Inside looking out camera pose estimation for virtual studio
This paper studies the inside looking out camera pose estimation for the virtual studio. The camera pose estimation process, the process of estimating a camera’s extrinsic parameters, is based on closed-form geometrical approaches which use the benefit of simple corner detection of 3D cubic-like vir...
Saved in:
Published in: | Graphical models Vol. 70; no. 4; pp. 57 - 75 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier Inc
01-07-2008
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies the inside looking out camera pose estimation for the virtual studio. The camera pose estimation process, the process of estimating a camera’s extrinsic parameters, is based on closed-form geometrical approaches which use the benefit of simple corner detection of 3D cubic-like virtual studio landmarks. We first look at the effective parameters of the camera pose estimation process for the virtual studio. Our studies include all characteristic landmark parameters like landmark lengths, landmark corner angles and their installation position errors and some camera parameters like lens focal length and CCD resolution. Through computer simulation we investigate and analyze all these parameters’ efficiency in camera extrinsic parameters, including camera rotation and position matrixes. Based on this work, we found that the camera translation vector is affected more than other camera extrinsic parameters because of the noise of effective camera pose estimation parameters. Therefore, we present a novel iterative geometrical noise cancellation method for the closed-form camera pose estimation process. This is based on the collinearity theory that reduces the estimation error of the camera translation vector, which plays a major role in camera extrinsic parameters estimation errors. To validate our method, we test it in a complete virtual studio simulation. Our simulation results show that they are in the same order as those of some commercial systems, such as the BBC and InterSense IS-1200 VisTracker. |
---|---|
ISSN: | 1524-0703 1524-0711 |
DOI: | 10.1016/j.gmod.2008.01.001 |