nanosilica Admixed Cementitious Mortar publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003178 contributor: fullname: Snehal – volume: 206 start-page: 828 year: 2023 ident: 10.1016/j.conbuildmat.2023.132915_b0020 article-title: Enhancement of shallow ground heat exchanger with phase change material publication-title: Renew. Energy doi: 10.1016/j.renene.2023.02.079 contributor: fullname: Emmi – volume: 522 start-page: 199 year: 2011 ident: 10.1016/j.conbuildmat.2023.132915_b0190 article-title: Subcooling in PCM emulsions – Part 2: Interpretation in terms of nucleation theory publication-title: Thermochim Acta doi: 10.1016/j.tca.2011.04.027 contributor: fullname: Günther – volume: 94 start-page: 52 year: 2015 ident: 10.1016/j.conbuildmat.2023.132915_b0080 article-title: Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2015.02.044 contributor: fullname: Lecompte – ident: 10.1016/j.conbuildmat.2023.132915_b0140 – ident: 10.1016/j.conbuildmat.2023.132915_b0005 – volume: 65 start-page: 214 year: 2016 ident: 10.1016/j.conbuildmat.2023.132915_b0205 article-title: Figure of merit for the thermal performance of cementitious composites containing phase change materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.10.023 contributor: fullname: Thiele – ident: 10.1016/j.conbuildmat.2023.132915_b0010 – volume: 171 start-page: 592 year: 2021 ident: 10.1016/j.conbuildmat.2023.132915_b0015 article-title: An investigation on the environmental impact of various Ground Heat Exchangers configurations publication-title: Renew. Energy doi: 10.1016/j.renene.2021.02.120 contributor: fullname: Aresti – start-page: 137 year: 2021 ident: 10.1016/j.conbuildmat.2023.132915_b0175 article-title: Experimental Setup for Thermal Performance Study of Phase Change Material Admixed Cement Composites—A Review contributor: fullname: Snehal – volume: 51 start-page: 14 year: 2014 ident: 10.1016/j.conbuildmat.2023.132915_b0170 article-title: On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2014.03.003 contributor: fullname: Fernandes |
SSID | ssj0006262 |
Score | 2.4456615 |
Snippet | Microencapsulated phase-change-materials (PCMs) incorporated in cementitious grout can be used as a source of energy in an underground thermal energy storage... |
SourceID | swepub crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 132915 |
SubjectTerms | Concrete Grout Latent heat Microcalorimetry Phase change material Specific heat |
Title | Specific heat and excess heat capacity of grout with phase change materials using heat conduction microcalorimetry |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-334778 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-66941 |
Volume | 401 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2rYTggHiqy0tGqrisUnVt57HHhS4qSMCBUvUW2YndZEuTsk0QP5-xx0l2gaJy4BIlVmw5ni8z9uibGUL2IqmSnHETKK1MIGYiDMAKZgHPFNxzwYSx8c5Hn-OPp8nhQixGo461NLT9V0lDG8jaRs7-g7T7QaEB7kHmcAWpw_VGcncF5Q1mrkb2uP5hQwHwOQPbmHkWhg3oaNARe1lIS1t3kQYT2MPiRCetcyRgx7rKMdHs5MJy-EC0ta0M0GyGVNv6n11GWocq5ctuD6P2yri9KlxxvA91UTYD8NrKcgDavJAYBP9pKfs-J-W5PpPIxt9gFr_-Wl98-176ABbf7p0ZzNHivMpE_ZvEs8CmoFlX0ALdHb8pe_Q7LEFYlfsY-JB9O-g-nLBnGCT6h1zah-XJPK1XZ-l5U6ScizhOtsgOAz0FanJn_m5x-r435XDaY5is0Vbncc7ifoa3yMuBLHjNFDY2OxupaN325fgeuevPHXSOgLlPRrp6QO6sZaN8SFYddKiVOAXoUIQOPnfQobWhDjrUQoc66FCEDu2FTB10fMceOvRX6DwiX94ujt8cBb4kR5BxftCA7YyjLOKwDY1zyZjmoRaxNJkKD5hOlFF5IpU2XKlpHk6NzhKlWKinGYvgvwcL8phsV3WldwmVs1AmeaJkbKSYRUIaNdU8Y2C5pVIJGxPWrV16iZlX0o6SuEzXFjy1C57igo_JK1zlvss1Ih-Tvb-9uCrTyIZ4P7npeE_J7QHPz8g2_Gr6Odm6ytsXHlQ_Afu4oYA |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+heat+and+excess+heat+capacity+of+grout+with+phase+change+materials+using+heat+conduction+microcalorimetry&rft.jtitle=Construction+%26+building+materials&rft.au=Pushp%2C+Mohit&rft.au=Arun+Chaudhari%2C+Ojas&rft.au=Vikegard%2C+Peter&rft.au=Blomqvist%2C+Per&rft.date=2023-10-19&rft.issn=1879-0526&rft.volume=401&rft_id=info:doi/10.1016%2Fj.conbuildmat.2023.132915&rft.externalDocID=oai_DiVA_org_kth_334778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |