Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines
•A reliable multiple combined fault diagnosis scheme is proposed.•A dynamic reliability measure (DReM) technique is also proposed.•This DReM accounts for the spatial variation of the classifier's performance.•The proposed method outperforms three state-of-the-art algorithms. This paper proposes...
Saved in:
Published in: | Reliability engineering & system safety Vol. 184; pp. 55 - 66 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Barking
Elsevier Ltd
01-04-2019
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •A reliable multiple combined fault diagnosis scheme is proposed.•A dynamic reliability measure (DReM) technique is also proposed.•This DReM accounts for the spatial variation of the classifier's performance.•The proposed method outperforms three state-of-the-art algorithms.
This paper proposes a reliable multiple combined fault diagnosis scheme for bearings using heterogeneous feature models and an improved one-against-all multiclass support vector machines (OAA-MCSVM) classifier. Distinct feature extraction methods are simultaneously applied to an acoustic emission (AE) signal to extract unique fault features for diagnosing bearing defects. These fault features are composed of time domain, frequency domain statistical parameters, and complex envelope spectrum analysis. Generally, a high-dimensional feature vector is used to train the standard OAA-MCSVM classifier for diagnosis and identification of bearing defects. However, this classification method ignores individual classifier competence when results from multiple classes are agglomerated for the final decision, and therefore, yields undecided and overlapped feature spaces where classification accuracy is severely degraded. To solve this unreliability problem, this paper introduces a dynamic reliability measure (DReM) technique for individual support vector machines (SVMs) in the one-against-all (OAA) framework. This DReM accounts for the spatial variation of the classifier's performance by finding the local neighborhood of a test sample in the training samples space and defining a new decision function for the OAA-MCSVM. The efficacy of the proposed OAA-MCSVM classifier with DReM is tested for identifying single and multiple combined faults in low-speed bearings. The experimental results demonstrate that the proposed classifier technique is superior to three state-of-the-art algorithms, yielding 6.19–16.59% improvement in the average classification performance. |
---|---|
AbstractList | This paper proposes a reliable multiple combined fault diagnosis scheme for bearings using heterogeneous feature models and an improved one-against-all multiclass support vector machines (OAA-MCSVM) classifier. Distinct feature extraction methods are simultaneously applied to an acoustic emission (AE) signal to extract unique fault features for diagnosing bearing defects. These fault features are composed of time domain, frequency domain statistical parameters, and complex envelope spectrum analysis. Generally, a high-dimensional feature vector is used to train the standard OAA-MCSVM classifier for diagnosis and identification of bearing defects. However, this classification method ignores individual classifier competence when results from multiple classes are agglomerated for the final decision, and therefore, yields undecided and overlapped feature spaces where classification accuracy is severely degraded. To solve this unreliability problem, this paper introduces a dynamic reliability measure (DReM) technique for individual support vector machines (SVMs) in the one-against-all (OAA) framework. This DReM accounts for the spatial variation of the classifier's performance by finding the local neighborhood of a test sample in the training samples space and defining a new decision function for the OAA-MCSVM. The efficacy of the proposed OAA-MCSVM classifier with DReM is tested for identifying single and multiple combined faults in low-speed bearings. The experimental results demonstrate that the proposed classifier technique is superior to three state-of-the-art algorithms, yielding 6.19–16.59% improvement in the average classification performance. •A reliable multiple combined fault diagnosis scheme is proposed.•A dynamic reliability measure (DReM) technique is also proposed.•This DReM accounts for the spatial variation of the classifier's performance.•The proposed method outperforms three state-of-the-art algorithms. This paper proposes a reliable multiple combined fault diagnosis scheme for bearings using heterogeneous feature models and an improved one-against-all multiclass support vector machines (OAA-MCSVM) classifier. Distinct feature extraction methods are simultaneously applied to an acoustic emission (AE) signal to extract unique fault features for diagnosing bearing defects. These fault features are composed of time domain, frequency domain statistical parameters, and complex envelope spectrum analysis. Generally, a high-dimensional feature vector is used to train the standard OAA-MCSVM classifier for diagnosis and identification of bearing defects. However, this classification method ignores individual classifier competence when results from multiple classes are agglomerated for the final decision, and therefore, yields undecided and overlapped feature spaces where classification accuracy is severely degraded. To solve this unreliability problem, this paper introduces a dynamic reliability measure (DReM) technique for individual support vector machines (SVMs) in the one-against-all (OAA) framework. This DReM accounts for the spatial variation of the classifier's performance by finding the local neighborhood of a test sample in the training samples space and defining a new decision function for the OAA-MCSVM. The efficacy of the proposed OAA-MCSVM classifier with DReM is tested for identifying single and multiple combined faults in low-speed bearings. The experimental results demonstrate that the proposed classifier technique is superior to three state-of-the-art algorithms, yielding 6.19–16.59% improvement in the average classification performance. |
Author | Kim, Jong-Myon Manjurul Islam, M.M. |
Author_xml | – sequence: 1 givenname: M.M. surname: Manjurul Islam fullname: Manjurul Islam, M.M. – sequence: 2 givenname: Jong-Myon orcidid: 0000-0002-5185-1062 surname: Kim fullname: Kim, Jong-Myon email: jmkim07@ulsan.ac.kr |
BookMark | eNp9UEuL2zAQFssuNPv4Az0J9mx3JMWODHspoS9IKZTuWcjyKFFwJK_GXuhtf_oqpOdeZobhe_B9t-w6poiMfRRQCxDtp2OdkaiWIHQNsgYhr9hK6E1XgVbtNVtB14hKKwkf2C3REQDWXbNZsbffOAbbj8hPyziHqRwunfoQceDelhcfgt3HRIF48rxHm0PcE1-oLH7AGXPaY8S0EPdo5yUXpTTgSNzG4SLqRkvEaZmmlGf-im5Omf-07lBc6J7deDsSPvzbd-z565c_2-_V7te3H9vPu8opqefKt0J1XdNIAc2w8aCxkVZ4RNVtBtuDXCsFymsHoNfgfUGJtvdWNhrXbd-rO_Z40Z1yelmQZnNMS47F0kihW1FGpwpKXlAuJ6KM3kw5nGz-awSYc9PmaM5Nm3PTBqQpTRfS04VUUuNrwGzIBYwOh5BLWDOk8D_6Ozrti-k |
CitedBy_id | crossref_primary_10_3390_s22072622 crossref_primary_10_1115_1_4062252 crossref_primary_10_1109_TIM_2020_3014033 crossref_primary_10_3390_e22121347 crossref_primary_10_1016_j_ress_2022_108715 crossref_primary_10_1002_ese3_1376 crossref_primary_10_1016_j_ress_2022_108439 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1007_s10845_020_01671_1 crossref_primary_10_3934_mbe_2022534 crossref_primary_10_1016_j_measurement_2023_113028 crossref_primary_10_1177_1687814020930469 crossref_primary_10_1016_j_ymssp_2019_106587 crossref_primary_10_3390_app10248800 crossref_primary_10_1177_09596518231162892 crossref_primary_10_1177_0954408920971976 crossref_primary_10_3390_app10165542 crossref_primary_10_3390_electronics12081816 crossref_primary_10_1007_s13042_021_01458_7 crossref_primary_10_1016_j_ress_2020_107050 crossref_primary_10_1016_j_ress_2023_109372 crossref_primary_10_1016_j_isatra_2020_11_018 crossref_primary_10_1016_j_ress_2022_109076 crossref_primary_10_3390_machines11020304 crossref_primary_10_3390_s22114091 crossref_primary_10_1016_j_aei_2021_101445 crossref_primary_10_21595_jve_2024_23793 crossref_primary_10_3390_app9163374 crossref_primary_10_3389_frai_2020_578613 crossref_primary_10_1109_TII_2021_3116145 crossref_primary_10_3390_s24030951 crossref_primary_10_3390_s21062102 crossref_primary_10_1016_j_ress_2022_108533 crossref_primary_10_1016_j_ress_2023_109107 crossref_primary_10_1016_j_ymssp_2020_107183 crossref_primary_10_1016_j_ress_2022_108890 crossref_primary_10_3390_app11178033 crossref_primary_10_3390_machines12010069 crossref_primary_10_3390_app10020682 crossref_primary_10_1016_j_eswa_2024_123225 crossref_primary_10_1109_TII_2021_3120975 crossref_primary_10_1016_j_arcontrol_2021_04_001 crossref_primary_10_1088_1361_6501_ac66c3 crossref_primary_10_1016_j_measurement_2020_108601 crossref_primary_10_1016_j_ymssp_2023_110159 crossref_primary_10_1016_j_ress_2021_107530 crossref_primary_10_1016_j_ress_2022_108923 crossref_primary_10_1016_j_ress_2021_108187 crossref_primary_10_1016_j_jmsy_2021_09_009 crossref_primary_10_1016_j_ress_2020_107194 crossref_primary_10_1016_j_ress_2021_108186 crossref_primary_10_1088_1361_6501_acf874 crossref_primary_10_23919_JSEE_2022_000023 crossref_primary_10_3390_app14031198 crossref_primary_10_1109_TII_2022_3151072 crossref_primary_10_1016_j_eswa_2020_114094 crossref_primary_10_1016_j_ress_2021_108119 crossref_primary_10_1063_5_0125548 crossref_primary_10_1016_j_ymssp_2022_110089 crossref_primary_10_1007_s00170_024_13898_w crossref_primary_10_1016_j_ress_2024_110293 crossref_primary_10_1109_ACCESS_2019_2923017 crossref_primary_10_1177_09544062211043132 crossref_primary_10_1590_1678_992x_2020_0011 crossref_primary_10_1177_1748006X20965016 crossref_primary_10_1016_j_measurement_2023_112531 crossref_primary_10_1088_1742_6596_2218_1_012063 crossref_primary_10_1016_j_measurement_2020_107583 crossref_primary_10_3390_s22041410 crossref_primary_10_1016_j_engappai_2023_106859 crossref_primary_10_3390_app13137706 crossref_primary_10_1016_j_jmsy_2021_10_004 crossref_primary_10_1016_j_tsep_2021_101087 crossref_primary_10_1007_s44196_023_00241_6 crossref_primary_10_1016_j_ress_2019_106605 crossref_primary_10_3390_ijerph16234868 crossref_primary_10_3390_app10061933 crossref_primary_10_1016_j_ress_2023_109178 crossref_primary_10_3390_s21175830 crossref_primary_10_1007_s10489_022_03773_0 crossref_primary_10_1016_j_engappai_2023_105970 crossref_primary_10_1109_JSEN_2021_3049953 crossref_primary_10_2478_msr_2019_0031 crossref_primary_10_1016_j_jlp_2024_105343 crossref_primary_10_1016_j_jmsy_2022_11_012 crossref_primary_10_1016_j_mechmachtheory_2019_103676 crossref_primary_10_3390_s20123575 crossref_primary_10_1016_j_measurement_2021_109404 crossref_primary_10_1088_1361_6501_ad05a2 crossref_primary_10_3390_s23198060 crossref_primary_10_1016_j_knosys_2024_112180 crossref_primary_10_1016_j_ress_2021_108017 crossref_primary_10_1016_j_ress_2021_108259 crossref_primary_10_1016_j_ress_2021_108018 crossref_primary_10_1109_TIM_2024_3352702 crossref_primary_10_1155_2023_7173989 crossref_primary_10_3390_app13031331 crossref_primary_10_1109_ACCESS_2020_2990739 crossref_primary_10_1115_1_4046337 crossref_primary_10_1080_10589759_2022_2118747 crossref_primary_10_1111_exsy_13360 crossref_primary_10_1109_ACCESS_2021_3052217 crossref_primary_10_3390_pr11123351 crossref_primary_10_1016_j_measurement_2021_110587 crossref_primary_10_1016_j_ress_2022_108561 crossref_primary_10_1109_TIM_2024_3366270 crossref_primary_10_3390_app11167733 crossref_primary_10_1007_s42417_023_01020_5 |
Cites_doi | 10.1016/j.ress.2016.03.013 10.1109/TNN.2008.2005301 10.1243/135065005X9817 10.1007/s00170-013-5222-4 10.1016/j.ymssp.2017.06.012 10.1016/j.ymssp.2016.02.067 10.1016/j.patcog.2015.01.009 10.1109/TIE.2014.2308133 10.1109/TGRS.2002.1006354 10.3390/s121013694 10.1109/TII.2013.2271979 10.1016/j.asoc.2009.11.003 10.1016/j.patcog.2014.09.020 10.1109/TIE.2012.2230598 10.1016/j.eswa.2008.09.033 10.1109/72.991427 10.1109/TII.2013.2243743 10.1109/TPEL.2014.2358494 10.1007/s12652-017-0585-2 10.1109/TIE.2015.2460242 10.1016/j.ymssp.2010.07.017 10.1007/BF00994018 10.1016/j.neucom.2015.09.081 10.1109/34.588027 10.1109/TPEL.2014.2356207 10.1177/1077546311435348 10.1016/j.eswa.2011.02.065 10.1109/TIE.2012.2185011 10.1109/TIE.2012.2219838 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Apr 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Apr 2019 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
DOI | 10.1016/j.ress.2018.02.012 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0836 |
EndPage | 66 |
ExternalDocumentID | 10_1016_j_ress_2018_02_012 S0951832017309730 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7ST 7TB 8FD C1K FR3 SOI |
ID | FETCH-LOGICAL-c328t-f61399552105d7f08e52a1fee397dab0243303f8c00840ff05d16bfa258e46bb3 |
ISSN | 0951-8320 |
IngestDate | Thu Oct 10 20:31:51 EDT 2024 Thu Sep 26 19:41:30 EDT 2024 Fri Feb 23 02:28:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Support vector machines Nearest neighborhood search Fault detection and diagnosis Data-driven diagnostic Envelope signal processing Feature extraction Bearings (mechanical) Reliability |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c328t-f61399552105d7f08e52a1fee397dab0243303f8c00840ff05d16bfa258e46bb3 |
ORCID | 0000-0002-5185-1062 |
PQID | 2186121893 |
PQPubID | 2045406 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2186121893 crossref_primary_10_1016_j_ress_2018_02_012 elsevier_sciencedirect_doi_10_1016_j_ress_2018_02_012 |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Prieto, Cirrincione, Espinosa, Ortega, Henao (bib0014) 2013; 60 Dai, Gao (bib0007) 2013; 9 Kang, Kim, Kim, Tan, Kim, Choi (bib0002) 2015; 30 Xia, Xia, Wan, Cai (bib0019) 2012; 12 PCI-2 Based AE System User's Manual [Online]. Available Gómez, Castejón, García-Prada (bib0004) 2016; 152 Grasso, Chatterton, Pennacchi, Colosimo (bib0010) 2016; 81 Huang, Tan, Lee (bib0006) 2012; 59 Cerrada, Sánchez, Li, Pacheco, Cabrera, Valente de Oliveira (bib0009) 2018; 99 Price, Lees, Friswell (bib0012) 2005; 219 Islam, Khan, Kim (bib0022) 2015 WSα Sensor [Online]. Available Chih-Wei, Chih-Jen (bib0018) 2002; 13 Cortes, Vapnik (bib0033) 1995; 20 Smits (bib0026) 2002; 40 Yin, Li, Gao, Kaynak (bib0008) 2015; 62 Chen, Zhou, Xiao, Zhang, Xiao, Zhu (bib0030) 2014; 247 Soualhi, Clerc, Razik (bib0015) 2013; 60 Hajnayeb, Ghasemloonia, Khadem, Moradi (bib0034) 2011; 38 Seshadrinath, Singh, Panigrahi (bib0003) 2014; 10 Yin, Hou (bib0005) 2016; 174 Niknam, Songmene, Au (bib0011) 2013; 69 Aydin, Karakose, Akin (bib0020) 2011; 11 Jie (bib0016) 2012; 23 Woods, Kegelmeyer, Bowyer (bib0025) 1997; 19 Kang, Kim, Wills, Kim (bib0027) 2015; 62 Islam, Kim (bib0031) 2017 Sun, An Yang, Chen, Palazoglu, Feng (bib0013) 2012; 19 Kang, Kim, Kim (bib0017) 2015; 30 . Widodo, Kim, Son, Yang, Tan, Gu (bib0001) 2009; 36 Abe (bib0021) 2015; 48 Randall, Antoni (bib0032) 2011; 25 Cevikalp, Polikar (bib0024) 2008; 19 Nasiri, Moghadam Charkari, Jalili (bib0023) 2015; 48 Widodo (10.1016/j.ress.2018.02.012_bib0001) 2009; 36 Niknam (10.1016/j.ress.2018.02.012_bib0011) 2013; 69 Kang (10.1016/j.ress.2018.02.012_bib0017) 2015; 30 Xia (10.1016/j.ress.2018.02.012_bib0019) 2012; 12 Cerrada (10.1016/j.ress.2018.02.012_bib0009) 2018; 99 Islam (10.1016/j.ress.2018.02.012_bib0031) 2017 Chih-Wei (10.1016/j.ress.2018.02.012_bib0018) 2002; 13 Woods (10.1016/j.ress.2018.02.012_bib0025) 1997; 19 Yin (10.1016/j.ress.2018.02.012_bib0008) 2015; 62 Soualhi (10.1016/j.ress.2018.02.012_bib0015) 2013; 60 Randall (10.1016/j.ress.2018.02.012_bib0032) 2011; 25 Prieto (10.1016/j.ress.2018.02.012_bib0014) 2013; 60 Seshadrinath (10.1016/j.ress.2018.02.012_bib0003) 2014; 10 Dai (10.1016/j.ress.2018.02.012_bib0007) 2013; 9 Cevikalp (10.1016/j.ress.2018.02.012_bib0024) 2008; 19 Abe (10.1016/j.ress.2018.02.012_bib0021) 2015; 48 Hajnayeb (10.1016/j.ress.2018.02.012_bib0034) 2011; 38 Jie (10.1016/j.ress.2018.02.012_bib0016) 2012; 23 Islam (10.1016/j.ress.2018.02.012_bib0022) 2015 Grasso (10.1016/j.ress.2018.02.012_bib0010) 2016; 81 Aydin (10.1016/j.ress.2018.02.012_bib0020) 2011; 11 Gómez (10.1016/j.ress.2018.02.012_bib0004) 2016; 152 Cortes (10.1016/j.ress.2018.02.012_bib0033) 1995; 20 Huang (10.1016/j.ress.2018.02.012_bib0006) 2012; 59 Nasiri (10.1016/j.ress.2018.02.012_bib0023) 2015; 48 Chen (10.1016/j.ress.2018.02.012_bib0030) 2014; 247 Price (10.1016/j.ress.2018.02.012_bib0012) 2005; 219 10.1016/j.ress.2018.02.012_bib0028 Sun (10.1016/j.ress.2018.02.012_bib0013) 2012; 19 10.1016/j.ress.2018.02.012_bib0029 Smits (10.1016/j.ress.2018.02.012_bib0026) 2002; 40 Kang (10.1016/j.ress.2018.02.012_bib0027) 2015; 62 Kang (10.1016/j.ress.2018.02.012_bib0002) 2015; 30 Yin (10.1016/j.ress.2018.02.012_bib0005) 2016; 174 |
References_xml | – volume: 48 start-page: 984 year: 2015 end-page: 992 ident: bib0023 article-title: Least squares twin multi-class classification support vector machine publication-title: Pattern Recognit contributor: fullname: Jalili – volume: 219 start-page: 85 year: 2005 end-page: 98 ident: bib0012 article-title: Detection of severe sliding and pitting fatigue wear regimes through the use of broadband acoustic emission publication-title: Proc Inst Mech Eng, Part J contributor: fullname: Friswell – volume: 13 start-page: 415 year: 2002 end-page: 425 ident: bib0018 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans Neural Netw contributor: fullname: Chih-Jen – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0033 article-title: Support-vector networks publication-title: Mach Learn contributor: fullname: Vapnik – volume: 174 start-page: 643 year: 2016 end-page: 650 ident: bib0005 article-title: Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes publication-title: Neurocomputing contributor: fullname: Hou – volume: 69 start-page: 2679 year: 2013 end-page: 2689 ident: bib0011 article-title: The use of acoustic emission information to distinguish between dry and lubricated rolling element bearings in low-speed rotating machines publication-title: Int J Adv Manuf Technol contributor: fullname: Au – volume: 12 year: 2012 ident: bib0019 article-title: Spectral regression based fault feature extraction for bearing accelerometer sensor signals publication-title: Sensors contributor: fullname: Cai – volume: 152 start-page: 239 year: 2016 end-page: 247 ident: bib0004 article-title: Automatic condition monitoring system for crack detection in rotating machinery publication-title: Reliab Eng Syst Safety contributor: fullname: García-Prada – volume: 19 start-page: 1832 year: 2008 end-page: 1838 ident: bib0024 article-title: Local classifier weighting by quadratic programming publication-title: IEEE Trans Neural Netw contributor: fullname: Polikar – volume: 36 start-page: 7252 year: 2009 end-page: 7261 ident: bib0001 article-title: Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine publication-title: Expert Syst Appl contributor: fullname: Gu – volume: 60 start-page: 3398 year: 2013 end-page: 3407 ident: bib0014 article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks publication-title: IEEE Trans Ind Electron contributor: fullname: Henao – volume: 30 start-page: 2763 year: 2015 end-page: 2776 ident: bib0017 article-title: High-performance and energy-efficient fault diagnosis using effective envelope analysis and denoising on a general-purpose graphics processing unit publication-title: IEEE Trans Power Electron contributor: fullname: Kim – volume: 11 start-page: 120 year: 2011 end-page: 129 ident: bib0020 article-title: A multi-objective artificial immune algorithm for parameter optimization in support vector machine publication-title: Appl Soft Comput contributor: fullname: Akin – volume: 19 start-page: 405 year: 1997 end-page: 410 ident: bib0025 article-title: Combination of multiple classifiers using local accuracy estimates publication-title: IEEE Trans Pattern Anal Mach Intell contributor: fullname: Bowyer – volume: 19 start-page: 924 year: 2012 end-page: 941 ident: bib0013 article-title: Fault diagnosis of rolling bearing based on wavelet transform and envelope spectrum correlation publication-title: J Vib Control contributor: fullname: Feng – volume: 40 start-page: 801 year: 2002 end-page: 813 ident: bib0026 article-title: Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection publication-title: IEEE Trans Geosci Remote Sens contributor: fullname: Smits – volume: 59 start-page: 4285 year: 2012 end-page: 4292 ident: bib0006 article-title: Fault diagnosis and fault-tolerant control in linear drives using the Kalman filter publication-title: IEEE Trans Ind Electron contributor: fullname: Lee – volume: 99 start-page: 169 year: 2018 end-page: 196 ident: bib0009 article-title: A review on data-driven fault severity assessment in rolling bearings publication-title: Mech Syst Signal Process contributor: fullname: Valente de Oliveira – volume: 25 start-page: 485 year: 2011 end-page: 520 ident: bib0032 article-title: Rolling element bearing diagnostics—a tutorial publication-title: Mech Syst Signal Process contributor: fullname: Antoni – volume: 62 start-page: 657 year: 2015 end-page: 667 ident: bib0008 article-title: Data-based techniques focused on modern industry: an overview publication-title: IEEE Trans Ind Electron contributor: fullname: Kaynak – volume: 60 start-page: 4053 year: 2013 end-page: 4062 ident: bib0015 article-title: Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique publication-title: IEEE Trans Ind Electron contributor: fullname: Razik – volume: 247 start-page: 835 year: 2014 end-page: 847 ident: bib0030 article-title: Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings publication-title: Appl Math Comput contributor: fullname: Zhu – volume: 9 start-page: 2226 year: 2013 end-page: 2238 ident: bib0007 article-title: From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis publication-title: IEEE Trans Ind Inform contributor: fullname: Gao – year: 2017 ident: bib0031 article-title: Time–frequency envelope analysis-based sub-band selection and probabilistic support vector machines for multi-fault diagnosis of low-speed bearings publication-title: J Ambient Intell Human Comput contributor: fullname: Kim – volume: 23 year: 2012 ident: bib0016 article-title: Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection publication-title: Measure Sci Technol contributor: fullname: Jie – volume: 48 start-page: 2110 year: 2015 end-page: 2117 ident: bib0021 article-title: Fuzzy support vector machines for multilabel classification publication-title: Pattern Recognit contributor: fullname: Abe – volume: 81 start-page: 126 year: 2016 end-page: 147 ident: bib0010 article-title: A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis publication-title: Mech Syst Signal Process contributor: fullname: Colosimo – start-page: 538 year: 2015 end-page: 550 ident: bib0022 article-title: Multi-fault diagnosis of roller bearings using support vector machines with an improved decision strategy publication-title: International Conference on Intelligent Computing contributor: fullname: Kim – volume: 30 start-page: 2786 year: 2015 end-page: 2797 ident: bib0002 article-title: Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis publication-title: IEEE Trans Power Electron contributor: fullname: Choi – volume: 38 start-page: 10205 year: 2011 end-page: 10209 ident: bib0034 article-title: Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis publication-title: Expert Syst Appl contributor: fullname: Moradi – volume: 10 start-page: 340 year: 2014 end-page: 350 ident: bib0003 article-title: Vibration analysis based interturn fault diagnosis in induction machines publication-title: IEEE Trans Ind Inform contributor: fullname: Panigrahi – volume: 62 start-page: 7749 year: 2015 end-page: 7761 ident: bib0027 article-title: Time-varying and multiresolution envelope analysis and discriminative feature analysis for bearing fault diagnosis publication-title: IEEE Trans Ind Electron contributor: fullname: Kim – volume: 152 start-page: 239 year: 2016 ident: 10.1016/j.ress.2018.02.012_bib0004 article-title: Automatic condition monitoring system for crack detection in rotating machinery publication-title: Reliab Eng Syst Safety doi: 10.1016/j.ress.2016.03.013 contributor: fullname: Gómez – volume: 19 start-page: 1832 year: 2008 ident: 10.1016/j.ress.2018.02.012_bib0024 article-title: Local classifier weighting by quadratic programming publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2005301 contributor: fullname: Cevikalp – volume: 219 start-page: 85 year: 2005 ident: 10.1016/j.ress.2018.02.012_bib0012 article-title: Detection of severe sliding and pitting fatigue wear regimes through the use of broadband acoustic emission publication-title: Proc Inst Mech Eng, Part J doi: 10.1243/135065005X9817 contributor: fullname: Price – volume: 69 start-page: 2679 year: 2013 ident: 10.1016/j.ress.2018.02.012_bib0011 article-title: The use of acoustic emission information to distinguish between dry and lubricated rolling element bearings in low-speed rotating machines publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-013-5222-4 contributor: fullname: Niknam – volume: 99 start-page: 169 year: 2018 ident: 10.1016/j.ress.2018.02.012_bib0009 article-title: A review on data-driven fault severity assessment in rolling bearings publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.06.012 contributor: fullname: Cerrada – volume: 81 start-page: 126 year: 2016 ident: 10.1016/j.ress.2018.02.012_bib0010 article-title: A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.02.067 contributor: fullname: Grasso – ident: 10.1016/j.ress.2018.02.012_bib0028 – start-page: 538 year: 2015 ident: 10.1016/j.ress.2018.02.012_bib0022 article-title: Multi-fault diagnosis of roller bearings using support vector machines with an improved decision strategy contributor: fullname: Islam – volume: 48 start-page: 2110 year: 2015 ident: 10.1016/j.ress.2018.02.012_bib0021 article-title: Fuzzy support vector machines for multilabel classification publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.01.009 contributor: fullname: Abe – volume: 62 start-page: 657 year: 2015 ident: 10.1016/j.ress.2018.02.012_bib0008 article-title: Data-based techniques focused on modern industry: an overview publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2308133 contributor: fullname: Yin – volume: 40 start-page: 801 year: 2002 ident: 10.1016/j.ress.2018.02.012_bib0026 article-title: Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2002.1006354 contributor: fullname: Smits – volume: 12 year: 2012 ident: 10.1016/j.ress.2018.02.012_bib0019 article-title: Spectral regression based fault feature extraction for bearing accelerometer sensor signals publication-title: Sensors doi: 10.3390/s121013694 contributor: fullname: Xia – volume: 10 start-page: 340 year: 2014 ident: 10.1016/j.ress.2018.02.012_bib0003 article-title: Vibration analysis based interturn fault diagnosis in induction machines publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2013.2271979 contributor: fullname: Seshadrinath – volume: 11 start-page: 120 year: 2011 ident: 10.1016/j.ress.2018.02.012_bib0020 article-title: A multi-objective artificial immune algorithm for parameter optimization in support vector machine publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.11.003 contributor: fullname: Aydin – volume: 48 start-page: 984 year: 2015 ident: 10.1016/j.ress.2018.02.012_bib0023 article-title: Least squares twin multi-class classification support vector machine publication-title: Pattern Recognit doi: 10.1016/j.patcog.2014.09.020 contributor: fullname: Nasiri – volume: 60 start-page: 4053 year: 2013 ident: 10.1016/j.ress.2018.02.012_bib0015 article-title: Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2012.2230598 contributor: fullname: Soualhi – volume: 36 start-page: 7252 year: 2009 ident: 10.1016/j.ress.2018.02.012_bib0001 article-title: Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.09.033 contributor: fullname: Widodo – volume: 13 start-page: 415 year: 2002 ident: 10.1016/j.ress.2018.02.012_bib0018 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans Neural Netw doi: 10.1109/72.991427 contributor: fullname: Chih-Wei – volume: 247 start-page: 835 year: 2014 ident: 10.1016/j.ress.2018.02.012_bib0030 article-title: Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings publication-title: Appl Math Comput contributor: fullname: Chen – volume: 9 start-page: 2226 year: 2013 ident: 10.1016/j.ress.2018.02.012_bib0007 article-title: From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2013.2243743 contributor: fullname: Dai – volume: 30 start-page: 2786 year: 2015 ident: 10.1016/j.ress.2018.02.012_bib0002 article-title: Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2014.2358494 contributor: fullname: Kang – volume: 23 year: 2012 ident: 10.1016/j.ress.2018.02.012_bib0016 article-title: Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection publication-title: Measure Sci Technol contributor: fullname: Jie – year: 2017 ident: 10.1016/j.ress.2018.02.012_bib0031 article-title: Time–frequency envelope analysis-based sub-band selection and probabilistic support vector machines for multi-fault diagnosis of low-speed bearings publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-017-0585-2 contributor: fullname: Islam – volume: 62 start-page: 7749 year: 2015 ident: 10.1016/j.ress.2018.02.012_bib0027 article-title: Time-varying and multiresolution envelope analysis and discriminative feature analysis for bearing fault diagnosis publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2015.2460242 contributor: fullname: Kang – volume: 25 start-page: 485 year: 2011 ident: 10.1016/j.ress.2018.02.012_bib0032 article-title: Rolling element bearing diagnostics—a tutorial publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2010.07.017 contributor: fullname: Randall – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.ress.2018.02.012_bib0033 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 contributor: fullname: Cortes – volume: 174 start-page: 643 year: 2016 ident: 10.1016/j.ress.2018.02.012_bib0005 article-title: Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.081 contributor: fullname: Yin – volume: 19 start-page: 405 year: 1997 ident: 10.1016/j.ress.2018.02.012_bib0025 article-title: Combination of multiple classifiers using local accuracy estimates publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.588027 contributor: fullname: Woods – volume: 30 start-page: 2763 year: 2015 ident: 10.1016/j.ress.2018.02.012_bib0017 article-title: High-performance and energy-efficient fault diagnosis using effective envelope analysis and denoising on a general-purpose graphics processing unit publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2014.2356207 contributor: fullname: Kang – volume: 19 start-page: 924 year: 2012 ident: 10.1016/j.ress.2018.02.012_bib0013 article-title: Fault diagnosis of rolling bearing based on wavelet transform and envelope spectrum correlation publication-title: J Vib Control doi: 10.1177/1077546311435348 contributor: fullname: Sun – volume: 38 start-page: 10205 year: 2011 ident: 10.1016/j.ress.2018.02.012_bib0034 article-title: Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.02.065 contributor: fullname: Hajnayeb – volume: 59 start-page: 4285 year: 2012 ident: 10.1016/j.ress.2018.02.012_bib0006 article-title: Fault diagnosis and fault-tolerant control in linear drives using the Kalman filter publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2012.2185011 contributor: fullname: Huang – volume: 60 start-page: 3398 year: 2013 ident: 10.1016/j.ress.2018.02.012_bib0014 article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2012.2219838 contributor: fullname: Prieto – ident: 10.1016/j.ress.2018.02.012_bib0029 |
SSID | ssj0004957 |
Score | 2.6241128 |
Snippet | •A reliable multiple combined fault diagnosis scheme is proposed.•A dynamic reliability measure (DReM) technique is also proposed.•This DReM accounts for the... This paper proposes a reliable multiple combined fault diagnosis scheme for bearings using heterogeneous feature models and an improved one-against-all... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 55 |
SubjectTerms | Acoustic emission Algorithms Bearing Bearings Bearings (mechanical) Classification Classifiers Data-driven diagnostic Defects Diagnosis Envelope signal processing Fault detection Fault detection and diagnosis Fault diagnosis Feature extraction Low speed Nearest neighborhood search Reliability Reliability engineering Spectrum analysis Statistical methods Support vector machines |
Title | Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines |
URI | https://dx.doi.org/10.1016/j.ress.2018.02.012 https://www.proquest.com/docview/2186121893 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELXS9gIHxKcoFDQHbquN9jv2sYKgghQuLVJv1jprUyJIqqZbiRs_nRmPnU2KQIDEIavISbzOzvP47ez4jRCvpM1LXNe6VJlGplXdTVJDRM5ZW3TZvGorS_GOk9PJh3P5ZlpNR6NYZmto-6-Wxja0Ne2c_QtrbzrFBnyPNscjWh2Pf2R3yjH226E2qYJ4Frz9RWLpWmyiaCsl17EOicG_7wt39j5mcEHJMSvs21JmrLNe9ZOr5bCWs-90Tow7WfeXxN2TGx_3pwpGF5RCv812eSyfPdO3g_ChhxtLSCfr1gUlEo6LLxf9Vf8l2SB1Np6NhzyBryHg_ymdfQt4ChGLXG0luvgwWtxKM-QtcTwyT9G98EMay95YTpSXz95119WWw2WN37B0c_2WnxYFjk8sxhS_oGQ-6VVaQ_b2rtj2KQ2DRpGj51P42hMHBbow9KAHx--m5--HPbeKVWTjsMOGLM4dvH2mX5GeW8u_5zRn98W9cDMCx4yiB2Jklw_F3S2Jykfie8QTRDxBxBN4PMEGT7ByEPEEHk-wgycIeALGEyCeYMATBDwB4wkinh6Lj2-nZ69P0lC1I52XhbxOHRJEpWqkhRnOfJdJWxdtjnMfmW_XGlLARNrk5JxKOWTO4bfyxri2qKWtGmPKJ2J_uVrapwKkI7nBsiktuhNlOmVMbRvn6OGwNWV1KJJ4WfUli7PomLW40GQETUbQWaHRCIeijldeB3rJtFEjUH77u6NoJh0mOn6eS9LeQ7b_7B-7fS7uDJPjSOxfX_X2hdhbd_3LgLUfGLWthw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+multiple+combined+fault+diagnosis+of+bearings+using+heterogeneous+feature+models+and+multiclass+support+vector+Machines&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Manjurul+Islam%2C+M.M.&rft.au=Kim%2C+Jong-Myon&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=184&rft.spage=55&rft.epage=66&rft_id=info:doi/10.1016%2Fj.ress.2018.02.012&rft.externalDocID=S0951832017309730 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |