Specific heat and excess heat capacity of grout with phase change materials using heat conduction microcalorimetry

Microencapsulated phase-change-materials (PCMs) incorporated in cementitious grout can be used as a source of energy in an underground thermal energy storage system. Differential scanning calorimetry (DSC) is a widely used technique to measure the latent heat or specific heat of PCM-embedded cementi...

Full description

Saved in:
Bibliographic Details
Published in:Construction & building materials Vol. 401; p. 132915
Main Authors: Pushp, Mohit, Arun Chaudhari, Ojas, Vikegard, Peter, Blomqvist, Per, Lönnermark, Anders, Nejad Ghafar, Ali, Hedenqvist, Mikael
Format: Journal Article
Language:English
Published: 19-10-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microencapsulated phase-change-materials (PCMs) incorporated in cementitious grout can be used as a source of energy in an underground thermal energy storage system. Differential scanning calorimetry (DSC) is a widely used technique to measure the latent heat or specific heat of PCM-embedded cementitious materials. However, using milligram sample sizes (as required by DSC) of a cementitious material fails to represent the actual scale of cementitious components. This is the reason why, in the present paper, non-isothermal heat conduction microcalorimetry (MC) was evaluated as a tool for determining the thermal properties of PCM-embedded grout as well as pure PCM (three PCMs were used). An MC experimental protocol (using both single and 5–6 temperature cycles) was developed and used to measure latent heat and melting and crystallization temperatures, which were in good agreement with those reported for pure PCMs by the producers. In addition, the specific heats of the PCM-containing grout also agreed with measurements using the hot disk technique. Overall, the results show that the MC technique can be used as a potential standard method in determining thermal processes in complex systems, such as in PCM-embedded cementitious systems, where a large sample size is needed to represent the material.
AbstractList Microencapsulated phase-change-materials (PCMs) incorporated in cementitious grout can be used as a source of energy in an underground thermal energy storage system. Differential scanning calorimetry (DSC) is a widely used technique to measure the latent heat or specific heat of PCM-embedded cementitious materials. However, using milligram sample sizes (as required by DSC) of a cementitious material fails to represent the actual scale of cementitious components. This is the reason why, in the present paper, non-isothermal heat conduction microcalorimetry (MC) was evaluated as a tool for determining the thermal properties of PCM-embedded grout as well as pure PCM (three PCMs were used). An MC experimental protocol (using both single and 5–6 temperature cycles) was developed and used to measure latent heat and melting and crystallization temperatures, which were in good agreement with those reported for pure PCMs by the producers. In addition, the specific heats of the PCM-containing grout also agreed with measurements using the hot disk technique. Overall, the results show that the MC technique can be used as a potential standard method in determining thermal processes in complex systems, such as in PCM-embedded cementitious systems, where a large sample size is needed to represent the material.
ArticleNumber 132915
Author Pushp, Mohit
Lönnermark, Anders
Hedenqvist, Mikael
Arun Chaudhari, Ojas
Nejad Ghafar, Ali
Blomqvist, Per
Vikegard, Peter
Author_xml – sequence: 1
  givenname: Mohit
  surname: Pushp
  fullname: Pushp, Mohit
– sequence: 2
  givenname: Ojas
  surname: Arun Chaudhari
  fullname: Arun Chaudhari, Ojas
– sequence: 3
  givenname: Peter
  surname: Vikegard
  fullname: Vikegard, Peter
– sequence: 4
  givenname: Per
  surname: Blomqvist
  fullname: Blomqvist, Per
– sequence: 5
  givenname: Anders
  surname: Lönnermark
  fullname: Lönnermark, Anders
– sequence: 6
  givenname: Ali
  surname: Nejad Ghafar
  fullname: Nejad Ghafar, Ali
– sequence: 7
  givenname: Mikael
  surname: Hedenqvist
  fullname: Hedenqvist, Mikael
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-334778$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-66941$$DView record from Swedish Publication Index
BookMark eNqFkctqwzAQRbVIoUnaf1DXxa4etmwvQ_qEQBd9bIUkj2OliWUkmTR_X4eE0l1Xw8C5cxnODE061wFCN5SklFBxt0mN6_Rgt_VOxZQRxlPKWUXzCZqSKicJEbS8RLMQNoQQwQSbIv_Wg7GNNbgFFbHqagzfBkI47Ub1yth4wK7Ba--GiPc2trhvVQBsWtWtAY9l4K3aBjwE263PQdfVg4nWdXhnjXdGbZ23O4j-cIUumpGG6_Oco4_Hh_flc7J6fXpZLlaJ4ZzEpCwKYQQvMlrUijHgOWSFaozOCYNSN7oulYaGa03rnDZgSq1ZDtQwwTNGCJ-j29PdsId-0LIf-5U_SKesvLefC-n8WnorhagyOtLJ__RXbCXnWVGUI1-d-PG5EDw0vwlK5FGH3Mg_OuRRhzzp4D-6aIo6
Cites_doi 10.1007/s10973-017-6684-7
10.1016/j.cemconres.2013.09.012
10.1016/j.applthermaleng.2014.01.027
10.1016/j.apenergy.2012.03.058
10.1016/j.energy.2020.118698
10.1016/j.enbuild.2015.07.043
10.1016/j.applthermaleng.2004.03.017
10.1016/j.renene.2012.08.024
10.1016/j.enconman.2010.07.033
10.1016/j.enconman.2016.11.061
10.1016/j.cemconcomp.2007.04.007
10.1016/j.conbuildmat.2019.05.064
10.1016/j.enbuild.2015.11.028
10.1016/j.apenergy.2015.08.019
10.1016/j.cemconcomp.2009.08.002
10.1016/j.applthermaleng.2013.11.050
10.1016/S1359-4311(02)00192-8
10.1063/1.1145178
10.3390/ma10050462
10.1016/j.rser.2015.12.081
10.1016/j.cemconres.2015.10.004
10.1016/j.applthermaleng.2014.06.053
10.1016/j.enbuild.2019.07.014
10.1016/j.egypro.2017.03.010
10.1002/er.4522
10.1016/j.cemconcomp.2017.04.010
10.1061/(ASCE)MT.1943-5533.0003178
10.1016/j.renene.2023.02.079
10.1016/j.tca.2011.04.027
10.1016/j.enbuild.2015.02.044
10.1016/j.cemconcomp.2015.10.023
10.1016/j.renene.2021.02.120
10.1016/j.cemconcomp.2014.03.003
ContentType Journal Article
DBID AAYXX
CITATION
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1016/j.conbuildmat.2023.132915
DatabaseName CrossRef
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_DiVA_org_ri_66941
oai_DiVA_org_kth_334778
10_1016_j_conbuildmat_2023_132915
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYOK
AAYXX
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADOJD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BAAKF
BJAXD
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IAO
IEA
IGG
IHE
IHM
IOF
ISM
ITC
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
R2-
RIG
RNS
ROL
RPZ
RZL
SDF
SDG
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
VH1
WUQ
XI7
ZMT
~G-
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c330t-8776c637417da22e35e47afcb502e8bfbd8abef3bb1d51fec8bb25e1c26342003
ISSN 0950-0618
1879-0526
IngestDate Tue Oct 01 22:42:11 EDT 2024
Tue Oct 01 22:30:24 EDT 2024
Thu Sep 26 17:43:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-8776c637417da22e35e47afcb502e8bfbd8abef3bb1d51fec8bb25e1c26342003
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-334778
ParticipantIDs swepub_primary_oai_DiVA_org_ri_66941
swepub_primary_oai_DiVA_org_kth_334778
crossref_primary_10_1016_j_conbuildmat_2023_132915
PublicationCentury 2000
PublicationDate 2023-10-19
PublicationDateYYYYMMDD 2023-10-19
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-19
  day: 19
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2023
References Wadsö (10.1016/j.conbuildmat.2023.132915_b0130) 2016; 79
Ramakrishnan (10.1016/j.conbuildmat.2023.132915_b0070) 2015; 157
Eddhahak-Ouni (10.1016/j.conbuildmat.2023.132915_b0120) 2014; 64
Zhang (10.1016/j.conbuildmat.2023.132915_b0110) 2013; 50
Bao (10.1016/j.conbuildmat.2023.132915_b0050) 2017; 10
Günther (10.1016/j.conbuildmat.2023.132915_b0190) 2011; 522
Snehal (10.1016/j.conbuildmat.2023.132915_b0175) 2021
Hunger (10.1016/j.conbuildmat.2023.132915_b0075) 2009; 31
Zalba (10.1016/j.conbuildmat.2023.132915_b0200) 2003; 23
Snehal (10.1016/j.conbuildmat.2023.132915_b0045) 2020; 32
Oró (10.1016/j.conbuildmat.2023.132915_b0180) 2012; 99
10.1016/j.conbuildmat.2023.132915_b0155
10.1016/j.conbuildmat.2023.132915_b0010
Suurkuusk (10.1016/j.conbuildmat.2023.132915_b0135) 2018; 131
Bentz (10.1016/j.conbuildmat.2023.132915_b0115) 2007; 29
Emmi (10.1016/j.conbuildmat.2023.132915_b0020) 2023; 206
10.1016/j.conbuildmat.2023.132915_b0150
Cao (10.1016/j.conbuildmat.2023.132915_b0065) 2017; 133
Wei (10.1016/j.conbuildmat.2023.132915_b0060) 2017; 81
Lecompte (10.1016/j.conbuildmat.2023.132915_b0080) 2015; 94
Fernandes (10.1016/j.conbuildmat.2023.132915_b0170) 2014; 51
Franquet (10.1016/j.conbuildmat.2023.132915_b0040) 2014; 73
Cui (10.1016/j.conbuildmat.2023.132915_b0035) 2015; 105
Berardi (10.1016/j.conbuildmat.2023.132915_b0125) 2019; 199
Gustavsson (10.1016/j.conbuildmat.2023.132915_b0165) 1994; 65
Lyne (10.1016/j.conbuildmat.2023.132915_b0025) 2019; 43
Pisello (10.1016/j.conbuildmat.2023.132915_b0085) 2017; 111
Joulin (10.1016/j.conbuildmat.2023.132915_b0095) 2014; 66
Marani (10.1016/j.conbuildmat.2023.132915_b0100) 2019; 217
Pomianowski (10.1016/j.conbuildmat.2023.132915_b0090) 2014; 55
10.1016/j.conbuildmat.2023.132915_b0145
Benli (10.1016/j.conbuildmat.2023.132915_b0030) 2011; 52
Gu (10.1016/j.conbuildmat.2023.132915_b0185) 2004; 24
Rostami (10.1016/j.conbuildmat.2023.132915_b0195) 2020; 211
10.1016/j.conbuildmat.2023.132915_b0140
10.1016/j.conbuildmat.2023.132915_b0160
Aresti (10.1016/j.conbuildmat.2023.132915_b0015) 2021; 171
Haurie (10.1016/j.conbuildmat.2023.132915_b0105) 2016; 111
10.1016/j.conbuildmat.2023.132915_b0005
Khadiran (10.1016/j.conbuildmat.2023.132915_b0055) 2016; 57
Thiele (10.1016/j.conbuildmat.2023.132915_b0205) 2016; 65
References_xml – volume: 131
  start-page: 1949
  issue: 2
  year: 2018
  ident: 10.1016/j.conbuildmat.2023.132915_b0135
  article-title: A multichannel microcalorimetric system
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-017-6684-7
  contributor:
    fullname: Suurkuusk
– volume: 55
  start-page: 22
  year: 2014
  ident: 10.1016/j.conbuildmat.2023.132915_b0090
  article-title: A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2013.09.012
  contributor:
    fullname: Pomianowski
– volume: 66
  start-page: 171
  year: 2014
  ident: 10.1016/j.conbuildmat.2023.132915_b0095
  article-title: Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.01.027
  contributor:
    fullname: Joulin
– ident: 10.1016/j.conbuildmat.2023.132915_b0145
– volume: 99
  start-page: 513
  year: 2012
  ident: 10.1016/j.conbuildmat.2023.132915_b0180
  article-title: Review on phase change materials (PCMs) for cold thermal energy storage applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.03.058
  contributor:
    fullname: Oró
– volume: 211
  year: 2020
  ident: 10.1016/j.conbuildmat.2023.132915_b0195
