Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines

•A reliable multiple combined fault diagnosis scheme is proposed.•A dynamic reliability measure (DReM) technique is also proposed.•This DReM accounts for the spatial variation of the classifier's performance.•The proposed method outperforms three state-of-the-art algorithms. This paper proposes...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 184; pp. 55 - 66
Main Authors: Manjurul Islam, M.M., Kim, Jong-Myon
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 01-04-2019
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A reliable multiple combined fault diagnosis scheme is proposed.•A dynamic reliability measure (DReM) technique is also proposed.•This DReM accounts for the spatial variation of the classifier's performance.•The proposed method outperforms three state-of-the-art algorithms. This paper proposes a reliable multiple combined fault diagnosis scheme for bearings using heterogeneous feature models and an improved one-against-all multiclass support vector machines (OAA-MCSVM) classifier. Distinct feature extraction methods are simultaneously applied to an acoustic emission (AE) signal to extract unique fault features for diagnosing bearing defects. These fault features are composed of time domain, frequency domain statistical parameters, and complex envelope spectrum analysis. Generally, a high-dimensional feature vector is used to train the standard OAA-MCSVM classifier for diagnosis and identification of bearing defects. However, this classification method ignores individual classifier competence when results from multiple classes are agglomerated for the final decision, and therefore, yields undecided and overlapped feature spaces where classification accuracy is severely degraded. To solve this unreliability problem, this paper introduces a dynamic reliability measure (DReM) technique for individual support vector machines (SVMs) in the one-against-all (OAA) framework. This DReM accounts for the spatial variation of the classifier's performance by finding the local neighborhood of a test sample in the training samples space and defining a new decision function for the OAA-MCSVM. The efficacy of the proposed OAA-MCSVM classifier with DReM is tested for identifying single and multiple combined faults in low-speed bearings. The experimental results demonstrate that the proposed classifier technique is superior to three state-of-the-art algorithms, yielding 6.19–16.59% improvement in the average classification performance.
AbstractList This paper proposes a reliable multiple combined fault diagnosis scheme for bearings using heterogeneous feature models and an improved one-against-all multiclass support vector machines (OAA-MCSVM) classifier. Distinct feature extraction methods are simultaneously applied to an acoustic emission (AE) signal to extract unique fault features for diagnosing bearing defects. These fault features are composed of time domain, frequency domain statistical parameters, and complex envelope spectrum analysis. Generally, a high-dimensional feature vector is used to train the standard OAA-MCSVM classifier for diagnosis and identification of bearing defects. However, this classification method ignores individual classifier competence when results from multiple classes are agglomerated for the final decision, and therefore, yields undecided and overlapped feature spaces where classification accuracy is severely degraded. To solve this unreliability problem, this paper introduces a dynamic reliability measure (DReM) technique for individual support vector machines (SVMs) in the one-against-all (OAA) framework. This DReM accounts for the spatial variation of the classifier's performance by finding the local neighborhood of a test sample in the training samples space and defining a new decision function for the OAA-MCSVM. The efficacy of the proposed OAA-MCSVM classifier with DReM is tested for identifying single and multiple combined faults in low-speed bearings. The experimental results demonstrate that the proposed classifier technique is superior to three state-of-the-art algorithms, yielding 6.19–16.59% improvement in the average classification performance.
•A reliable multiple combined fault diagnosis scheme is proposed.•A dynamic reliability measure (DReM) technique is also proposed.•This DReM accounts for the spatial variation of the classifier's performance.•The proposed method outperforms three state-of-the-art algorithms. This paper proposes a reliable multiple combined fault diagnosis scheme for bearings using heterogeneous feature models and an improved one-against-all multiclass support vector machines (OAA-MCSVM) classifier. Distinct feature extraction methods are simultaneously applied to an acoustic emission (AE) signal to extract unique fault features for diagnosing bearing defects. These fault features are composed of time domain, frequency domain statistical parameters, and complex envelope spectrum analysis. Generally, a high-dimensional feature vector is used to train the standard OAA-MCSVM classifier for diagnosis and identification of bearing defects. However, this classification method ignores individual classifier competence when results from multiple classes are agglomerated for the final decision, and therefore, yields undecided and overlapped feature spaces where classification accuracy is severely degraded. To solve this unreliability problem, this paper introduces a dynamic reliability measure (DReM) technique for individual support vector machines (SVMs) in the one-against-all (OAA) framework. This DReM accounts for the spatial variation of the classifier's performance by finding the local neighborhood of a test sample in the training samples space and defining a new decision function for the OAA-MCSVM. The efficacy of the proposed OAA-MCSVM classifier with DReM is tested for identifying single and multiple combined faults in low-speed bearings. The experimental results demonstrate that the proposed classifier technique is superior to three state-of-the-art algorithms, yielding 6.19–16.59% improvement in the average classification performance.
Author Kim, Jong-Myon
Manjurul Islam, M.M.
Author_xml – sequence: 1
  givenname: M.M.
  surname: Manjurul Islam
  fullname: Manjurul Islam, M.M.
– sequence: 2
  givenname: Jong-Myon
  orcidid: 0000-0002-5185-1062
  surname: Kim
  fullname: Kim, Jong-Myon
  email: jmkim07@ulsan.ac.kr
BookMark eNp9UEuL2zAQFssuNPv4Az0J9mx3JMWODHspoS9IKZTuWcjyKFFwJK_GXuhtf_oqpOdeZobhe_B9t-w6poiMfRRQCxDtp2OdkaiWIHQNsgYhr9hK6E1XgVbtNVtB14hKKwkf2C3REQDWXbNZsbffOAbbj8hPyziHqRwunfoQceDelhcfgt3HRIF48rxHm0PcE1-oLH7AGXPaY8S0EPdo5yUXpTTgSNzG4SLqRkvEaZmmlGf-im5Omf-07lBc6J7deDsSPvzbd-z565c_2-_V7te3H9vPu8opqefKt0J1XdNIAc2w8aCxkVZ4RNVtBtuDXCsFymsHoNfgfUGJtvdWNhrXbd-rO_Z40Z1yelmQZnNMS47F0kihW1FGpwpKXlAuJ6KM3kw5nGz-awSYc9PmaM5Nm3PTBqQpTRfS04VUUuNrwGzIBYwOh5BLWDOk8D_6Ozrti-k
CitedBy_id crossref_primary_10_3390_s22072622
crossref_primary_10_1115_1_4062252
crossref_primary_10_1109_TIM_2020_3014033
crossref_primary_10_3390_e22121347
crossref_primary_10_1016_j_ress_2022_108715
crossref_primary_10_1002_ese3_1376
crossref_primary_10_1016_j_ress_2022_108439
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1007_s10845_020_01671_1
crossref_primary_10_3934_mbe_2022534
crossref_primary_10_1016_j_measurement_2023_113028
crossref_primary_10_1177_1687814020930469
crossref_primary_10_1016_j_ymssp_2019_106587
crossref_primary_10_3390_app10248800
crossref_primary_10_1177_09596518231162892
crossref_primary_10_1177_0954408920971976
crossref_primary_10_3390_app10165542
crossref_primary_10_3390_electronics12081816
crossref_primary_10_1007_s13042_021_01458_7
crossref_primary_10_1016_j_ress_2020_107050
crossref_primary_10_1016_j_ress_2023_109372
crossref_primary_10_1016_j_isatra_2020_11_018
crossref_primary_10_1016_j_ress_2022_109076
crossref_primary_10_3390_machines11020304
crossref_primary_10_3390_s22114091
crossref_primary_10_1016_j_aei_2021_101445
crossref_primary_10_21595_jve_2024_23793
crossref_primary_10_3390_app9163374
crossref_primary_10_3389_frai_2020_578613
crossref_primary_10_1109_TII_2021_3116145
crossref_primary_10_3390_s24030951
crossref_primary_10_3390_s21062102
crossref_primary_10_1016_j_ress_2022_108533
crossref_primary_10_1016_j_ress_2023_109107
crossref_primary_10_1016_j_ymssp_2020_107183
crossref_primary_10_1016_j_ress_2022_108890
crossref_primary_10_3390_app11178033
crossref_primary_10_3390_machines12010069
crossref_primary_10_3390_app10020682
crossref_primary_10_1016_j_eswa_2024_123225
crossref_primary_10_1109_TII_2021_3120975
crossref_primary_10_1016_j_arcontrol_2021_04_001
crossref_primary_10_1088_1361_6501_ac66c3
crossref_primary_10_1016_j_measurement_2020_108601
crossref_primary_10_1016_j_ymssp_2023_110159
crossref_primary_10_1016_j_ress_2021_107530
crossref_primary_10_1016_j_ress_2022_108923
crossref_primary_10_1016_j_ress_2021_108187
crossref_primary_10_1016_j_jmsy_2021_09_009
crossref_primary_10_1016_j_ress_2020_107194
crossref_primary_10_1016_j_ress_2021_108186
crossref_primary_10_1088_1361_6501_acf874
crossref_primary_10_23919_JSEE_2022_000023
crossref_primary_10_3390_app14031198
crossref_primary_10_1109_TII_2022_3151072
crossref_primary_10_1016_j_eswa_2020_114094
crossref_primary_10_1016_j_ress_2021_108119
crossref_primary_10_1063_5_0125548
crossref_primary_10_1016_j_ymssp_2022_110089
crossref_primary_10_1007_s00170_024_13898_w
crossref_primary_10_1016_j_ress_2024_110293
crossref_primary_10_1109_ACCESS_2019_2923017
crossref_primary_10_1177_09544062211043132
crossref_primary_10_1590_1678_992x_2020_0011
crossref_primary_10_1177_1748006X20965016
crossref_primary_10_1016_j_measurement_2023_112531
crossref_primary_10_1088_1742_6596_2218_1_012063
crossref_primary_10_1016_j_measurement_2020_107583
crossref_primary_10_3390_s22041410
crossref_primary_10_1016_j_engappai_2023_106859
crossref_primary_10_3390_app13137706
crossref_primary_10_1016_j_jmsy_2021_10_004
crossref_primary_10_1016_j_tsep_2021_101087
crossref_primary_10_1007_s44196_023_00241_6
crossref_primary_10_1016_j_ress_2019_106605
crossref_primary_10_3390_ijerph16234868
crossref_primary_10_3390_app10061933
crossref_primary_10_1016_j_ress_2023_109178
crossref_primary_10_3390_s21175830
crossref_primary_10_1007_s10489_022_03773_0
crossref_primary_10_1016_j_engappai_2023_105970
crossref_primary_10_1109_JSEN_2021_3049953
crossref_primary_10_2478_msr_2019_0031
crossref_primary_10_1016_j_jlp_2024_105343
crossref_primary_10_1016_j_jmsy_2022_11_012
crossref_primary_10_1016_j_mechmachtheory_2019_103676
crossref_primary_10_3390_s20123575
crossref_primary_10_1016_j_measurement_2021_109404
crossref_primary_10_1088_1361_6501_ad05a2
crossref_primary_10_3390_s23198060
crossref_primary_10_1016_j_knosys_2024_112180
crossref_primary_10_1016_j_ress_2021_108017
crossref_primary_10_1016_j_ress_2021_108259
crossref_primary_10_1016_j_ress_2021_108018
crossref_primary_10_1109_TIM_2024_3352702
crossref_primary_10_1155_2023_7173989
crossref_primary_10_3390_app13031331
crossref_primary_10_1109_ACCESS_2020_2990739
crossref_primary_10_1115_1_4046337
crossref_primary_10_1080_10589759_2022_2118747
crossref_primary_10_1111_exsy_13360
crossref_primary_10_1109_ACCESS_2021_3052217
crossref_primary_10_3390_pr11123351
crossref_primary_10_1016_j_measurement_2021_110587
crossref_primary_10_1016_j_ress_2022_108561
crossref_primary_10_1109_TIM_2024_3366270
crossref_primary_10_3390_app11167733
crossref_primary_10_1007_s42417_023_01020_5
Cites_doi 10.1016/j.ress.2016.03.013
10.1109/TNN.2008.2005301
10.1243/135065005X9817
10.1007/s00170-013-5222-4
10.1016/j.ymssp.2017.06.012
10.1016/j.ymssp.2016.02.067
10.1016/j.patcog.2015.01.009
10.1109/TIE.2014.2308133
10.1109/TGRS.2002.1006354
10.3390/s121013694
10.1109/TII.2013.2271979
10.1016/j.asoc.2009.11.003
10.1016/j.patcog.2014.09.020
10.1109/TIE.2012.2230598
10.1016/j.eswa.2008.09.033
10.1109/72.991427
10.1109/TII.2013.2243743
10.1109/TPEL.2014.2358494
10.1007/s12652-017-0585-2
10.1109/TIE.2015.2460242
10.1016/j.ymssp.2010.07.017
10.1007/BF00994018
10.1016/j.neucom.2015.09.081
10.1109/34.588027
10.1109/TPEL.2014.2356207
10.1177/1077546311435348
10.1016/j.eswa.2011.02.065
10.1109/TIE.2012.2185011
10.1109/TIE.2012.2219838
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Apr 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2019
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2018.02.012
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
EndPage 66
ExternalDocumentID 10_1016_j_ress_2018_02_012
S0951832017309730
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-f61399552105d7f08e52a1fee397dab0243303f8c00840ff05d16bfa258e46bb3
ISSN 0951-8320
IngestDate Thu Oct 10 20:31:51 EDT 2024
Thu Sep 26 19:41:30 EDT 2024
Fri Feb 23 02:28:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector machines
Nearest neighborhood search
Fault detection and diagnosis
Data-driven diagnostic
Envelope signal processing
Feature extraction
Bearings (mechanical)
Reliability
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-f61399552105d7f08e52a1fee397dab0243303f8c00840ff05d16bfa258e46bb3
ORCID 0000-0002-5185-1062
PQID 2186121893
PQPubID 2045406
PageCount 12
ParticipantIDs proquest_journals_2186121893
crossref_primary_10_1016_j_ress_2018_02_012
elsevier_sciencedirect_doi_10_1016_j_ress_2018_02_012
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Prieto, Cirrincione, Espinosa, Ortega, Henao (bib0014) 2013; 60
Dai, Gao (bib0007) 2013; 9
Kang, Kim, Kim, Tan, Kim, Choi (bib0002) 2015; 30
Xia, Xia, Wan, Cai (bib0019) 2012; 12
PCI-2 Based AE System User's Manual [Online]. Available
Gómez, Castejón, García-Prada (bib0004) 2016; 152
Grasso, Chatterton, Pennacchi, Colosimo (bib0010) 2016; 81
Huang, Tan, Lee (bib0006) 2012; 59
Cerrada, Sánchez, Li, Pacheco, Cabrera, Valente de Oliveira (bib0009) 2018; 99
Price, Lees, Friswell (bib0012) 2005; 219
Islam, Khan, Kim (bib0022) 2015
WSα Sensor [Online]. Available
Chih-Wei, Chih-Jen (bib0018) 2002; 13
Cortes, Vapnik (bib0033) 1995; 20
Smits (bib0026) 2002; 40
Yin, Li, Gao, Kaynak (bib0008) 2015; 62
Chen, Zhou, Xiao, Zhang, Xiao, Zhu (bib0030) 2014; 247
Soualhi, Clerc, Razik (bib0015) 2013; 60
Hajnayeb, Ghasemloonia, Khadem, Moradi (bib0034) 2011; 38
Seshadrinath, Singh, Panigrahi (bib0003) 2014; 10
Yin, Hou (bib0005) 2016; 174
Niknam, Songmene, Au (bib0011) 2013; 69
Aydin, Karakose, Akin (bib0020) 2011; 11
Jie (bib0016) 2012; 23
Woods, Kegelmeyer, Bowyer (bib0025) 1997; 19
Kang, Kim, Wills, Kim (bib0027) 2015; 62
Islam, Kim (bib0031) 2017
Sun, An Yang, Chen, Palazoglu, Feng (bib0013) 2012; 19
Kang, Kim, Kim (bib0017) 2015; 30
.
Widodo, Kim, Son, Yang, Tan, Gu (bib0001) 2009; 36
Abe (bib0021) 2015; 48
Randall, Antoni (bib0032) 2011; 25
Cevikalp, Polikar (bib0024) 2008; 19
Nasiri, Moghadam Charkari, Jalili (bib0023) 2015; 48
Widodo (10.1016/j.ress.2018.02.012_bib0001) 2009; 36
Niknam (10.1016/j.ress.2018.02.012_bib0011) 2013; 69
Kang (10.1016/j.ress.2018.02.012_bib0017) 2015; 30
Xia (10.1016/j.ress.2018.02.012_bib0019) 2012; 12
Cerrada (10.1016/j.ress.2018.02.012_bib0009) 2018; 99
Islam (10.1016/j.ress.2018.02.012_bib0031) 2017
Chih-Wei (10.1016/j.ress.2018.02.012_bib0018) 2002; 13
Woods (10.1016/j.ress.2018.02.012_bib0025) 1997; 19
Yin (10.1016/j.ress.2018.02.012_bib0008) 2015; 62
Soualhi (10.1016/j.ress.2018.02.012_bib0015) 2013; 60
Randall (10.1016/j.ress.2018.02.012_bib0032) 2011; 25
Prieto (10.1016/j.ress.2018.02.012_bib0014) 2013; 60
Seshadrinath (10.1016/j.ress.2018.02.012_bib0003) 2014; 10
Dai (10.1016/j.ress.2018.02.012_bib0007) 2013; 9
Cevikalp (10.1016/j.ress.2018.02.012_bib0024) 2008; 19
Abe (10.1016/j.ress.2018.02.012_bib0021) 2015; 48
Hajnayeb (10.1016/j.ress.2018.02.012_bib0034) 2011; 38
Jie (10.1016/j.ress.2018.02.012_bib0016) 2012; 23
Islam (10.1016/j.ress.2018.02.012_bib0022) 2015
Grasso (10.1016/j.ress.2018.02.012_bib0010) 2016; 81
Aydin (10.1016/j.ress.2018.02.012_bib0020) 2011; 11
Gómez (10.1016/j.ress.2018.02.012_bib0004) 2016; 152
Cortes (10.1016/j.ress.2018.02.012_bib0033) 1995; 20
Huang (10.1016/j.ress.2018.02.012_bib0006) 2012; 59
Nasiri (10.1016/j.ress.2018.02.012_bib0023) 2015; 48
Chen (10.1016/j.ress.2018.02.012_bib0030) 2014; 247
Price (10.1016/j.ress.2018.02.012_bib0012) 2005; 219
10.1016/j.ress.2018.02.012_bib0028
Sun (10.1016/j.ress.2018.02.012_bib0013) 2012; 19
10.1016/j.ress.2018.02.012_bib0029
Smits (10.1016/j.ress.2018.02.012_bib0026) 2002; 40
Kang (10.1016/j.ress.2018.02.012_bib0027) 2015; 62
Kang (10.1016/j.ress.2018.02.012_bib0002) 2015; 30
Yin (10.1016/j.ress.2018.02.012_bib0005) 2016; 174
References_xml – volume: 48
  start-page: 984
  year: 2015
  end-page: 992
  ident: bib0023
  article-title: Least squares twin multi-class classification support vector machine
  publication-title: Pattern Recognit
  contributor:
    fullname: Jalili
– volume: 219
  start-page: 85
  year: 2005
  end-page: 98
  ident: bib0012
  article-title: Detection of severe sliding and pitting fatigue wear regimes through the use of broadband acoustic emission
  publication-title: Proc Inst Mech Eng, Part J
  contributor:
    fullname: Friswell
– volume: 13
  start-page: 415
  year: 2002
  end-page: 425
  ident: bib0018
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans Neural Netw
  contributor:
    fullname: Chih-Jen
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0033
  article-title: Support-vector networks
  publication-title: Mach Learn
  contributor:
    fullname: Vapnik
– volume: 174
  start-page: 643
  year: 2016
  end-page: 650
  ident: bib0005
  article-title: Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes
  publication-title: Neurocomputing
  contributor:
    fullname: Hou
– volume: 69
  start-page: 2679
  year: 2013
  end-page: 2689
  ident: bib0011
  article-title: The use of acoustic emission information to distinguish between dry and lubricated rolling element bearings in low-speed rotating machines
  publication-title: Int J Adv Manuf Technol
  contributor:
    fullname: Au
– volume: 12
  year: 2012
  ident: bib0019
  article-title: Spectral regression based fault feature extraction for bearing accelerometer sensor signals
  publication-title: Sensors
  contributor:
    fullname: Cai
– volume: 152
  start-page: 239
  year: 2016
  end-page: 247
  ident: bib0004
  article-title: Automatic condition monitoring system for crack detection in rotating machinery
  publication-title: Reliab Eng Syst Safety
  contributor:
    fullname: García-Prada
– volume: 19
  start-page: 1832
  year: 2008
  end-page: 1838
  ident: bib0024
  article-title: Local classifier weighting by quadratic programming
  publication-title: IEEE Trans Neural Netw
  contributor:
    fullname: Polikar
– volume: 36
  start-page: 7252
  year: 2009
  end-page: 7261
  ident: bib0001
  article-title: Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine
  publication-title: Expert Syst Appl
  contributor:
    fullname: Gu
– volume: 60
  start-page: 3398
  year: 2013
  end-page: 3407
  ident: bib0014
  article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
  publication-title: IEEE Trans Ind Electron
  contributor:
    fullname: Henao
– volume: 30
  start-page: 2763
  year: 2015
  end-page: 2776
  ident: bib0017
  article-title: High-performance and energy-efficient fault diagnosis using effective envelope analysis and denoising on a general-purpose graphics processing unit
  publication-title: IEEE Trans Power Electron
  contributor:
    fullname: Kim
– volume: 11
  start-page: 120
  year: 2011
  end-page: 129
  ident: bib0020
  article-title: A multi-objective artificial immune algorithm for parameter optimization in support vector machine
  publication-title: Appl Soft Comput
  contributor:
    fullname: Akin
– volume: 19
  start-page: 405
  year: 1997
  end-page: 410
  ident: bib0025
  article-title: Combination of multiple classifiers using local accuracy estimates
  publication-title: IEEE Trans Pattern Anal Mach Intell
  contributor:
    fullname: Bowyer
– volume: 19
  start-page: 924
  year: 2012
  end-page: 941
  ident: bib0013
  article-title: Fault diagnosis of rolling bearing based on wavelet transform and envelope spectrum correlation
  publication-title: J Vib Control
  contributor:
    fullname: Feng
– volume: 40
  start-page: 801
  year: 2002
  end-page: 813
  ident: bib0026
  article-title: Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection
  publication-title: IEEE Trans Geosci Remote Sens
  contributor:
    fullname: Smits
– volume: 59
  start-page: 4285
  year: 2012
  end-page: 4292
  ident: bib0006
  article-title: Fault diagnosis and fault-tolerant control in linear drives using the Kalman filter
  publication-title: IEEE Trans Ind Electron
  contributor:
    fullname: Lee
– volume: 99
  start-page: 169
  year: 2018
  end-page: 196
  ident: bib0009
  article-title: A review on data-driven fault severity assessment in rolling bearings
  publication-title: Mech Syst Signal Process
  contributor:
    fullname: Valente de Oliveira
– volume: 25
  start-page: 485
  year: 2011
  end-page: 520
  ident: bib0032
  article-title: Rolling element bearing diagnostics—a tutorial
  publication-title: Mech Syst Signal Process
  contributor:
    fullname: Antoni
– volume: 62
  start-page: 657
  year: 2015
  end-page: 667
  ident: bib0008
  article-title: Data-based techniques focused on modern industry: an overview
  publication-title: IEEE Trans Ind Electron
  contributor:
    fullname: Kaynak
– volume: 60
  start-page: 4053
  year: 2013
  end-page: 4062
  ident: bib0015
  article-title: Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique
  publication-title: IEEE Trans Ind Electron
  contributor:
    fullname: Razik
– volume: 247
  start-page: 835
  year: 2014
  end-page: 847
  ident: bib0030
  article-title: Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings
  publication-title: Appl Math Comput
  contributor:
    fullname: Zhu
– volume: 9
  start-page: 2226
  year: 2013
  end-page: 2238
  ident: bib0007
  article-title: From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis
  publication-title: IEEE Trans Ind Inform
  contributor:
    fullname: Gao
– year: 2017
  ident: bib0031
  article-title: Time–frequency envelope analysis-based sub-band selection and probabilistic support vector machines for multi-fault diagnosis of low-speed bearings
  publication-title: J Ambient Intell Human Comput
  contributor:
    fullname: Kim
– volume: 23
  year: 2012
  ident: bib0016
  article-title: Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection
  publication-title: Measure Sci Technol
  contributor:
    fullname: Jie
– volume: 48
  start-page: 2110
  year: 2015
  end-page: 2117
  ident: bib0021
  article-title: Fuzzy support vector machines for multilabel classification
  publication-title: Pattern Recognit
  contributor:
    fullname: Abe
– volume: 81
  start-page: 126
  year: 2016
  end-page: 147
  ident: bib0010
  article-title: A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis
  publication-title: Mech Syst Signal Process
  contributor:
    fullname: Colosimo
– start-page: 538
  year: 2015
  end-page: 550
  ident: bib0022
  article-title: Multi-fault diagnosis of roller bearings using support vector machines with an improved decision strategy
  publication-title: International Conference on Intelligent Computing
  contributor:
    fullname: Kim
– volume: 30
  start-page: 2786
  year: 2015
  end-page: 2797
  ident: bib0002
  article-title: Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis
  publication-title: IEEE Trans Power Electron
  contributor:
    fullname: Choi
– volume: 38
  start-page: 10205
  year: 2011
  end-page: 10209
  ident: bib0034
  article-title: Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis
  publication-title: Expert Syst Appl
  contributor:
    fullname: Moradi
– volume: 10
  start-page: 340
  year: 2014
  end-page: 350
  ident: bib0003
  article-title: Vibration analysis based interturn fault diagnosis in induction machines
  publication-title: IEEE Trans Ind Inform
  contributor:
    fullname: Panigrahi
– volume: 62
  start-page: 7749
  year: 2015
  end-page: 7761
  ident: bib0027
  article-title: Time-varying and multiresolution envelope analysis and discriminative feature analysis for bearing fault diagnosis
  publication-title: IEEE Trans Ind Electron
  contributor:
    fullname: Kim
– volume: 152
  start-page: 239
  year: 2016
  ident: 10.1016/j.ress.2018.02.012_bib0004
  article-title: Automatic condition monitoring system for crack detection in rotating machinery
  publication-title: Reliab Eng Syst Safety
  doi: 10.1016/j.ress.2016.03.013
  contributor:
    fullname: Gómez
– volume: 19
  start-page: 1832
  year: 2008
  ident: 10.1016/j.ress.2018.02.012_bib0024
  article-title: Local classifier weighting by quadratic programming
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005301
  contributor:
    fullname: Cevikalp
– volume: 219
  start-page: 85
  year: 2005
  ident: 10.1016/j.ress.2018.02.012_bib0012
  article-title: Detection of severe sliding and pitting fatigue wear regimes through the use of broadband acoustic emission
  publication-title: Proc Inst Mech Eng, Part J
  doi: 10.1243/135065005X9817
  contributor:
    fullname: Price
– volume: 69
  start-page: 2679
  year: 2013
  ident: 10.1016/j.ress.2018.02.012_bib0011
  article-title: The use of acoustic emission information to distinguish between dry and lubricated rolling element bearings in low-speed rotating machines
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-013-5222-4
  contributor:
    fullname: Niknam
– volume: 99
  start-page: 169
  year: 2018
  ident: 10.1016/j.ress.2018.02.012_bib0009
  article-title: A review on data-driven fault severity assessment in rolling bearings
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.06.012
  contributor:
    fullname: Cerrada
– volume: 81
  start-page: 126
  year: 2016
  ident: 10.1016/j.ress.2018.02.012_bib0010
  article-title: A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.02.067
  contributor:
    fullname: Grasso
– ident: 10.1016/j.ress.2018.02.012_bib0028
– start-page: 538
  year: 2015
  ident: 10.1016/j.ress.2018.02.012_bib0022
  article-title: Multi-fault diagnosis of roller bearings using support vector machines with an improved decision strategy
  contributor:
    fullname: Islam
– volume: 48
  start-page: 2110
  year: 2015
  ident: 10.1016/j.ress.2018.02.012_bib0021
  article-title: Fuzzy support vector machines for multilabel classification
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2015.01.009
  contributor:
    fullname: Abe
– volume: 62
  start-page: 657
  year: 2015
  ident: 10.1016/j.ress.2018.02.012_bib0008
  article-title: Data-based techniques focused on modern industry: an overview
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2308133
  contributor:
    fullname: Yin
– volume: 40
  start-page: 801
  year: 2002
  ident: 10.1016/j.ress.2018.02.012_bib0026
  article-title: Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2002.1006354
  contributor:
    fullname: Smits
– volume: 12
  year: 2012
  ident: 10.1016/j.ress.2018.02.012_bib0019
  article-title: Spectral regression based fault feature extraction for bearing accelerometer sensor signals
  publication-title: Sensors
  doi: 10.3390/s121013694
  contributor:
    fullname: Xia
– volume: 10
  start-page: 340
  year: 2014
  ident: 10.1016/j.ress.2018.02.012_bib0003
  article-title: Vibration analysis based interturn fault diagnosis in induction machines
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2013.2271979
  contributor:
    fullname: Seshadrinath
– volume: 11
  start-page: 120
  year: 2011
  ident: 10.1016/j.ress.2018.02.012_bib0020
  article-title: A multi-objective artificial immune algorithm for parameter optimization in support vector machine
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.11.003
  contributor:
    fullname: Aydin
– volume: 48
  start-page: 984
  year: 2015
  ident: 10.1016/j.ress.2018.02.012_bib0023
  article-title: Least squares twin multi-class classification support vector machine
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2014.09.020
  contributor:
    fullname: Nasiri
– volume: 60
  start-page: 4053
  year: 2013
  ident: 10.1016/j.ress.2018.02.012_bib0015
  article-title: Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2012.2230598
  contributor:
    fullname: Soualhi
– volume: 36
  start-page: 7252
  year: 2009
  ident: 10.1016/j.ress.2018.02.012_bib0001
  article-title: Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.09.033
  contributor:
    fullname: Widodo
– volume: 13
  start-page: 415
  year: 2002
  ident: 10.1016/j.ress.2018.02.012_bib0018
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.991427
  contributor:
    fullname: Chih-Wei
– volume: 247
  start-page: 835
  year: 2014
  ident: 10.1016/j.ress.2018.02.012_bib0030
  article-title: Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings
  publication-title: Appl Math Comput
  contributor:
    fullname: Chen
– volume: 9
  start-page: 2226
  year: 2013
  ident: 10.1016/j.ress.2018.02.012_bib0007
  article-title: From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2013.2243743
  contributor:
    fullname: Dai
– volume: 30
  start-page: 2786
  year: 2015
  ident: 10.1016/j.ress.2018.02.012_bib0002
  article-title: Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2014.2358494
  contributor:
    fullname: Kang
– volume: 23
  year: 2012
  ident: 10.1016/j.ress.2018.02.012_bib0016
  article-title: Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection
  publication-title: Measure Sci Technol
  contributor:
    fullname: Jie
– year: 2017
  ident: 10.1016/j.ress.2018.02.012_bib0031
  article-title: Time–frequency envelope analysis-based sub-band selection and probabilistic support vector machines for multi-fault diagnosis of low-speed bearings
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-017-0585-2
  contributor:
    fullname: Islam
– volume: 62
  start-page: 7749
  year: 2015
  ident: 10.1016/j.ress.2018.02.012_bib0027
  article-title: Time-varying and multiresolution envelope analysis and discriminative feature analysis for bearing fault diagnosis
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2460242
  contributor:
    fullname: Kang
– volume: 25
  start-page: 485
  year: 2011
  ident: 10.1016/j.ress.2018.02.012_bib0032
  article-title: Rolling element bearing diagnostics—a tutorial
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2010.07.017
  contributor:
    fullname: Randall
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.ress.2018.02.012_bib0033
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
  contributor:
    fullname: Cortes
– volume: 174
  start-page: 643
  year: 2016
  ident: 10.1016/j.ress.2018.02.012_bib0005
  article-title: Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.081
  contributor:
    fullname: Yin
– volume: 19
  start-page: 405
  year: 1997
  ident: 10.1016/j.ress.2018.02.012_bib0025
  article-title: Combination of multiple classifiers using local accuracy estimates
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.588027
  contributor:
    fullname: Woods
– volume: 30
  start-page: 2763
  year: 2015
  ident: 10.1016/j.ress.2018.02.012_bib0017
  article-title: High-performance and energy-efficient fault diagnosis using effective envelope analysis and denoising on a general-purpose graphics processing unit
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2014.2356207
  contributor:
    fullname: Kang
– volume: 19
  start-page: 924
  year: 2012
  ident: 10.1016/j.ress.2018.02.012_bib0013
  article-title: Fault diagnosis of rolling bearing based on wavelet transform and envelope spectrum correlation
  publication-title: J Vib Control
  doi: 10.1177/1077546311435348
  contributor:
    fullname: Sun
– volume: 38
  start-page: 10205
  year: 2011
  ident: 10.1016/j.ress.2018.02.012_bib0034
  article-title: Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.065
  contributor:
    fullname: Hajnayeb
– volume: 59
  start-page: 4285
  year: 2012
  ident: 10.1016/j.ress.2018.02.012_bib0006
  article-title: Fault diagnosis and fault-tolerant control in linear drives using the Kalman filter
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2012.2185011
  contributor:
    fullname: Huang
– volume: 60
  start-page: 3398
  year: 2013
  ident: 10.1016/j.ress.2018.02.012_bib0014
  article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2012.2219838
  contributor:
    fullname: Prieto
– ident: 10.1016/j.ress.2018.02.012_bib0029
SSID ssj0004957
Score 2.6241128
Snippet •A reliable multiple combined fault diagnosis scheme is proposed.•A dynamic reliability measure (DReM) technique is also proposed.•This DReM accounts for the...
This paper proposes a reliable multiple combined fault diagnosis scheme for bearings using heterogeneous feature models and an improved one-against-all...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 55
SubjectTerms Acoustic emission
Algorithms
Bearing
Bearings
Bearings (mechanical)
Classification
Classifiers
Data-driven diagnostic
Defects
Diagnosis
Envelope signal processing
Fault detection
Fault detection and diagnosis
Fault diagnosis
Feature extraction
Low speed
Nearest neighborhood search
Reliability
Reliability engineering
Spectrum analysis
Statistical methods
Support vector machines
Title Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines
URI https://dx.doi.org/10.1016/j.ress.2018.02.012
https://www.proquest.com/docview/2186121893
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELXS9gIHxKcoFDQHbquN9jv2sYKgghQuLVJv1jprUyJIqqZbiRs_nRmPnU2KQIDEIavISbzOzvP47ez4jRCvpM1LXNe6VJlGplXdTVJDRM5ZW3TZvGorS_GOk9PJh3P5ZlpNR6NYZmto-6-Wxja0Ne2c_QtrbzrFBnyPNscjWh2Pf2R3yjH226E2qYJ4Frz9RWLpWmyiaCsl17EOicG_7wt39j5mcEHJMSvs21JmrLNe9ZOr5bCWs-90Tow7WfeXxN2TGx_3pwpGF5RCv812eSyfPdO3g_ChhxtLSCfr1gUlEo6LLxf9Vf8l2SB1Np6NhzyBryHg_ymdfQt4ChGLXG0luvgwWtxKM-QtcTwyT9G98EMay95YTpSXz95119WWw2WN37B0c_2WnxYFjk8sxhS_oGQ-6VVaQ_b2rtj2KQ2DRpGj51P42hMHBbow9KAHx--m5--HPbeKVWTjsMOGLM4dvH2mX5GeW8u_5zRn98W9cDMCx4yiB2Jklw_F3S2Jykfie8QTRDxBxBN4PMEGT7ByEPEEHk-wgycIeALGEyCeYMATBDwB4wkinh6Lj2-nZ69P0lC1I52XhbxOHRJEpWqkhRnOfJdJWxdtjnMfmW_XGlLARNrk5JxKOWTO4bfyxri2qKWtGmPKJ2J_uVrapwKkI7nBsiktuhNlOmVMbRvn6OGwNWV1KJJ4WfUli7PomLW40GQETUbQWaHRCIeijldeB3rJtFEjUH77u6NoJh0mOn6eS9LeQ7b_7B-7fS7uDJPjSOxfX_X2hdhbd_3LgLUfGLWthw
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+multiple+combined+fault+diagnosis+of+bearings+using+heterogeneous+feature+models+and+multiclass+support+vector+Machines&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Manjurul+Islam%2C+M.M.&rft.au=Kim%2C+Jong-Myon&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=184&rft.spage=55&rft.epage=66&rft_id=info:doi/10.1016%2Fj.ress.2018.02.012&rft.externalDocID=S0951832017309730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon