Prediction of sperm extraction in non-obstructive azoospermia patients: a machine-learning perspective

Abstract STUDY QUESTION Can a machine-learning-based model trained in clinical and biological variables support the prediction of the presence or absence of sperm in testicular biopsy in non-obstructive azoospermia (NOA) patients? SUMMARY ANSWER Our machine-learning model was able to accurately pred...

Full description

Saved in:
Bibliographic Details
Published in:Human reproduction (Oxford) Vol. 35; no. 7; pp. 1505 - 1514
Main Authors: Zeadna, A, Khateeb, N, Rokach, L, Lior, Y, Har-Vardi, I, Harlev, A, Huleihel, M, Lunenfeld, E, Levitas, E
Format: Journal Article
Language:English
Published: England Oxford University Press 01-07-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract STUDY QUESTION Can a machine-learning-based model trained in clinical and biological variables support the prediction of the presence or absence of sperm in testicular biopsy in non-obstructive azoospermia (NOA) patients? SUMMARY ANSWER Our machine-learning model was able to accurately predict (AUC of 0.8) the presence or absence of spermatozoa in patients with NOA. WHAT IS KNOWN ALREADY Patients with NOA can conceive with their own biological gametes using ICSI in combination with successful testicular sperm extraction (TESE). Testicular sperm retrieval is successful in up to 50% of men with NOA. However, to the best of our knowledge, there is no existing model that can accurately predict the success of sperm retrieval in TESE. Moreover, machine-learning has never been used for this purpose. STUDY DESIGN, SIZE, DURATION A retrospective cohort study of 119 patients who underwent TESE in a single IVF unit between 1995 and 2017 was conducted. All patients with NOA who underwent TESE during their fertility treatments were included. The development of gradient-boosted trees (GBTs) aimed to predict the presence or absence of spermatozoa in patients with NOA. The accuracy of these GBTs was then compared to a similar multivariate logistic regression model (MvLRM). PARTICIPANTS/MATERIALS, SETTING, METHODS We employed univariate and multivariate binary logistic regression models to predict the probability of successful TESE using a dataset from a retrospective cohort. In addition, we examined various ensemble machine-learning models (GBT and random forest) and evaluated their predictive performance using the leave-one-out cross-validation procedure. A cutoff value for successful/unsuccessful TESE was calculated with receiver operating characteristic (ROC) curve analysis. MAIN RESULTS AND THE ROLE OF CHANCE ROC analysis resulted in an AUC of 0.807 ± 0.032 (95% CI 0.743–0.871) for the proposed GBTs and 0.75 ± 0.052 (95% CI 0.65–0.85) for the MvLRM for the prediction of presence or absence of spermatozoa in patients with NOA. The GBT approach and the MvLRM yielded a sensitivity of 91% vs. 97%, respectively, but the GBT approach has a specificity of 51% compared with 25% for the MvLRM. A total of 78 (65.3%) men with NOA experienced successful TESE. FSH, LH, testosterone, semen volume, age, BMI, ethnicity and testicular size on clinical evaluation were included in these models. LIMITATIONS, REASONS FOR CAUTION This study is a retrospective cohort study, with all the associated inherent biases of such studies. This model was used only for TESE, since micro-TESE is not performed at our center. WIDER IMPLICATIONS OF THE FINDINGS Machine-learning models may lay the foundation for a decision support system for clinicians together with their NOA patients concerning TESE. The findings of this study should be confirmed with further larger and prospective studies. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by the Division of Obstetrics and Gynecology, Soroka University Medical Center, there are no potential conflicts of interest for all authors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0268-1161
1460-2350
DOI:10.1093/humrep/deaa109