  article-title: A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118698
  contributor:
    fullname: Rostami
– volume: 105
  start-page: 273
  year: 2015
  ident: 10.1016/j.conbuildmat.2023.132915_b0035
  article-title: Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2015.07.043
  contributor:
    fullname: Cui
– volume: 24
  start-page: 2511
  issue: 17-18
  year: 2004
  ident: 10.1016/j.conbuildmat.2023.132915_b0185
  article-title: Thermal energy recovery of air conditioning system––heat recovery system calculation and phase change materials development
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.03.017
  contributor:
    fullname: Gu
– volume: 50
  start-page: 670
  year: 2013
  ident: 10.1016/j.conbuildmat.2023.132915_b0110
  article-title: Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.08.024
  contributor:
    fullname: Zhang
– volume: 52
  start-page: 581
  issue: 1
  year: 2011
  ident: 10.1016/j.conbuildmat.2023.132915_b0030
  article-title: Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2010.07.033
  contributor:
    fullname: Benli
– volume: 133
  start-page: 56
  year: 2017
  ident: 10.1016/j.conbuildmat.2023.132915_b0065
  article-title: Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.11.061
  contributor:
    fullname: Cao
– volume: 29
  start-page: 527
  year: 2007
  ident: 10.1016/j.conbuildmat.2023.132915_b0115
  article-title: Potential applications of phase change materials in concrete technology
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2007.04.007
  contributor:
    fullname: Bentz
– volume: 217
  start-page: 36
  year: 2019
  ident: 10.1016/j.conbuildmat.2023.132915_b0100
  article-title: Integrating phase change materials in construction materials: Critical review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.05.064
  contributor:
    fullname: Marani
– volume: 111
  start-page: 393
  year: 2016
  ident: 10.1016/j.conbuildmat.2023.132915_b0105
  article-title: Single layer mortars with microencapsulated PCM: Study of physical and thermal properties, and fire behaviour
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2015.11.028
  contributor:
    fullname: Haurie
– volume: 157
  start-page: 85
  year: 2015
  ident: 10.1016/j.conbuildmat.2023.132915_b0070
  article-title: A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.019
  contributor:
    fullname: Ramakrishnan
– ident: 10.1016/j.conbuildmat.2023.132915_b0160
– volume: 31
  start-page: 731
  year: 2009
  ident: 10.1016/j.conbuildmat.2023.132915_b0075
  article-title: The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.08.002
  contributor:
    fullname: Hunger
– ident: 10.1016/j.conbuildmat.2023.132915_b0155
– volume: 64
  start-page: 32
  year: 2014
  ident: 10.1016/j.conbuildmat.2023.132915_b0120
  article-title: Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs)
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.11.050
  contributor:
    fullname: Eddhahak-Ouni
– volume: 23
  start-page: 251
  issue: 3
  year: 2003
  ident: 10.1016/j.conbuildmat.2023.132915_b0200
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00192-8
  contributor:
    fullname: Zalba
– volume: 65
  start-page: 3856
  year: 1994
  ident: 10.1016/j.conbuildmat.2023.132915_b0165
  article-title: Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1145178
  contributor:
    fullname: Gustavsson
– volume: 10
  start-page: 462
  year: 2017
  ident: 10.1016/j.conbuildmat.2023.132915_b0050
  article-title: Thermal Properties of Cement-Based Composites for Geothermal Energy Applications
  publication-title: Materials.
  doi: 10.3390/ma10050462
  contributor:
    fullname: Bao
– volume: 57
  start-page: 916
  year: 2016
  ident: 10.1016/j.conbuildmat.2023.132915_b0055
  article-title: Advanced energy storage materials for building applications and their thermal performance characterization: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.081
  contributor:
    fullname: Khadiran
– volume: 79
  start-page: 316
  year: 2016
  ident: 10.1016/j.conbuildmat.2023.132915_b0130
  article-title: An international round robin test on isothermal (conduction) calorimetry for measurement of three-day heat of hydration of cement
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2015.10.004
  contributor:
    fullname: Wadsö
– ident: 10.1016/j.conbuildmat.2023.132915_b0150
– volume: 73
  start-page: 32
  year: 2014
  ident: 10.1016/j.conbuildmat.2023.132915_b0040
  article-title: Experimental and theoretical analysis of a cement mortar containing microencapsulated PCM
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.06.053
  contributor:
    fullname: Franquet
– volume: 199
  start-page: 402
  year: 2019
  ident: 10.1016/j.conbuildmat.2023.132915_b0125
  article-title: Properties of concretes enhanced with phase change materials for building applications
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2019.07.014
  contributor:
    fullname: Berardi
– volume: 111
  start-page: 81
  year: 2017
  ident: 10.1016/j.conbuildmat.2023.132915_b0085
  article-title: Multifunctional Analysis of Innovative PCM-filled Concretes
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.010
  contributor:
    fullname: Pisello
– volume: 43
  start-page: 4148
  year: 2019
  ident: 10.1016/j.conbuildmat.2023.132915_b0025
  article-title: Laboratory investigation on the use of thermally enhanced phase change material to improve the performance of borehole heat exchangers for ground source heat pumps
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4522
  contributor:
    fullname: Lyne
– volume: 81
  start-page: 66
  year: 2017
  ident: 10.1016/j.conbuildmat.2023.132915_b0060
  article-title: The durability of cementitious composites containing microencapsulated phase change materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.04.010
  contributor:
    fullname: Wei
– volume: 32
  start-page: 04020108
  year: 2020
  ident: 10.1016/j.conbuildmat.2023.132915_b0045
  article-title: Influence of Integration of Phase Change Materials on Hydration and Microstructure Properties of Nanosilica Admixed Cementitious Mortar
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003178
  contributor:
    fullname: Snehal
– volume: 206
  start-page: 828
  year: 2023
  ident: 10.1016/j.conbuildmat.2023.132915_b0020
  article-title: Enhancement of shallow ground heat exchanger with phase change material
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.02.079
  contributor:
    fullname: Emmi
– volume: 522
  start-page: 199
  year: 2011
  ident: 10.1016/j.conbuildmat.2023.132915_b0190
  article-title: Subcooling in PCM emulsions – Part 2: Interpretation in terms of nucleation theory
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2011.04.027
  contributor:
    fullname: Günther
– volume: 94
  start-page: 52
  year: 2015
  ident: 10.1016/j.conbuildmat.2023.132915_b0080
  article-title: Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2015.02.044
  contributor:
    fullname: Lecompte
– ident: 10.1016/j.conbuildmat.2023.132915_b0140
– ident: 10.1016/j.conbuildmat.2023.132915_b0005
– volume: 65
  start-page: 214
  year: 2016
  ident: 10.1016/j.conbuildmat.2023.132915_b0205
  article-title: Figure of merit for the thermal performance of cementitious composites containing phase change materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.10.023
  contributor:
    fullname: Thiele
– ident: 10.1016/j.conbuildmat.2023.132915_b0010
– volume: 171
  start-page: 592
  year: 2021
  ident: 10.1016/j.conbuildmat.2023.132915_b0015
  article-title: An investigation on the environmental impact of various Ground Heat Exchangers configurations
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.02.120
  contributor:
    fullname: Aresti
– start-page: 137
  year: 2021
  ident: 10.1016/j.conbuildmat.2023.132915_b0175
  article-title: Experimental Setup for Thermal Performance Study of Phase Change Material Admixed Cement Composites—A Review
  contributor:
    fullname: Snehal
– volume: 51
  start-page: 14
  year: 2014
  ident: 10.1016/j.conbuildmat.2023.132915_b0170
  article-title: On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2014.03.003
  contributor:
    fullname: Fernandes
SSID ssj0006262
Score 2.4456615
Snippet Microencapsulated phase-change-materials (PCMs) incorporated in cementitious grout can be used as a source of energy in an underground thermal energy storage...
SourceID swepub
crossref
SourceType Open Access Repository
Aggregation Database
StartPage 132915
SubjectTerms Concrete
Grout
Latent heat
Microcalorimetry
Phase change material
Specific heat
Title Specific heat and excess heat capacity of grout with phase change materials using heat conduction microcalorimetry
URI https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-334778
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-66941
Volume 401
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2rYTggHiqy0tGqrisUnVt57HHhS4qSMCBUvUW2YndZEuTsk0QP5-xx0l2gaJy4BIlVmw5ni8z9uibGUL2IqmSnHETKK1MIGYiDMAKZgHPFNxzwYSx8c5Hn-OPp8nhQixGo461NLT9V0lDG8jaRs7-g7T7QaEB7kHmcAWpw_VGcncF5Q1mrkb2uP5hQwHwOQPbmHkWhg3oaNARe1lIS1t3kQYT2MPiRCetcyRgx7rKMdHs5MJy-EC0ta0M0GyGVNv6n11GWocq5ctuD6P2yri9KlxxvA91UTYD8NrKcgDavJAYBP9pKfs-J-W5PpPIxt9gFr_-Wl98-176ABbf7p0ZzNHivMpE_ZvEs8CmoFlX0ALdHb8pe_Q7LEFYlfsY-JB9O-g-nLBnGCT6h1zah-XJPK1XZ-l5U6ScizhOtsgOAz0FanJn_m5x-r435XDaY5is0Vbncc7ifoa3yMuBLHjNFDY2OxupaN325fgeuevPHXSOgLlPRrp6QO6sZaN8SFYddKiVOAXoUIQOPnfQobWhDjrUQoc66FCEDu2FTB10fMceOvRX6DwiX94ujt8cBb4kR5BxftCA7YyjLOKwDY1zyZjmoRaxNJkKD5hOlFF5IpU2XKlpHk6NzhKlWKinGYvgvwcL8phsV3WldwmVs1AmeaJkbKSYRUIaNdU8Y2C5pVIJGxPWrV16iZlX0o6SuEzXFjy1C57igo_JK1zlvss1Ih-Tvb-9uCrTyIZ4P7npeE_J7QHPz8g2_Gr6Odm6ytsXHlQ_Afu4oYA
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+heat+and+excess+heat+capacity+of+grout+with+phase+change+materials+using+heat+conduction+microcalorimetry&rft.jtitle=Construction+%26+building+materials&rft.au=Pushp%2C+Mohit&rft.au=Arun+Chaudhari%2C+Ojas&rft.au=Vikegard%2C+Peter&rft.au=Blomqvist%2C+Per&rft.date=2023-10-19&rft.issn=1879-0526&rft.volume=401&rft_id=info:doi/10.1016%2Fj.conbuildmat.2023.132915&rft.externalDocID=oai_DiVA_org_kth_334778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon